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Abstract

Recent work has shown that convolutional neural net-

work classifiers overly rely on texture at the expense of

shape cues. We make a similar but different distinction

between shape and local image cues, on the one hand, and

global image statistics, on the other. Our method, called

Permuted Adaptive Instance Normalization (pAdaIN), re-

duces the representation of global statistics in the hidden

layers of image classifiers. pAdaIN samples a random per-

mutation π that rearranges the samples in a given batch.

Adaptive Instance Normalization (AdaIN) is then applied

between the activations of each (non-permuted) sample i

and the corresponding activations of the sample π(i), thus

swapping statistics between the samples of the batch. Since

the global image statistics are distorted, this swapping pro-

cedure causes the network to rely on cues, such as shape or

texture. By choosing the random permutation with probabil-

ity p and the identity permutation otherwise, one can control

the effect’s strength.

With the correct choice of p, fixed apriori for all experi-

ments and selected without considering test data, our method

consistently outperforms baselines in multiple settings. In im-

age classification, our method improves on both CIFAR100

and ImageNet using multiple architectures. In the setting

of robustness, our method improves on both ImageNet-C

and Cifar-100-C for multiple architectures. In the setting of

domain adaptation and domain generalization, our method

achieves state of the art results on the transfer learning task

from GTAV to Cityscapes and on the PACS benchmark.

1. Introduction

One of the early successes of computer vision was a face

recognition system by Sakai et al. [33] that employed a

simple neural network classifier. As it turns out, the network

was relying on global image statistics, namely the average

brightness, to perform recognition.

In this work, we demonstrate that removing the reliance

on global image statistics improves classification results in

modern networks. To mitigate the effect of the global statis-

tics, a deliberate mismatch between the activations of a layer

and its accumulated statistics is created. By normalizing

with unmatched statistics, the distribution of activation val-

ues becomes unreliable as a source for label information.

While changing the global statistics of an image to another

was explored in the context of generation [13, 21], we show

that it is also useful in a variety of discriminative settings.

Our work is similar in spirit but different in conclusion

from recent work [4, 15, 19, 35, 42, 47] that has identified

a bias toward texture at the expense of shape. Such recent

methods can often improve the performance of the image

classifier on the test set and have been shown to dramatically

increase the accuracy of the classifier on shifted image do-

mains, in which image transformations change the image

statistics but leave most of the shape unchanged.

In our work, we also show classification and domain gen-

eralization improvements. However, we demonstrate that the

increase in classification performance occurs simultaneously

for both category-based image recognition and texture recog-

nition. This suggests that while the texture is often defined

as local image statistics, becoming invariant to global image

statistics improves both shape and texture recognition.

We demonstrate the effectiveness of our method in a num-

ber of settings. First, we demonstrate how classification

performance improves when adding our permutation-based

regularization. Our method improves accuracy on both CI-

FAR100 and ImageNet on multiple architectures trained in

a vanilla fashion. Second, we train a linear classifier on

top of a pre-trained image-classification network’s represen-

tation layer and show that the accuracy of texture classifi-

cation peaks exactly when the image classification results

are maximized. We show that when this happens, the net-

work’s representation of shape does not deteriorate. Next, we

demonstrate that our method can reduce the adverse effect of

domain shift, by testing it in the setting of domain adaptation

and more broadly in domain generalization. Our method

achieves state of the art results on the domain adaptation

from GTA5 to Cityscapes semantic segmentation and on the

PACS dataset. Lastly, we show that our method allows for a

greater robustness when handling corrupted images, where

our method is superior to all baseline methods. In the setting
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of robustness, our method improves on both ImageNet-C

and Cifar-100-C for multiple architectures.

2. Related Work

Bias towards texture. A large body of work has shown

that, unlike humans, networks tend to be biased towards tex-

tures in making decisions. Gatys et al., [13] have shown that

training a linear classifier on top of a VGG19 texture repre-

sentation achieves similar performance to training VGG19

directly on this task. Geirhos et al., [15] observed this phe-

nomenon in the context of pretrained ImageNet CNNs. They

presented the ‘Stylized-ImageNet’ dataset, which is a ver-

sion of ImageNet where the image style is altered, and show

that training with this dataset forces the network to learn a

shape-based representation. Hermann and Kornblith [19]

explored the role of different factors, such as the training

objective or architecture, on reducing texture bias.

