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Abstract

Deep generative models allow for photorealistic image

synthesis at high resolutions. But for many applications,

this is not enough: content creation also needs to be con-

trollable. While several recent works investigate how to dis-

entangle underlying factors of variation in the data, most

of them operate in 2D and hence ignore that our world

is three-dimensional. Further, only few works consider

the compositional nature of scenes. Our key hypothesis is

that incorporating a compositional 3D scene representation

into the generative model leads to more controllable image

synthesis. Representing scenes as compositional genera-

tive neural feature fields allows us to disentangle one or

multiple objects from the background as well as individual

objects’ shapes and appearances while learning from un-

structured and unposed image collections without any ad-

ditional supervision. Combining this scene representation

with a neural rendering pipeline yields a fast and realistic

image synthesis model. As evidenced by our experiments,

our model is able to disentangle individual objects and al-

lows for translating and rotating them in the scene as well

as changing the camera pose.

1. Introduction

The ability to generate and manipulate photorealistic im-

age content is a long-standing goal of computer vision and

graphics. Modern computer graphics techniques achieve

impressive results and are industry standard in gaming and

movie productions. However, they are very hardware ex-

pensive and require substantial human labor for 3D content

creation and arrangement.

In recent years, the computer vision community has

made great strides towards highly-realistic image gener-

ation. In particular, Generative Adversarial Networks

(GANs) [24] emerged as a powerful class of generative

models. They are able to synthesize photorealistic images

at resolutions of 10242 pixels and beyond [6,14,15,39,40].
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Figure 1: Overview. We represent scenes as compositional

generative neural feature fields. For a randomly sampled

camera, we volume render a feature image of the scene

based on individual feature fields. A 2D neural rendering

network converts the feature image into an RGB image.

While training only on raw image collections, at test time

we are able to control the image formation process wrt.

camera pose, object poses, as well as the objects’ shapes

and appearances. Further, our model generalizes beyond

the training data, e.g. we can synthesize scenes with more

objects than were present in the training images. Note that

for clarity we visualize volumes in color instead of features.

Despite these successes, synthesizing realistic 2D im-

ages is not the only aspect required in applications of gen-

erative models. The generation process should also be con-

trollable in a simple and consistent manner. To this end,

many works [9, 25, 39, 43, 44, 48, 54, 71, 74, 97, 98] investi-

gate how disentangled representations can be learned from

data without explicit supervision. Definitions of disentan-

glement vary [5, 53], but commonly refer to being able to

control an attribute of interest, e.g. object shape, size, or

pose, without changing other attributes. Most approaches,

however, do not consider the compositional nature of scenes

and operate in the 2D domain, ignoring that our world is

three-dimensional. This often leads to entangled represen-

tations (Fig. 2) and control mechanisms are not built-in, but

need to be discovered in the latent space a posteriori. These

properties, however, are crucial for successful applications,

e.g. a movie production where complex object trajectories
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(a) Translation of Left Object (2D-based Method [71])

(b) Translation of Left Object (Ours)

(c) Circular Translation (Ours) (d) Add Objects (Ours)

Figure 2: Controllable Image Generation. While most

generative models operate in 2D, we incorporate a compo-

sitional 3D scene representation into the generative model.

This leads to more consistent image synthesis results, e.g.

note how, in contrast to our method, translating one object

might change the other when operating in 2D (Fig. 2a and

2b). It further allows us to perform complex operations like

circular translations (Fig. 2c) or adding more objects at test

time (Fig. 2d). Both methods are trained unsupervised on

raw unposed image collections of two-object scenes.

need to be generated in a consistent manner.

Several recent works therefore investigate how to incor-

porate 3D representations, such as voxels [32,63,64], prim-

itives [46], or radiance fields [77], directly into generative

models. While these methods allow for impressive results

with built-in control, they are mostly restricted to single-

object scenes and results are less consistent for higher reso-

lutions and more complex and realistic imagery (e.g. scenes

with objects not in the center or cluttered backgrounds).

Contribution: In this work, we introduce GIRAFFE, a

novel method for generating scenes in a controllable and

photorealistic manner while training from raw unstructured

image collections. Our key insight is twofold: First, incor-

porating a compositional 3D scene representation directly

into the generative model leads to more controllable im-

age synthesis. Second, combining this explicit 3D repre-

sentation with a neural rendering pipeline results in faster

inference and more realistic images. To this end, we repre-

sent scenes as compositional generative neural feature fields

(Fig. 1). We volume render the scene to a feature image

of relatively low resolution to save time and computation.

