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Abstract

We present M3P, a Multitask Multilingual Multimodal

Pre-trained model that combines multilingual pre-training

and multimodal pre-training into a unified framework via

multitask pre-training. Our goal is to learn universal repre-

sentations that can map objects occurred in different modal-

ities or texts expressed in different languages into a com-

mon semantic space. In addition, to explicitly encourage

fine-grained alignment between images and non-English lan-

guages, we also propose Multimodal Code-switched Train-

ing (MCT) to combine monolingual pre-training and multi-

modal pre-training via a code-switch strategy. Experiments

are performed on the multilingual image retrieval task across

two benchmark datasets, including MSCOCO and Multi30K.

M3P can achieve comparable results for English and new

state-of-the-art results for non-English languages.

1. Introduction

Recently, we witness the rise of a new paradigm of natu-

ral language processing (NLP), where general knowledge is

learned from raw texts by self-supervised pre-training and

then applied to downstream tasks by task-specific fine-tuning.

Now, these state-of-the-art monolingual pre-trained language

models, such as BERT [7], RoBERTa [23] and GPT-2 [28],

have been expanded to multilingual scenarios, such as Mul-

tilingual BERT [7], XLM/XLM-R [5, 4], Unicoder [13].

Moreover, some pre-training models under multimodal sce-

*Work is done during an internship at Microsoft Research Asia.
†These authors contributed equally to this work.
‡Corresponding Author.

narios, such as Unicoder-VL [19], UNITER [3], ERNIE-ViL

[36], VILLA [10] and Oscar [21], also come out.

However, it is still challenging to extend these pre-trained

models to multilingual-multimodal scenarios. The multilin-

gual pre-trained language models cannot handle vision data

(e.g., images or videos) directly, whereas many pre-trained

multimodal models are trained on English corpora thus can-

not perform very well on non-English languages. Therefore,

high quality multilingual multimodal training corpus is es-

sential to combine multilingual pre-training and multimodal

pre-training. However, there are only a few multilingual

multimodal corpora exist, and they also have low language

coverage. Moreover, relying on high-quality machine transla-

tion engines to generate such data from English multimodal

corpora is both time-consuming and computationally ex-

pensive. Learning explicit alignments between vision and

non-English languages during pre-training is lacking.

To address these challenges, this paper presents M3P,

a Multitask Multilingual Multimodal Pre-trained model,

which aims to learn universal representations that can map

objects occurred in different modalities or texts expressed in

different languages into a common semantic space. In order

to alleviate the issue of lacking enough non-English labeled

data for multimodal pre-training, we introduce Multimodal

Code-switched Training (MCT) to enforce the explicit align-

ments between images and non-English languages. The goal

is achieved by (i) learning to represent multilingual data us-

ing multilingual corpora (e.g., sentences from Wikipedia cov-

ering 100 languages) by multilingual pre-training, (ii) learn-

ing multilingual-multimodal representations by randomly

replacing some English words with their translations in other

languages from multimodal corpora (e.g., image-caption

pairs labeled in English), and (iii) generalizing these rep-
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resentations to deal with multilingual-multimodal tasks by

Multitask learning.

In summary, the main contributions of this paper are:

• We present M3P, the first known effort on combining

multilingual pre-training and multimodal pre-training

into a unified framework.

• We propose a novel Multimodal Code-switched Train-

ing (MCT) method, an effective way to enhance the

multilingual transfer ability of M3P in the zero-shot

and few-shot settings.

• We achieve new state-of-the-art results for the multi-

lingual image-text retrieval task on both Multi30K and

MSCOCO for non-English languages, outperforming

existing multilingual methods by a large margin. The

proposed model can also achieve comparable results

for English on these two datasets, compared to the state-

of-the-art monolingual multimodal models.

• Last but not least, we conduct extensive experiments

and analysis to provide insights on the effectiveness of

using Multimodal Code-switched Training (MCT) and

each pre-training task.

2. Related Work

Multilingual Pre-trained Models Multilingual BERT

(M-BERT) [7] demonstrates that by performing masked lan-

guage modeling on a multilingual corpus with shared vo-

cabulary and weights for 102 languages, surprisingly good

results can be achieved on the cross-lingual natural language

inference (XNLI) [6] task in 15 languages. XLM [5] and

Unicoder [13] further improve the multilingual BERT by

introducing new pre-training tasks based on a bilingual cor-

pus. However, all such models work for NLP tasks and are

not well designed for multimodal tasks such as Multilingual

Image-text Retrieval or Multimodal Machine Translation.