However, this resulted in a degradation in the network’s

performance. Unlike these methods, from the technical per-

spective, our method does not rely on the additional supervi-

sion in the form of extended or modified datasets and instead

directly modifies the architecture of the network. Our in-

terpretation of the results is also different. We show that

manipulating the global statistics, which are directly linked

to style, does not hurt texture recognition.

Several contributions attempt to alleviate texture bias, by

proposing an architectural change or a new training objective.

Shi et al., [35] develop a Dropout-like algorithm. Wang

et al., [42] penalize shallow layers for having predictive

power. Zhang and Zhu [47] show that adversarial training

reduces texture bias. Carlucci et al., [4] propose to reduce

texture bias, by training the network to solve jigsaw puzzles.

Unlike these methods, our method makes use of a novel

normalization layer, which, as shown in Sec. 3.1, directly

affects the dependence on global image statistics.

Normalization and style transfer. Batch Norm [24] has

become a standard mechanism for effectively training deep

neural networks by normalizing activations by the statis-

tics of the minibatch. To reduce minibatch dependencies,

several alternatives were proposed, including Layer Normal-

ization [1], Instance Normalization [40], and Group Normal-

ization [44]. Our work utilizes the ability to swap the style

statistics of images as part of a novel normalization layer.

Unlike our normalization layer, its role is not to support effi-

cient training, but to direct the network toward the desired

emphasis on shape and fine details.

Instance norm by Ulyanov et al., [40], can be seen as a

form of style normalization by normalizing feature statistics.

Building on this view, Huang and Belongie [21] proposed

Adaptive Instance Normalization (AdaIN) as a form of style

transfer, by first normalizing the target image style statistics

and then rescaling by source image style statistics. These

style manipulations through normalization layer methods

are mostly applied in the generative setting, where they can

be used for texture synthesis and style transfer, while our

method focuses on image recognition.

Our method builds upon AdaIN to swap the style statistics

of different element activation. As far as we are aware, while

other methods use style transfer to construct an improved

dataset [19, 15] to alleviate the reliance on global image

statistics, our method is the first to do so within a network.

3. Method

We are interested in the distinction between global image

statistics on the one hand, and other global cues such as

shape as well as local cues, on the other. Global statistics are

statistics (such as mean and standard deviation) measured

from all the pixels of the image. These include, for exam-

ple, brightness, contrast, lightning and global color changes.

Changing the style of the image typically changes such statis-

tics. Global cues refer to any cues present in the entire image

or large patches of it, but not in small patches. These include

global statistics but also shape information (such as an edge

map of a cat). Local cues refer to any information present in

small patches in the image, which may include both texture

and shape information within those patches.

3.1. Motivation

To motivate our method, we conduct a simple experiment

visualizing the effect of swapping statistics of intermediate

layer representations of an autoencoder. The autoencoder

was trained to minimize the reconstruction error on the Stan-

ford Car Dataset [25]. We consider two image inputs, a and

b and inspect the effect on the reconstruction of a, when

swapping their statistics at different layers of the pretrained

encoder. The decoder is left unchanged. As a baseline

method, we also observe the effect of transferring the style

of image b to a using the method of Gatys et al., [13].

As can be seen in Fig. 1, when swapping the image statis-

tics used by the AdaIN module, the reconstructed image

has similar global statistics, such as color and overall image

appearance of b but the finer details of image a are preserved.

Applying this swapping on more layers, results in a larger

transfer of the global statistics of b. In contrast, when using

style transfer, the fine details of a are borrowed from image

b and are no longer preserved. For example in Fig. 1, when

applying style transfer, the bird on a tree was given the fine

details of the shark under water, and similarly a cat was

given the texture of the elephant skin. Such details were not

transformed by swapping the normalization parameters. We

argue that preserving the fine details, while transferring the

global ones, results in an augmented sample that can be uti-

lized to improve classification accuracy and make the trained

network more robust to imaging conditions and better suited

for generalization to new visual domains.
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Image b Image a Recon a L. 0 L. 0-1 L. 0-2 L. 0-3 L. 0-4 [13]

Figure 1. Applying pAdaIN at inference on different layers of an encoder trained as part of an auto-encoder. The input and reconstructed

images are shown on the left. The reconstructed results when applying pAdaIN on different layers of the encoder are shown subsequently.