A neural renderer processes these feature images and out-

puts the final renderings. This way, our approach achieves

high-quality images and scales to real-world scenes. We

find that our method allows for controllable image synthesis

of single-object as well as multi-object scenes when trained

on raw unstructured image collections. Code and data is

available at https://github.com/autonomousvision/giraffe.

2. Related Work

GAN-based Image Synthesis: Generative Adversarial

Networks (GANs) [24] have been shown to allow for pho-

torealistic image synthesis at resolutions of 10242 pixels

and beyond [6, 14, 15, 39, 40]. To gain better control over

the synthesis process, many works investigate how factors

of variation can be disentangled without explicit supervi-

sion. They either modify the training objective [9, 40, 71]

or network architecture [39], or investigate latent spaces of

well-engineered and pre-trained generative models [1, 16,

23, 27, 34, 78, 96]. All of these works, however, do not ex-

plicitly model the compositional nature of scenes. Recent

works therefore investigate how the synthesis process can

be controlled at the object-level [3,4,7,18,19,26,45,86,90].

While achieving photorealistic results, all aforementioned

works model the image formation process in 2D, ignoring

the three-dimensional structure of our world. In this work,

we advocate to model the formation process directly in 3D

for better disentanglement and more controllable synthesis.

Implicit Functions: Using implicit functions to represent

3D geometry has gained popularity in learning-based 3D

reconstruction [11, 12, 22, 59, 60, 65, 67, 69, 76] and has

been extended to scene-level reconstruction [8, 13, 35, 72,

79]. To overcome the need of 3D supervision, several

works [50, 51, 66, 81, 92] propose differentiable rendering

techniques. Mildenhall et al. [61] propose Neural Radiance

Fields (NeRFs) in which they combine an implicit neural

model with volume rendering for novel view synthesis of

complex scenes. Due to their expressiveness, we use a

generative variant of NeRFs as our object-level represen-

tation. In contrast to our method, the discussed works re-

quire multi-view images with camera poses as supervision,

train a single network per scene, and are not able to generate

novel scenes. Instead, we learn a generative model from un-

structured image collections which allows for controllable,

photorealistic image synthesis of generated scenes.

3D-Aware Image Synthesis: Several works investigate

how 3D representations can be incorporated as inductive

bias into generative models [21,29–32,46,55,63,64,75,77].

While many approaches use additional supervision [2, 10,

87,88,99], we focus on works which are trained on raw im-

age collections like our approach.

Henzler et al. [32] learn voxel-based representations us-

ing differentiable rendering. The results are 3D control-

lable, but show artifacts due to the limited voxel reso-

lutions caused by their cubic memory growth. Nguyen-

Phuoc et al. [63, 64] propose voxelized feature-grid repre-

sentations which are rendered to 2D via a reshaping op-

eration. While achieving impressive results, training be-

comes less stable and results less consistent for higher reso-

lutions. Liao et al. [46] use abstract features in combination

with primitives and differentiable rendering. While han-
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dling multi-object scenes, they require additional supervi-

sion in the form of pure background images which are hard

to obtain for real-world scenes. Schwarz et al. [77] propose

Generative Neural Radiances Fields (GRAF). While achiev-

ing controllable image synthesis at high resolutions, this

representation is restricted to single-object scenes and re-

sults degrade on more complex, real-world imagery. In con-

trast, we incorporate compositional 3D scene structure into

the generative model such that it naturally handles multi-

object scenes. Further, by integrating a neural rendering

pipeline [20, 41, 42, 49, 62, 80, 81, 83, 84], our model scales

to more complex, real-world data.

3. Method

Our goal is a controllable image synthesis pipeline which

can be trained from raw image collections without addi-

tional supervision. In the following, we discuss the main

components of our method. First, we model individual ob-

jects as neural feature fields (Sec. 3.1). Next, we exploit

the additive property of feature fields to composite scenes

from multiple individual objects (Sec. 3.2). For rendering,

we explore an efficient combination of volume and neural

rendering techniques (Sec. 3.3). Finally, we discuss how

we train our model from raw image collections (Sec. 3.4).