Multimodal Pre-trained Models Recently, a large num-

ber of multimodal pre-trained models, such as ViLBERT

[24], Unicoder-VL [19], UNITER [3], VLP [37] and Oscar

[21], are developed for vision-language tasks using multi-

layer Transformer as the backbone. However, as it is not

easy to collect well-aligned visual-linguistic training data in

multiple languages, all these models are pre-trained for En-

glish only based on monolingual multimodal corpora, such

as Conceptual Captions [29], SBU Captions [26], Visual

Genome [17] and MSCOCO [2]. Hence, it is not feasible to

apply them into multimodal tasks with non-English inputs.

Code-switched Training Code-switched training [27]

[33] converts the original training corpus to code-switched

corpus, which can help the model explicitly model the rela-

tionship among corresponding words in different languages.

Existing work uses a rule-based word replacement strategy

to replace the original word with translated word randomly

by bilingual dictionaries. This approach provides a signifi-

cant improvement to the low-resource language. However,

existing works use Code-switching for text-only tasks and ig-

nore its application on multimodal pre-training model under

multilingual-multimodal scenarios.

3. M3P: Multitask Multilingual Multimodal

Pre-training

In this section, we describe how we train M3P using a

multilingual-monomodal corpus (e.g., sentences extracted

from Wikipedia) and a monolingual-multimodal corpus (e.g.,

English image-caption pairs). As outlined in Figure 1, we

use the self-attentive transformer architecture of BERT, and

design two pre-training objectives with three types of data

streams. Multitask training is employed into the pre-training

stage to optimize all pre-training objectives simultaneously

for better performance. We optimize the accumulated loss

of both pre-training objectives with the same weight in each

iteration to train them by turns.

3.1. Data Stream

We use two basic data streams, Multilingual Monomodal

Stream and Monolingual Multimodal Stream, from the multi-

lingual corpus and multimodal corpus, respectively. We also

design Multimodal Code-switched Stream to utilize multi-

lingual data and multimodal data at the same time. Details

regarding the three data streams are introduced below.

Multilingual Monomodal Stream To apply multilingual

pre-training, we use Multilingual Monomodal Stream as

model input. Given an input text in any language w[li], we

first tokenize it into a sequence of BPE tokens via Sentence

Piece [18]. Then we can obtain a text representation se-

quence by summing up the text embedding and the position

embedding of each BPE token. Moreover, a language em-

bedding [5] is added to each token to indicate its language

attribute. Specifically, the input data is defined as:

{

w[li]
}

=
{

(w
[li]
1 ,w

[li]
2 , ...,w

[li]
M )

}

where M denotes the length of w[li] and li denotes a lan-

guage in the language set L. We denote this stream as D[X].

Monolingual Multimodal Stream To apply multimodal

pre-training, we use Monolingual Multimodal Stream as

model input. Given a pair of English text and image

(w[EN], v), the text representation sequence of w[EN] is ob-

tained similarly as we described in Multilingual Monomodal
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Figure 1: Three data streams and four pre-training tasks used in M3P. Blue blocks denote English text, and Yellow, Green and

Orange blocks denote non-English text.

Stream section, where English is used as the language em-

bedding. For the image v, we use Faster-RCNN [12] to

detect image regions and use corresponding visual features

in each region as a visual feature sequence. We also add a

spatial embedding to each visual token, which is a 5-D vector

based on its normalized top-left, bottom-right coordinates,

and the fraction of the image area covered. We project these

two vectors to the same dimension of the text representation

using two fully-connected (FC) layers. Therefore, the im-

age representation sequence is obtained by summing up its

projected visual feature vector and spatial embedding vector

of each region in the image. Furthermore, we add a stream

tag [IMG] at the beginning of the image region sequence to

separate text tokens and image tokens, and concatenate them

to form an input stream:

{

w[EN], v
}

=
{

(w
[EN]
1 ,w

[EN]
2 , ...,w

[EN]
M ), (v1, v2, ..., vN )

}

We denote this stream as D[EN].

Multimodal Code-switched Stream We generate Multi-

modal Code-switched Stream from Monolingual Multimodal

Stream by code-switched method, given English text and

image pairs (w[EN], v), the set of code-switched languages

C = {c1, c2, ..., ck}, and bilingual dictionaries which can

translate a word from English to any language ci. Follow-

ing [27], for each word w
[EN]
i in English text w[EN], we

replace it with a translated word with a probability of β. If

a word has multiple translations, we choose a random one.