The last image on the right is the result of applying style transfer using the method of Gatys et al., [13]. L.=layer; Recon=Reconstruction.

3.2. Adaptive Instance Normalization

We begin by defining Instance Normalization (IN), as

formulated in [40] and [21]. For a given convolutional neural

network, let the output activations of a given convolutional

layer be x ∈ R
N×C×H×W , where N is the batch size, C

the number of channels, H the height of the layer, and W its

width. Instance Norm is then defined as:

IN(x) = γ

(

x− µ(x)

σ(x)

)

+ β , (1)

where µ(x) and σ(x), both in R
N×C , are the mean and

standard deviation, computed along the spatial dimensions

(H ×W ) for each channel (c) and sample in the batch (n):

µnc(x) =
1

HW

H
∑

h=1

W
∑

w=1

xnchw (2)

σnc(x) =

√

√

√

√

1

HW

H
∑

h=1

W
∑

w=1

(xnchw − µnc(x))2 + ǫ . (3)

γ and β, both in R
N×C , are the re-scaling affine parameters

learned independently of x.

The above operation is applied in the same manner both

at train and test time. As detailed in [21], IN can be viewed

as normalizing the style statistics of each input in the batch.

Adaptive Instance Normalization (AdaIN) builds upon this

view, by first normalizing the style statistics of an input a,

thus extracting its content, and then scaling the normalized

output by the statistics of a target style input b. This allows

the transfer of style from b to a. Specifically, let a, b ∈

R
C×H×W , then AdaIN is defined as:

AdaIN(a, b) = σ(b)

(

a− µ(a)

σ(a)

)

+ µ(b) (4)

where µ(a) and σ(a) (resp. µ(b) and σ(b)) are the mean and

standard deviation of a (resp. b) over its spatial dimension,

computed for each channel.

3.3. Permuted AdaIN

Given an input activations map x ∈ R
N×C×H×W , let

π(x) = [xπ(1), xπ(2), . . . , xπ(N)] ∈ R
N×C×H×W be the

result of applying a permutation π to the elements of a given

mini-batch x = x1, . . . , xN along the minibatch axis.

The result of applying pAdaIN on a single sample xi in

the context of its batch and for a given permutation π is:

p-INπ(xi) = AdaIN(xi, xπ(i)) . (5)

pAdaIN is then defined for the entire tensor x:

pAdaIN(x) =

{

x, probability p

(p-INπ(x1), .., p-INπ(xN )) otherwise

where π is a uniformly chosen permutation, and p is a hyper-

parameter fixed ahead of training. pAdaIN is only applied

during training time and not at test time. We apply pAdaIN

to the output activations of all convolutional layers and in

particular, before applying batch normalization.

Backpropagation is applied through x but not through

π(x). Specifically setting a = xi and b = xπ(i) in Eq. 4, we

regard µ(xπ(i)) and σ(xπ(i)) as constant and do not back-

propagate through them. Performing a different update, such

as one on µ(xπ(i)) and σ(xπ(i)) leads to sub-optimal results,

as shown in Sec. 4.6. Mixing batch information in the for-

ward pass during training is used as a regularization to the

model, and is shown to improve generalization (see Sec. 4.4).

Backpropagating gradients on both x and π(x) causes the

loss on a sample xi of the batch to affect the gradients of

another sample xπ(i) in the batch, which is undesired.