Fig. 3 contains an overview of our method.

3.1. Objects as Neural Feature Fields

Neural Radiance Fields: A radiance field is a continuous

function f which maps a 3D point x ∈ R
3 and a view-

ing direction d ∈ S
2 to a volume density σ ∈ R

+ and an

RGB color value c ∈ R
3. A key observation in [61, 82] is

that the low dimensional input x and d needs to be mapped

to higher-dimensional features to be able to represent com-

plex signals when f is parameterized with a neural network.

More specifically, a pre-defined positional encoding is ap-

plied element-wise to each component of x and d:

γ(t, L) =

(sin(20tπ), cos(20tπ), . . . , sin(2Ltπ), cos(2Ltπ))
(1)

where t is a scalar input, e.g. a component of x or d, and L

the number of frequency octaves. In the context of genera-

tive models, we observe an additional benefit of this repre-

sentation: It introduces an inductive bias to learn 3D shape

representations in canonical orientations which otherwise

would be arbitrary (see Fig. 11).

Following implicit shape representations [12, 59, 69],

Mildenhall et al. [61] propose to learn Neural Radiance

Fields (NeRFs) by parameterizing f with a multi-layer per-

ceptron (MLP):

fθ : RLx × R
Ld → R

+ × R
3

(γ(x), γ(d)) 7→ (σ, c)
(2)

where θ indicate the network parameters and Lx, Ld the

output dimensionalities of the positional encodings.

Generative Neural Feature Fields: While [61] fits θ to

multiple posed images of a single scene, Schwarz et al. [77]

propose a generative model for Neural Radiance Fields

(GRAF) that is trained from unposed image collections. To

learn a latent space of NeRFs, they condition the MLP on

shape and appearance codes zs, za ∼ N (0, I):

gθ : RLx × R
Ld × R

Ms × R
Ma → R

+ × R
3

(γ(x), γ(d), zs, za) 7→ (σ, c)
(3)

where Ms,Ma are the dimensionalities of the latent codes.

In this work we explore a more efficient combination of

volume and neural rendering. We replace GRAF’s formu-

lation for the three-dimensional color output c with a more

generic Mf -dimensional feature f and represent objects as

Generative Neural Feature Fields:

hθ : RLx × R
Ld × R

Ms × R
Ma → R

+ × R
Mf

(γ(x), γ(d), zs, za) 7→ (σ, f)
(4)

Object Representation: A key limitation of NeRF and

GRAF is that the entire scene is represented by a single

model. As we are interested in disentangling different en-

tities in the scene, we need control over the pose, shape

and appearance of individual objects (we consider the back-

ground as an object as well). We therefore represent each

object using a separate feature field in combination with an

affine transformation

T = {s, t,R} (5)

where s, t ∈ R
3 indicate scale and translation parameters,

and R ∈ SO(3) a rotation matrix. Using this represen-

tation, we transform points from object to scene space as

follows:

k(x) = R ·





s1
s2

s3



 · x+ t (6)

In practice, we volume render in scene space and evaluate

the feature field in its canonical object space (see Fig. 1):

(σ, f) = hθ(γ(k
−1(x)), γ(k−1(d)), zs, za) (7)

This allows us to arrange multiple objects in a scene. All

object feature fields share their weights and T is sampled

from a dataset-dependent distribution (see Sec. 3.4).

3.2. Scene Compositions

As discussed above, we describe scenes as compositions

of N entities where the first N − 1 are the objects in the

scene and the last represents the background. We consider

11455



Generator

Discriminator

Volume Rendering
Neural Rendering

3D Point

Sampling

Ray

Casting

3D Point

Ray

Composition

Operator

...

...

Sample Camera Pose

Sample     Latent Codes

and Transformations

    Generative

Neural Feature Fields

Figure 3: GIRAFFE. Our generator Gθ takes a camera pose ξ and N shape and appearance codes zis, z
i
a and affine transfor-

mations Ti as input and synthesizes an image of the generated scene which consists of N − 1 objects and a background. The

discriminator Dφ takes the generated image Î and the real image I as input and our full model is trained with an adversarial

loss. At test time, we can control the camera pose, the shape and appearance codes of the objects, and the objects’ poses in

the scene. Orange indicates learnable and blue non-learnable operations.

two cases: First, N is fixed across the dataset such that the

images always contain N − 1 objects plus the background.