Similar to the generation process of Multilingual Monolin-

gual Stream, we obtain the text representation sequence of

the Code-switched text w[C] in the same way while keep-

ing the original language embedding.* Similar with Mono-

*We have tried to change language embedding in Code-switched Stream,

but no significant gain was obtained.

lingual Multimodal Stream, the text and image representa-

tion sequences are concatenated as the final input stream:
{

(w
[d1]
1 ,w

[d2]
2 , ...,w

[dM ]
M ), (v1, v2, ..., vN )

}

, where di is a

random language in {EN} ∪C. We simplify the input se-

quence as:

{

w[C], v
}

=
{

(w
[C]
1 ,w

[C]
2 , ...,w

[C]
M ), (v1, v2, ..., vN )

}

We denote this stream as D[C].

3.2. Pre­training Objectives

To pre-train M3P under multilingual-multimodal scenario,

we designed two types of pre-training objectives. Multilin-

gual Training aims to learn grammar or syntax from well-

formed multilingual sentences. Multimodal Code-switched

Training (MCT) aims to learn different languages from the

shared vision modal and the alignment between vision and

non-English texts.

3.2.1 Multilingual Training

Multilingual Masked Language Modeling (xMLM)

Similar to Multilingual BERT [7], XLM [5] and Unicoder

[13], this task performs masked language modeling based

on the multilingual corpus. At each iteration, a batch is

composed of sentences sampled from different languages.

The sampling probability of a language li is defined as

λli = pαli/
∑

li
pαli , where pli is the percentage of li in the

entire multilingual corpus, and the smoothing factor α is set

to 0.3. In each batch, we randomly sample 15% of the words

and (i) replace them with a special symbol [MASK], (ii) re-

place them with random tokens, or (iii) keep them unchanged

with a probability of 80%, 10% and 10%, respectively. We

only use Multilingual Monomodal Stream D[X] for we do

not need to use Code-switching to extend it to multilingual
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corpus. The loss function is defined as:

LxMLM(θ) = −E
w[li]∼D[X] log qθ(w

[li]
m |w

[li]
\m)

, where w
[li]
m is the masked token and w

[li]
\m is its context.

3.2.2 Multimodal Code-switched Training

Because of the lack of labeled data for the non-English mul-

timodal scenario, the model can only learn multilingualism

and multimodality independently. To help the model learn

different language representations under the shared vision

modal, we propose three Multimodal Code-switched Train-

ing tasks: MC-MLM, MC-MRM and MC-VLM. We mix

Multimodal Code-switched Stream D[C] and Monolingual

Multimodal Stream D[EN] with a proportion ratio of α and

1 − α, respectively, in train these tasks. To simplify the

symbols, we denote the mixed data stream as D and omit

the mask [EN] or [C] as [·].

Multimodal Code-switched Masked Language Model-

ing (MC-MLM) Different from the pre-training tasks in

ViLBERT [24] and Unicoder-VL [19], this task aims to learn

the representation of different languages based on the shared

vision modal. Mixed data stream D is used for training this

objective. Specifically, the model predicts each masked to-

ken w
[·]
m in the caption w[·] based on its surrounding tokens

w
[·]
\m and all image regions v. We follow the same masking

strategy used in xMLM to mask tokens in the input caption.

The loss function is defined as:

LMC−MLM(θ) = −E(w[·],v)∼D log pθ(w
[·]
m|w

[·]
\m, v)

, where D is the mixed data stream.

Multimodal Code-switched Masked Region Modeling

(MC-MRM) This task aims to learn vision representations

with multilingual text as the context in mixed data stream

D. The model reconstructs each masked image region vn
based on the remaining regions v\n and all caption tokens

w[·]. We randomly mask image regions with a probability of

15%. The input representation of each masked image region

is set to zeros or kept as the original values with a probability

of 90% and 10%, respectively. We apply an FC layer to con-

vert the Transformer output of each masked region vk into a

vector hθ(vk) of the same dimension with the visual feature

f(vk). We use cross-entropy loss CE(gθ(vk), C(vk)) to pre-

dict the object category of each masked region vk. We also

apply another FC layer to convert the Transformer output

of each masked region vk to predict the scores of K object

classes, which further go through a softmax function to be

transformed into a normalized distribution gθ(vk). We take

the predicted object category with the highest confidence

Dataset Images Texts Langauges

Pre-training Corpus

Wikipedia - 101G 100

Conceptual Captions [29] 3.3M 3.3M 1

Fine-tuning and Evaluation Corpus

Multi30K [35] 32K 384K 5

MSCOCO [2] [34] [20] 120K 1.5M 3

Table 1: Statistics of datasets.