Effect of Batch Norm. Batch Norm (BN ) normalizes

channel-wise statistics yet does not undo the effect of our

method. To see this, we first define the BN operation:

µc(x) =
1

N

N
∑

n=1

µnc(x) (6)

σc(x) =

√

√

√

√

1

NHW

N
∑

n=1

H
∑

h=1

W
∑

w=1

(xnchw − µc(x))2 + ǫ

(7)
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BN(x) = γ

(

x− µc(x)

σc(x)

)

+ β . (8)

For some parameters γ and β. After applying BN , we have:

µnc(BN(x)) =
γ

σc(x)
· (µnc(x)− µc(x)) + β , (9)

σnc(BN(x)) =
γ · σnc(x)

σc(x)
(10)

With pAdaIN, when statistics are swapped (i.e not identity):

µnc(BN(pAdaIN(x))) =
γ

σc

· (µπ(n)c(x)− µc(x)) + β ,

(11)

σnc(BN(pAdaIN(x))) =
γ · σπ(n)c(x)

σc(x)
(12)

Eq. 11 and Eq. 12 follow from pAdaIN shifting channel-

wise statistics. The statistics of channel c, for sample n,

after applying pAdaIN, are the same as that of sample π(n),
beforehand. Hence BN does not undo the swapping of

statistics, but rather scales them by batch-wise statistics.

4. Experiments

Our experiments explore classification accuracy of both

objects and texture, robustness to image corruption, and

generalization to new domains. Unless otherwise mentioned,

pAdaIN is applied with a fixed choice of p = 0.01.

4.1. Image Classification

We evaluate pAdaIN in the context of image classification

on both CIFAR100 and ImageNet. To evaluate pAdaIN, for

every architecture, we add a pAdaIN layer before every use

of batch normalization and after using a convolutional layer.

For CIFAR100, we consider the architectures of

VGG19[36], InceptionV4[37], PyramidNet [16], ResNet18

and ResNet50 [17]. During training, we apply a padding of

4, a random crop and a random rotation of up to 15%, result-

ing in images of size 32× 32. The networks are trained on a

batch size of 128 with an SGD with a momentum of 0.9 and

a weight decay of 5e−4. We use 200 epochs, start training

with a learning rate of 0.1 and divide the learning rate by 5
at epochs 60, 120 and 160. For ImageNet, we consider the

architectures of ReseNet50, ResNet101 and ResNet152 [17].

We train for 300 epochs, and use standard augmentations

of resizing to 256 × 256 and applying a random crop of

224× 224 and then applying a random horizontal flip. The

learning rate is initiated to 0.1 for ResNet50, ResNet101,

and ResNet152, after which it is reduced by a factor of 10
every 75 epochs. SGD with momentum is used as the opti-

mizer. The batch size, weight decay and momentum were

set to 256, 1e−4 and 0.9 respectively.

For all experiments, a default value of p = 0.01 is used.

In Tab. 1 and Tab. 2 we compare, for the different architec-

tures, the result of training the network with pAdaIN and

(a)

Input pAdaINBaseline

ostrich fenceostrich

(b)

firetruck military uniformfiretruck

(c)

shark sharkpillow

(d)

hook hookstone wall

Figure 2. GradCam [34] visualizations and predictions for Ima-

geNet trained ResNet50 models, with and without pAdaIN. Ground

truth labels and model predictions appear on the bottom of each

image respectively.

without pAdaIN (Baseline). Other than the use of pAdaIN,

which does not add any learnable parameters to the network,

the same architecture and training procedure is used. As

can be seen, our method outperforms the baseline on the

above datasets. The improvement is consistent across net-

works with a vastly different number of parameters, such

as ResNet18 and ResNet50 for CIFAR100 and ResNet50,

ResNet101, and ResNet152 for ImageNet. The improvement

is also consistent across different model types, such as VGG,

Inception, PyramidNet, and ResNet for CIFAR100.

We consider the effect of changing p on the overall accu-

racy. This is done for the ResNet18 and ResNet50 models

trained on CIFAR100 and ImageNet, respectively. As can be

seen in Fig. 3(d), increasing the value of p up to 0.01 results

in improved accuracy, after-which accuracy drops.

Lastly, to qualitatively analyze our method, we considered

the two ResNet50 models trained on ImageNet, either with or

without pAdaIN. Fig. 2 depicts four examples along with the

GradCAM [34] visualization for the predicted class pAdaIN

concentrates on the foreground and so, for (a), predicts a

chainlink fence. The vanilla (baseline) model predicts an

ostrich, as it relies more on global statistics. While both

answers could be correct, the GT (ground truth) annotation

is that of an ostrich and so this is regarded as an error of

pAdaIN. In contrast, (c) depicts an image of shark on land.