Second, N is varied across the dataset. In practice, we

use the same representation for the background as for ob-

jects except that we fix the scale and translation parameters

sN , tN to span the entire scene, and to be centered at the

scene space origin.

Composition Operator: To define the composition opera-

tor C, let’s recall that a feature field of a single entity hi
θi

predicts a density σi ∈ R
+ and a feature vector fi ∈ R

Mf

for a given point x and viewing direction d. When combin-

ing non-solid objects, a natural choice [17] for the overall

density at x is to sum up the individual densities and to use

the density-weighted mean to combine all features at (x,d):

C(x,d) =

(

σ,
1

σ

N
∑

i=1

σifi

)

, where σ =

N
∑

i=1

σi (8)

While being simple and intuitive, this choice for C has an

additional benefit: We ensure gradient flow to all entities

with a density greater than 0.

3.3. Scene Rendering

3D Volume Rendering: While previous works [47, 57, 61,

77] volume render an RGB color value, we extend this for-

mulation to rendering an Mf -dimensional feature vector f .

For given camera extrinsics ξ, let {xj}
Ns

j=1
be sam-

ple points along the camera ray d for a given pixel, and

(σj , fj) = C(xj ,d) the corresponding densities and fea-

ture vectors of the field. The volume rendering operator

πvol [37] maps these evaluations to the pixel’s final feature

vector f :

πvol : (R
+ × R

Mf )Ns → R
Mf , {σj , fj}

Ns

j=1
7→ f (9)

Using numerical integration as in [61], f is obtained as

f =

Ns
∑

j=1

τjαjfj τj =

j−1
∏

k=1

(1− αk) αj = 1− e−σjδj

(10)

where τi is the transmittance, αj the alpha value for xj ,

and δj = ||xj+1 − xj ||2 the distance between neighboring

sample points. The entire feature image is obtained by eval-

uating πvol at every pixel. For efficiency, we render feature

images at resolution 162 which is lower than the output res-

olution of 642 or 2562 pixels. We then upsample the low-

resolution feature maps to higher-resolution RGB images

using 2D neural rendering. As evidenced by our experi-

ments, this has two advantages: increased rendering speed

and improved image quality.

2D Neural Rendering: The neural rendering operator

πneural
θ : RHV ×WV ×Mf → R

H×W×3 (11)

with weights θ maps the feature image IV ∈ R
HV ×WV ×Mf

to the final synthesized image Î ∈ R
H×W×3. We param-

eterize πneural
θ as a 2D convolutional neural network (CNN)

with leaky ReLU [56, 89] activation (Fig. 4) and combine

nearest neighbor upsampling with 3× 3 convolutions to in-

crease the spatial resolution. We choose small kernel sizes

and no intermediate layers to only allow for spatially small

refinements to avoid entangling global scene properties dur-

ing image synthesis while at the same time allowing for in-

creased output resolutions. Inspired by [40], we map the

feature image to an RGB image at every spatial resolution,

and add the previous output to the next via bilinear upsam-

pling. These skip connections ensure a strong gradient flow

to the feature fields. We obtain our final image prediction Î

by applying a sigmoid activation to the last RGB layer. We

validate our design choices in an ablation study (Tab. 4).
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Figure 4: Neural Rendering Operator. The feature image

IV is processed by n blocks of nearest neighbor upsampling

and 3× 3 convolutions with leaky ReLU activations. At ev-

ery resolution, we map the feature image to an RGB image

with a 3×3 convolution and add it to the previous output via

bilinear upsampling. We apply a sigmoid activation to ob-

tain the final image Î. Gray color indicates outputs, orange

learnable, and blue non-learnable operations.

3.4. Training

Generator: We denote the full generative process formally

as

Gθ({z
i
s, z

i
a,Ti}

N
i=1, ξ) = πneural

θ (IV )

where IV = {πvol({C(xjk,dk)}
Ns

j=1
)}HV ×WV

k=1

(12)

and N is the number of entities in the scene, Ns the number

of sample points along each ray, dk is the ray for the k-th

pixel, and xjk the j-th sample point for the k-th pixel / ray.

Discriminator: We parameterize the discriminator Dφ as a

CNN [73] with leaky ReLU activation.