score outputted by Faster-RCNN as the ground-truth label of

vk, and convert it into a one-hot vector C(vk) ∈ R
K . Due to

the top-1 category predicted by Faster-RCNN is not always

correct, we leave minimizing the KL divergence between

two distributions for our future work. The loss function can

be defined as:

LMC−MRM(θ) = −E(w[·],v)∼D

∑

k

[MSE(hθ(vk), f(vk))+

CE(gθ(vk), C(vk))]

where k enumerates the index of each masked image re-

gion and MSE(hθ(vk), f(vk)) denotes the mean-square-

error loss that regresses the Transformer output of each

masked region vk to its visual feature f(vk).

Multimodal Code-switched Visual-Linguistic Matching

(MC-VLM) This task aims to learn alignment between

multilingual texts and images with mixed data stream D. An

FC layer sθ(w
[·], v) is applied on the Transformer output of

[CLS] to predict whether the input image v and the input

English or Code-switched text w[·] are semantically matched.

Negative image-caption pairs are created by replacing the

image or text in a matched sample with a randomly-selected

image or text from other samples. We use Binary Cross-

Entropy as the loss function:

LMC−VLM(θ) = −E(w[·],v)∼D[BCE(sθ(w
[·], v), y)]

where y ∈ {0, 1} indicates whether the input image-text pair

is matched and BCE indicates binary-cross-entropy loss.

4. Experiments

In this section, we describe detailed experimental settings

during pre-training, fine-tuning and evaluating M3P model.

4.1. Dataset Description

As shown in Table 1, we construct our pre-training dataset

based on multimodal corpus, Conceptual Captions [29], and

multilingual corpus, Wikipedia. We evaluate M3P on multi-

lingual image-text retrieval task on two datasets: Multi30K
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[9, 8] and MSCOCO [2, 25, 20]. Panlex† is used as the bilin-

gual dictionary during Multimodal Code-switched Training.

4.1.1 Pre-training Corpus

Conceptual Captions We use Conceptual Captions [29]

as the multimodal corpus. It contains 3.3 million English

image-caption pairs harvested from the Web and does not

contain any non-English text.

Wikipedia We use sentences extracted from the Wikipedia

dump as the multilingual corpus. It includes 101G sentences

covering 100 languages without any vision information.

4.1.2 Fine-tuning and Evaluation Corpus

Multi30K This dataset extended Flickr30K [35] from En-

glish (en) to German (de), French (fr) and Czech (cs). It

contains 31,783 images and provides five captions per image

in English and German and one caption per image in French

and Czech. The train, dev, and test splits are defined in [35].

MSCOCO This dataset contains 123,287 images and pro-

vides five captions per image in English (en), but fewer

in Chinese (zh) and Japanese (ja). STAIR Captions [34]

extended MSCOCO [2] with 820K Japanese captions for

COCO images. [20] extended MSCOCO [2] with Chinese

captions for 20K images. We use the same train, dev, and

test splits for English and Japanese as defined in [14]. As for

Chinese, we use the COCO-CN split [20].

4.1.3 Code-switched Dictionary

The word-level bilingual dictionaries used by Code-switched

training are from Panlex, the world’s largest open-source

lexical translation database. We extract top 50 scale English

to other language bilingual dictionaries.

4.2. Training Details

Pre-training Details Similar to previous vision-language

pre-trained models, the M3P model uses the same model

architecture as BERT [7]. We initialize M3P with XLM-R

[4] and continue pre-training on our data. We use the same

vocabulary as XLM-R [4], which includes 250K BPE tokens

and covers 100 languages. We set the dropout rate to 0.1

and the max input length to 128. We use Adam Optimizer

[16] with a linear warm-up [30] and set the learning rate

to 1 × 10−4. The total batch size is 1,024 after gradient

accumulation. The pre-training stage takes about seven days

to converge on 8 V100 GPUs. We use Multimodal Code-

switched Training with all top 50 languages from Panlex.