Our model relies less on global context (such as the shark

being at sea) and so predicts a shark (which corresponds

to the GT annotation). The vanilla model predicts a pillow.
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(a) (b) (c) (d)
Figure 3. (a) Texture accuracy for different values of p for a ResNet18 model trained on CIFAR100. (b) As in (a), but for ResNet50 model

trained on ImageNet. (c) Shape bias for a ResNet50 model trained on ImageNet, for a range of values of p. (d) Accuracy for models trained

with pAdaIN for various values of p. In blue, a ResNet50 model trained on ImageNet and in orange, a ResNet18 model trained CIFAR100.

For p values above 0.1 (not shown), accuracy drops significantly below 75% for both ImageNet and CIFAR100.

Architecture Baseline pAdaIN

VGG19 72.30 72.90

ResNet18 76.13 77.82

ResNet50 78.22 79.03

InceptionV4 78.00 79.50

PyramidNet 83.49 84.17

Table 1. Top-1 accuracy for CIFAR100 on different architectures.

Architecture
Top-1 Top-5

Baseline pAdaIN Baseline pAdaIN

ResNet50 77.1 77.7 93.63 93.93

ResNet101 78.13 78.8 93.71 94.35

ResNet152 78.31 79.13 94.06 94.64

Table 2. Top-1/Top-5 ImageNet accuracy on different architectures.

Similarly, for (b) (resp. (d)) image, pAdaIN focuses on

persons with military uniform (resp. hook), and the vanilla

model on the firetruck (resp. stone wall) in the background.

4.2. Texture and Shape Representation

To evaluate the resulting feature representation for texture

recognition, the texture surface dataset [22] was employed.

It consists of 64 classes, with a total of 8674 images. Since

some textures can be similar to others we sample 10% for

training and use the rest for test.

Our training procedure consists of freezing the backbone

of the trained model, and training a linear classifier on top of

the last representation layer of both ResNet models (before

the label logits) to correctly classify the texture class. A

high accuracy indicates that the model captures texture more

strongly in its representation layer.

For ImageNet and CIFAR100, we consider the texture

accuracy when training with pAdaIN for various values of

p. As can be seen in Fig. 3 (a,b), a value of p = 0.01 results

in the best performing model. As pAdaIN is applied at each

layer with probability p independently, setting p too high can

result in an excessive change of statistics, thus resulting in

degradation in accuracy. We note that this coincides in the

value of p having the best overall accuracy for both ImageNet

and CIFAR100, as shown in Fig. 3(d).

Mostly, an increase (resp. decrease) in the value of p

results in an increase (resp. decrease) of both overall accu-

racy and texture accuracy. To evaluate this connection in the

context of previous work that aimed at eliminating texture

bias, we repeat the experiment with such a method.

Specifically, we consider a model trained as described

in Geirhos et al., [15] on a combination of ImageNet and

a stylized ImageNet. We measure its texture accuracy, as

above. The ImageNet classification accuracy of the em-

ployed Shape-ResNet increases from 76.13 to 76.72. Con-

currently, the texture accuracy drops from 89.2% to 88.7%.

This indicates that unlike our method which preserves local

cues, Geirhos et al., [15] do not. Their increase in perfor-

mance is due to the increased utilization of global cues at the

expense of local ones. Our method improves the accuracy

without reducing the recognizability of local textures.

Furthermore, we demonstrate that, for p ≤ 0.01, while

the representation of global statistics, such as background

color is distorted through the use of pAdaIN, the representa-

tion of shape is not. To show this, we consider the shape bias

measure of Geirhos et al., [15] on the cue conflict dataset.

This dataset was crafted to evaluate the shape bias of an

ImageNet trained model and is composed of 1280 images.

Each image has two labels: a texture label and a shape label.