Training: During training, we sample the the number of

entities in the scene N ∼ pN , the latent codes z
i
s, z

i
a ∼

N (0, I), as well as a camera pose ξ ∼ pξ and object-level

transformations Ti ∼ pT . In practice, we define pξ and

pT as uniform distributions over dataset-dependent camera

elevation angles and valid object transformations, respec-

tively.1 The motivation for this choice is that in most real-

world scenes, objects are arbitrarily rotated, but not tilted

due to gravity. The observer (the camera in our case), in

contrast, can freely change its elevation angle wrt. the scene.

We train our model with the non-saturating GAN objec-

1Details can be found in the supplementary material.

tive [24] and R1 gradient penalty [58]

V(θ, φ) =

Ezi
s,z

i
a∼N , ξ∼pξ,Ti∼pT

[

f(Dφ(Gθ({z
i
s, z

i
a,Ti}i, ξ))

]

+ EI∼pD

[

f(−Dφ(I))− λ‖∇Dφ(I)‖
2
]

(13)

where f(t) = − log(1 + exp(−t)), λ = 10, and pD indi-

cates the data distribution.

3.5. Implementation Details

All object feature fields {hi
θi
}N−1

i=1
share their weights

and we parametrize them as MLPs with ReLU activations.

We use 8 layers with a hidden dimension of 128 and a den-

sity and a feature head of dimensionality 1 and Mf = 128,

respectively. For the background feature field hN
θN

, we use

half the layers and hidden dimension. We use Lx = 2 ·3 ·10
and Ld = 2 · 3 · 4 for the positional encodings. We sam-

ple Ms = 64 points along each ray and render the feature

image IV at 162 pixels. We use an exponential moving av-

erage [93] with decay 0.999 for the weights of the genera-

tor. We use the RMSprop optimizer [85] with a batch size

of 32 and learning rates of 1× 10−4 and 5× 10−4 for the

discriminator and generator, respectively. For experiments

at 2562 pixels, we set Mf = 256 and half the generator

learning rate to 2.5× 10−4.

4. Experiments

Datasets: We report results on commonly-used single-

object datasets Chairs [68], Cats [95], CelebA [52], and

CelebA-HQ [38]. The first consists of synthetic renderings

of Photoshape chairs [70], and the others are image collec-

tions of cat and human faces, respectively. The data com-

plexity is limited as the background is purely white or only

takes up a small part of the image. We further report results

on the more challenging single-object, real-world datasets

CompCars [91], LSUN Churches [94], and FFHQ [39]. For

CompCars, we randomly crop the images to achieve more

variety of the object’s position in the image.2 For these

datasets, disentangling objects is more complex as the ob-

ject is not always in the center and the background is more

cluttered and takes up a larger part of the image. To test our

model on multi-object scenes, we use the script from [36]

to render scenes with 2, 3, 4, or 5 random primitives (Clevr-

N). To test our model on scenes with a varying number

of objects, we also run our model on the union of them

(Clevr-2345).

Baselines: We compare against voxel-based Platonic-

GAN [32], BlockGAN [64], and HoloGAN [63], and ra-

diance field-based GRAF [77] (see Sec. 2 for a discussion

2We do not apply random cropping for [32] and [77] as we find that

they cannot handle scenes with non-centered objects (see supplementary).
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Chairs CelebA Churches Cars Clevr-5 Clevr-2345

Figure 5: Scene Disentanglement. From top to bottom, we

show only backgrounds, only objects, color-coded object

alpha maps, and the final synthesized images at 642 pixel

resolution. Disentanglement emerges without supervision,

and the model learns to generate plausible backgrounds al-

though the training data only contains images with objects.

Figure 6: Training Progression. We show renderings of

our model on Clevr-2345 at 2562 pixels after 0, 1, 2, 3,

10, and 100-thousand iterations. Unsupervised disentangle-

ment emerges already at the very beginning of training.

of the methods). We further compare against HoloGAN

w/o 3D Conv, a variant of [63] proposed in [77] for higher

resolutions. We additionally report a ResNet-based [28]

2D GAN [58] for reference.

Metrics: We report the Frechet Inception Distance (FID)

score [33] to quantify image quality. We use 20,000 real

and fake samples to calculate the FID score.