†https://panlex.org

Fine-tuning Details The batch size is set to 512, and we

sample three negative cases for each positive case in VLM.

We experiment with different numbers of negative samples

in {1, 3, 5}, and find three yields the best results. We use

Adam Optimizer with β1 = 0.9, β2 = 0.98 and 5× 10−5 as

the hyper-parameters of learning rate.

4.3. Baselines

We compare our work with several related work [15, 31,

11, 32, 1], which are trained on downstream task datasets

(MSCOCO and Multi30K) directly without pre-training. In

addition, to make the comparison as fair as possible, we take

Unicoder-VL as another baseline, as it employs the same

pre-training data during image-language pre-training.

Among the baselines, SMALR [1] uses machine transla-

tion to augment Multi30K and MSCOCO. But considering

that applying machine translation to translate English to all

other supported languages lacks generalization and requires

a large amount of translators, we leave this as an option for

future work. Moreover, note that MULE is using different

dev/test splits of MSCOCO compared with other models.

It is also worth noticing that word-level dictionaries are

only used in M3P, as the Multimodal Code-switched Training

is firstly used in multilingual multimodal pre-training.

4.4. Evaluation Settings

Multilingual image-text retrieval is the task of finding the

most relevant images given input texts in different languages,

or vice versa. We use mean Recall (mR) as our metric, which

is an averaged score of Recall@1, Recall@5, and Recall@10

on image-to-text retrieval and text-to-image retrieval tasks.

We compare M3P with baseline methods on multilingual

image-text retrieval in four different settings:

(i) w/o fine-tune: apply M3P to all test sets directly to

obtain the evaluation results without fine-tuning.

(ii) w/ fine-tune on en: fine-tune M3P on English and

then apply the fine-tuned model to all test sets.

(iii) w/ fine-tune on each: fine-tune M3P on each lan-

guage and apply each model to the test set of this language.

(iv) w/ fine-tune on all: fine-tune M3P for all languages

using the merged labeled data and then apply the fine-tuned

model to all test sets.

5. Results and Analysis

In this section, we show the evaluation results of M3P

compared with existing work and conduct ablation studies

in order to better understand the effect of the model.

5.1. Overall Results

From Table 2, we have several observations: (1) Our M3P

model obtains the state-of-the-art results in all non-English

languages, which shows its exciting multilingual multimodal

53981
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Model
Multi30K MSCOCO

en de fr cs en ja zh

Monolingual supervised results

EmbN [31] 72.0 60.3 54.8 46.3 76.8 73.2 73.5

PAR. EmbN [11] 69.0 62.6 60.6 54.1 78.3 76.0 74.8

S-LIWE [32] 76.3 72.1 63.4 59.4 80.9 73.6 70.0

MULE [15] 70.3 64.1 62.3 57.7 79.0 75.9 75.6

SMALR [1] 74.5 69.8 65.9 64.8 81.5 77.5 76.7

Monolingual results with multimodal pre-training

Unicoder-VL (w/o fine-tune) [19] 72.0 - - - 63.7 - -

Unicoder-VL (w/ fine-tune on en) [19] 88.1 - - - 89.2 - -

Multilingual results with multimodal pre-training

M3P (w/o fine-tune) 57.9 36.8 27.1 20.4 63.1 33.3 32.3

M3P (w/ fine-tune on en) 87.4 58.5 46.0 36.8 88.6 53.8 56.0

M3P (w/ fine-tune on each) 87.4 82.1 67.3 65.0 88.6 80.1 75.8

M3P (w/ fine-tune on all) 87.7 82.7 73.9 72.2 88.7 87.9 86.2

Table 2: Multilingual image-text retrieval results on Multi30K and MSCOCO. The metric is the mean Recall (mR). Each bold

number indicates the best mR score in that column. We report the mR results of Unicoder-VL on the English test set, as it is

pre-trained based on the same image-caption corpus (i.e., Conceptual Captions) with M3P .

transfer capability. (2) Similar to the observations reported

in Unicoder [13, 22], the two fully-supervised settings (iii)

w/ fine-tune on each and (iv) w/ fine-tune on all can lead to

the best results. This means the same sentence in different

languages may capture complementary information to help

improve performance. (3) Comparing to Unicoder-VL that is

pre-trained using English image-caption corpus (i.e. Concep-

tual Captions) only, M3P performs worse on the English test

set. The possible reason could be that, M3P needs to balance

its multilingual capability over 100+ languages, rather than

on English only. (4) In both setting (i) w/o fine-tune and

setting (ii) w/ fine-tune on en, integrating Multimodal Code-

switched Training (MCT) into M3P can bring significant

gains on non-English datasets, which demonstrates good

multilingual transfer ability of Multimodal Code-switched

Training in the zero-shot setting. It is expected to see such

gains become smaller in setting (iii) w/ fine-tune on each and

setting (iv) w/ fine-tune on all, as M3P can learn alignments

between images and languages from labeled data directly.