4.1. Controllable Scene Generation

Disentangled Scene Generation: We first analyze to

which degree our model learns to generate disentangled

scene representations. In particular, we are interested if

objects are disentangled from the background. Towards

this goal, we exploit the fact that our composition opera-

tor is a simple addition operation (Eq. 8) and render indi-

vidual components and object alpha maps (Eq. 10). Note

that while we always render the feature image at 162 during

training, we can choose arbitrary resolutions at test time.

Fig. 5 suggests that our method disentangles objects

from the background. Note that this disentanglement

emerges without any supervision, and the model learns to

generate plausible backgrounds without ever having seen

a pure background image, implicitly solving an inpainting

task. We further observe that our model correctly disentan-

gles individual objects when trained on multi-object scenes

with fixed or varying number of objects. We further find that

unsupervised disentanglement is a property of our model

Cats CelebA Cars Chairs Churches

2D GAN [58] 18 15 16 59 19

Plat. GAN [32] 318 321 299 199 242

BlockGAN [64] 47 69 41 41 28

HoloGAN [63] 27 25 17 59 31

GRAF [77] 26 25 39 34 38

Ours 8 6 16 20 17

Table 1: Quantitative Comparison. We report the FID

score (↓) at 642 pixels for baselines and our method.

CelebA-HQ FFHQ Cars Churches Clevr-2

HoloGAN [63] 61 192 34 58 241

w/o 3D Conv 33 70 49 66 273

GRAF [77] 49 59 95 87 106

Ours 21 32 26 30 31

Table 2: Quantitative Comparison. We report the FID

score (↓) at 2562 pixels for the strongest 3D-aware baselines

and our method.

2D GAN Plat. GAN BlockGAN HoloGAN GRAF Ours

1.69 381.56 4.44 7.80 0.68 0.41

Table 3: Network Parameter Comparison. We report the

number of generator network parameters in million.

which emerges already at the very beginning of training

(Fig. 6). Note how our model synthesizes individual objects

before spending capacity on representing the background.

Controllable Scene Generation: As individual compo-

nents of the scene are correctly disentangled, we analyze

how well they can be controlled. More specifically, we are

interested if individual objects can be rotated and translated,

but also how well shape and appearance can be controlled.

In Fig. 7, we show examples in which we control the scene

during image synthesis. We rotate individual objects, trans-

late them in 3D space, or change the camera elevation. By

modeling shape and appearance for each entity with a dif-

ferent latent code, we are further able to change the objects’

appearances without altering their shape.

Generalization Beyond Training Data: The learned com-

positional scene representations allow us to generalize out-

side the training distribution. For example, we can increase

the translation ranges of objects or add more objects than

there were present in the training data (Fig. 8).

4.2. Comparison to Baseline Methods

Comparing to baseline methods, our method achieves

similar or better FID scores at both 642 (Tab. 1) and

2562 (Tab. 2) pixel resolutions. Qualitatively, we observe

that while all approaches allow for controllable image syn-

thesis on datasets of limited complexity, results are less con-

sistent for the baseline methods on more complex scenes
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(a) Object Rotation (b) Camera Elevation

(c) Object Appearance

(d) Depth Translation (e) Horizontal Translation

(f) Circular Translation of One Object Around Another Object

Figure 7: Controllable Scene Generation at 2562 Pixel Resolution. Controlling the generated scenes during image synthe-

sis: Here we rotate or translate objects, change their appearances, and perform complex operations like circular translations.

(a) Increase Depth Translation

(b) Increase Horizontal Translation

(c) Add Additional Objects (Trained on Two-Object Scenes)

(d) Add Additional Objects (Trained on Single-Object Scenes)

Figure 8: Generalization Beyond Training Data. As indi-

vidual objects are correctly disentangled, our model allows

for generating out of distribution samples at test time. For

example, we can increase the translation ranges or add more

objects than there were present in the training data.

with cluttered backgrounds. Further, our model disentan-

gles the object from the background, such that we are able

to control the object independent of the background (Fig. 9).

We further note that our model achieves similar or bet-

ter FID scores than the ResNet-based 2D GAN [58] despite

fewer network parameters (0.41m compared to 1.69m).

(a) 360◦ Object Rotation for HoloGAN [63]

(b) 360◦ Object Rotation for GRAF [77]

(c) 360◦ Object Rotation for Our Method

Figure 9: Qualitative Comparison. Compared to baseline

methods, we achieve more consistent image synthesis for

complex scenes with cluttered background at 642 (top rows)

and 2562 (bottom rows) pixel resolutions. Note that we dis-

entangle the object from the background and are able to ro-

tate only the object while keeping the background fixed.

This confirms our initial hypothesis that using a 3D rep-

resentation as inductive bias results in better outputs. Note

that for fair comparison, we only report methods which are
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Full -Skip -Act. +NN. RGB Up. +Bi. Feat. Up.

16.16 16.66 21.61 17.28 20.68

Table 4: Ablation Study. We report FID (↓) on CompCars

without RGB skip connections (-Skip), without final activa-

tion (-Act.), with nearest neighbor instead of bilinear image

upsampling (+ NN. RGB Up.), and with bilinear instead of

nearest neighbor feature upsampling (+ Bi. Feat. Up.).

Figure 10: Neural Renderer. We change the background

while keeping the foreground object fixed for our method at

2562 pixel resolution. Note how the neural renderer realis-

tically adapts the objects’ appearances to the background.

(a) 0◦ Rotation for Axis-Aligned Positional Encoding [61]

(b) 0◦ Rotation for Random Fourier Features [82]

Figure 11: Canonical Pose. In contrast to random Fourier

features [82], axis-aligned positional encoding (1) encour-

ages the model to learn objects in a canonical pose.

similar wrt. network size and training time (see Tab. 3).

4.3. Ablation Studies

Importance of Individual Components: The ablation

study in Tab. 4 shows that our design choices of RGB skip

connections, final activation function, and selected upsam-

pling types improve results and lead to higher FID scores.

Effect of Neural Renderer: A key difference to [77] is

that we combine volume with neural rendering. The quan-

titative (Tab. 1 and 2) and qualitative comparisons (Fig. 9)

indicate that our approach leads to better results, in particu-

lar for complex, real-world data. Our model is more expres-

sive and can better handle the complexity of real scenes, e.g.

note how the neural renderer realistically adapts object ap-

pearances to the background (Fig. 10). Further, we observe

a rendering speed up: compared to [77], total rendering time

is reduced from 110.1ms to 4.8ms, and from 1595.0ms to

5.9ms for 642 and 2562 pixels, respectively.

Positional Encoding: We use axis-aligned positional en-

coding for the input point and viewing direction (Eq. 1).

Surprisingly, this encourages the model to learn canoncial

Figure 12: Dataset Bias. Eye and hair rotation are exam-

ples for dataset biases: They primarily face the camera, and

our model tends to entangle them with the object rotation.

representations as it introduces a bias to align the object

axes with highest symmetry with the canonical axes which

allows the model to exploit object symmetry (Fig. 11).

4.4. Limitations

Dataset Bias: Our method struggles to disentangle factors

of variation if there is an inherent bias in the data. We show

an example in Fig. 12: In the celebA-HQ dataset, the eye

and hair orientation is predominantly pointing towards the

camera, regardless of the face rotation. When rotating the

object, the eyes and hair in our generated images do not stay

fixed but are adjusted to meet the dataset bias.

Object Transformation Distributions: We sometimes ob-

serve disentanglement failures, e.g. for Churches where the

background contains a church, or for CompCars where the

foreground contains background elements (see Sup. Mat.).

We attribute these to mismatches between the assumed uni-

form distributions over camera poses and object-level trans-

formations and their real distributions.

5. Conclusion

We present GIRAFFE, a novel method for controllable

image synthesis. Our key idea is to incorporate a compo-

sitional 3D scene representation into the generative model.

By representing scenes as compositional generative neural

feature fields, we disentangle individual objects from the

background as well as their shape and appearance without

explicit supervision. Combining this with a neural renderer

yields fast and controllable image synthesis. In the future,

we plan to investigate how the distributions over object-

level transformations and camera poses can be learned from

data. Further, incorporating supervision which is easy to

obtain, e.g. predicted object masks, is a promising approach

to scale to more complex, multi-object scenes.
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Alexei A. Efros. Learning a discriminative model for the

perception of realism in composite images. In Proc. of the

IEEE International Conf. on Computer Vision (ICCV), 2015.

1

[99] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu,

Antonio Torralba, Josh Tenenbaum, and Bill Freeman. Vi-

sual object networks: Image generation with disentangled

3d representations. In Advances in Neural Information Pro-

cessing Systems (NIPS), 2018. 2

11464