5.2. Ablation Studies

Although we achieve good results under different settings,

we want to deep dive into more aspects of M3P: (1) whether

Multimodal Code-switched Training (MCT) can provide a

positive effect under all settings; (2) whether the number of

languages used in MCT affects the performance; (3) whether

different pre-training tasks affect the performance.

5.2.1 The Impact of MCT

To verify whether the Multimodal Code-switched Training

(MCT) strategy can provide a positive effect in different

settings, we compare the performance of M3P without MCT

and M3P with MCT under all fine-tuning settings.

Setting
Multi30K

en de fr cs

w/o fine-tune

M3P w/o MCT 54.9 28.9 25.2 13.5

w/ MCT 57.9 36.8 27.1 20.4

w/ fine-tune on en

M3P w/o MCT 86.0 48.6 37.1 34.6

w/ MCT 87.4 58.5 46.0 36.8

w/ fine-tune on each

M3P w/o MCT 86.0 80.2 67.1 66.2

w/ MCT 87.4 82.1 67.3 65.0

w/ fine-tune on all

M3P w/o MCT 86.7 82.0 73.5 70.2

w/ MCT 87.7 82.7 73.9 72.2

Table 3: The impact of MCT for multilingual image-text

retrieval. The metric is the mean Recall (mR). Each bold

number indicates the best mR score.

For each setting in Table 3, we observe: (1) MCT im-
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proves the performance on almost all languages, which

shows its exciting robustness and expansibility, and (2) in

both setting (i) and setting (ii), integrating MCT into M3P

can bring significant gains on non-English datasets, which

demonstrates the good multilingual transferability of MCT.

It is expected to see such gains become smaller in settings

(iii) and (iv), as M3P can learn alignments between images

and languages from labeled data directly.

5.2.2 The Impact of Number of Languages in MCT

Setting
Multi30K

en de fr cs

M3P w/o MCT 54.9 28.9 25.2 13.5

w/ 3 languages MCT 56.4 37.1 28.7 23.0

w/ 5 languages MCT 58.2 36.7 26.9 23.6

w/ 50 languages MCT (Full) 57.9 36.8 27.1 20.4

Table 4: Impact of number of languages in Multimodal Code-

switched Training (MCT). The metric is the mean Recall

(mR). "Full" represents the model pre-trained with all Code-

switching languages.

To verify whether the number of languages influences the

performance of Multimodal Code-switched Training (MCT),

we conduct an experiment by pre-training M3P by MCT

with different numbers of languages and evaluate the model

directly without fine-tuning. We pre-train M3P with the

following settings: pre-train M3P without MCT, pre-train

M3P with MCT on 3 languages (de, fr, cs), 5 languages

(de, fr, cs, ja, zh), and all 50 languages.

In Table 4, we can find that, for languages like de and fr,

there is no significant difference under different settings. On

the contrary, for languages like en and cs, M3P achieves the

best performance when MCT is activated with 5 languages.

This implies that activating MCT on more languages can

lead to more noise due to a higher probability of inaccurate

translation. This noise may improve the robustness of the

model but make the model harder to be well-trained.

5.2.3 The Impact of Proposed Tasks

We want to find whether each component during pre-training

positively affects the performance and try to explain how

they gain the performance by conducting several ablation

experiments. Since Multimodal Code-switched Training

(MCT) influences each task’s target, we conduct the ablation

experiments on M3P without MCT and fine-tune each model

on the dataset of each language to compare the performance.

As shown in Table 5, we can observe that: (1) MC-VLM

provides the most considerable improvement (+10.6 on en)

to the model among all four sub-tasks during the pre-training

Setting
Multi30K

en de fr cs

M3P 86.0 80.2 67.1 66.2

w/o xMLM 79.6 70.8 56.4 54.3

w/o MC-MLM 84.3 76.2 64.1 62.2

w/o MC-MRM 85.5 77.9 65.0 63.9

w/o MC-VLM 75.4 68.3 52.7 50.9

Table 5: Ablation study on multilingual image-text retrieval.

The metric is the mean Recall (mR). Each bold number

indicates the best mR score in that column.

stage. We suggest this is because the MC-VLM sub-task

successfully models the relationship between image and text.

(2) xMLM shows a great impact on non-English results com-

pared with English results, which shows that xMLM will

improve the capability of multilinguality. (3) MC-MLM and

MC-MRM also show good support to the results in all lan-

guages, which we suggest these two tasks will help the model

learn the knowledge of multimodality. (4) When combining

all tasks, we obtain the highest gain in all languages.

5.3. Expanding MCT to Fine­tuning

Setting
Multi30K

en de fr cs

Pre-trained without MCT

M3P (w/ Normal Fine-tune) 86.0 48.6 37.1 34.6

M3P (w/ MCT Fine-tune) 85.4 67.8 59.2 54.0

Pre-trained with MCT

M3P (w/ Normal Fine-tune) 87.4 58.5 46.0 36.8

M3P (w/ MCT Fine-tune) 86.4 71.8 62.3 59.6

Table 6: The results of expanding MCT to fine-tuning for

multilingual image-text retrieval. The metric is the mean

Recall (mR). Each bold number indicates the best mR score

under the setting. Normal Fine-tune represents fine-tuning

with English data directly and MCT Fine-tune represents

fine-tuning with Code-switched English data.

Similar to MC-VLM, we use Code-switched data to fine-

tune M3P on Multi30K. The results in Table 6 show: (1)

Multimodal Code-switched Training (MCT) can bring a large

margin for non-English language probably because of the

lack of labeled image-non English caption pairs during the

pre-training stage or fine-tuning stage. (2) Employing MCT

into the fine-tuning stage for the model, whatever pre-trained

by, will achieve a large increase in non-English performance.

(3) MCT in fine-tuning is more effective than MCT in pre-

training, which may be explained by that the model can learn

multilinguality in a more specific task. (4) The best results
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can be achieved when MCT replaces English in both the

pre-training and fine-tuning stages.

5.4. Qualitative Studies on MCT

To further explore how Multimodal Code-switched Train-

ing (MCT) affects the model, we randomly select some

text-image pairs generated from it. We want to figure out

why Multimodal Code-switched Training is very effective on

non-English languages and whether it has any limitations.

Figure 2: Qualitative study for Multimodal Code-switched

Training (MCT). The first row in each table is the original

text, and the second row in each table is the Code-switched

text. We add the meaning of the Code-switched text in

English in the third row of each table.

As Figure 2 (a) shows, the meaning of the code-switched

text generated by Multimodal Code-switched Training

(MCT) is almost the same as that of the original text. Al-

though there are some small differences between the original

text (first row) and the generated text translated back to En-

glish (third row), it has no influence on the training quality,

which demonstrates the reason why MCT brings gains. The

key idea of using MCT in M3P is to let the model see more

Code-switched text and image pairs and learn the joint mul-

tilingual multimodal representations from such pairs directly.

We guess this helps the model learn richer information of

each token from the multilingual context.

We did not consider the grammar or syntax correctness of

the Code-switched sentences generated by replacing words

in the English sentences with their word translations in

other languages. The pre-trained models can learn such

knowledge from well-formed multilingual sentences and En-

glish caption sentences. Since we don’t have image-caption

pairs or high-quality machine translation engines to generate

such data for most languages, generating Code-switched sen-

tences is the most effective way to let M3P directly see more

alignments between non-English languages and images.

Hence, because of the high accuracy of translation from

MCT, multilingual results will significantly increase when

no non-English multimodal data is available. However, when

the model can access high-quality multilingual multimodal

data, the noise from MCT may limit its performance. In

Figure 2 (b), we show a negative case in Code-switched text.

MCT faultily changes the meaning of the original text. We

leave this as future work to solve this problem.

6. Conclusion

We have presented in this paper a new pre-trained model

M3P which combines Multilingual Pre-training and Multi-

modal Pre-training into a unified framework via Multitask

Pre-training for multilingual multimodal scenarios. We pro-

posed Multimodal Code-switched Training to further allevi-

ate the issue of lacking enough labeled data for non-English

multimodal tasks and avoid the tendency to model the rela-

tionship between vision and English text.
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