The texture and shape labels are taken from 16 different

classes. Each image is the product of performing iterative

style transfer [14] between an image from a texture dataset,

containing the texture corresponding to one of the texture

classes, and a natural colored image of an object with a white

background from one of the shape classes. An example

can be seen with the elephant skin (texture) and the cat

(shape) adopted from [15] in Fig. 1. A correct prediction is

considered a prediction that matches one of the two classes

that compose a test image, i.e., either the shape class or

the texture class. Given an ImageNet trained model, the

shape bias is computed as the proportion of correct shape

predictions which the model makes out of all the correct

predictions (either correct texture or shape).

As can be seen in Fig. 3(c), increasing the value of p
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Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU

Source only 57.9 17.4 71.5 19.3 18.3 25.39 32.5 16.8 82.3 28.2 78.0 55.3 31.3 71.6 19.1 26.8 9.2 26.3 13.7 37.0

Source only + pAdaIN 57.2 20.2 71.6 28.3 19.1 26.1 33.6 13.0 82.1 29.0 69.5 56.7 33.0 67.5 27.8 35.1 17.6 33.7 14.5 38.7

AdaptSegNet [38] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

SIBAN [28] 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6

CLAN [29] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

AdaptPatch [39] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

ADVENT [41] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

FADA [43] 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2

FADA [43] + pAdaIN 93.3 55.7 85.6 38.3 29.6 31.2 34.2 17.8 86.2 41.0 88.8 65.1 37.1 87.6 45.9 55.1 15.1 39.4 31.1 51.5

Table 3. Experimental results for unsupervised domain adaptation and domain generalization (source only) on GTA5 → Cityscapes in the

task of semantic segmentation, using DeepLabv2 [5] with ResNet101 backbone architecture.

up to 0.01 does not degrade the shape bias beyond that of

a model with no pAdaIN (p = 0), and, in fact, increases

it slightly for p = 0.001. At p = 0.01, both the texture

recognition ability (Fig. 3(b)) and the accuracy (Fig. 3(d))

are maximal. Evidently, while our model strengthens local

cues as it improves classification, its affinity toward shape-

based classification is not reduced. For p > 0.01, we notice

a decrease in shape bias and of accuracy. This indicates that

using a value of p which is too high may adversely affect the

shape representation and subsequently the model’s accuracy.

To further validate that pAdaIN does not support tex-

ture classification at the expense of shape, we evaluate our

method on two shape oriented datasets. The first is ImageNet-

Sketch [42], which consists of 50000 sketch-like images,

with 50 images for each of the 1000 ImageNet classes. The

second is the Edges dataset [15], which consists of 160 im-

ages of 16 different objects with a white background, pro-

cessed by the Canny edge extractor [3].

An ImageNet trained model with pAdaIN (p = 0.01)

(no finetuning), achieves 26.0% and 26.9% accuracy on

ImageNet-sketch and the Edges dataset, respectively. In con-

trast, an ImageNet trained model without pAdaIN achieves

a lower accuracy of 24.5% and 24.4%, respectively.

4.3. Domain Adaptation

Of particular interest is the ability of image classifiers to

generalize in the settings where the test distribution is shifted

compared to the train distribution. In the setting of domain

adaption, one is given a labeled source data and an unlabeled

target data and is asked to generalize well on both the source

and target distributions [31, 12].

We evaluate our method on the pixel-wise classification

task of semantic segmentation, in the setting of domain adap-

tion. At train time, we are given access to training images

from both the source and the target domain. However, the

semantic segmentation labels are only available for the im-

ages from the source domain. The objective is to maximize

performance on the target domain.

We consider the state of the art method of Wang et al., [43]

for which a three-step approach is undertaken, and apply

pAdaIN in conjunction with it. In the first step, a model is

trained solely on the source domain using both input images

and labels. In the second step, the model is initialized with

the weights from the first step and is trained with images

from the target domain in an unsupervised manner, as well as

with source images in a supervised manner. Two losses are

employed. The first is a domain confusion loss (class-wise

adversarial loss) between the features of the source and target

domain. The second loss is a cross entropy pixel-wise loss

between the output of the model on source inputs and source

labels. In the third step, a pseudo labeling approach is per-

formed. Using the model trained in the second step, pseudo

labels are generated for the target images. The network is

retrained with these pseudo labels on the target domain.

pAdaIN is applied during all three stages with the same

p = 0.01 as in all other benchmarks. In the second loss of

the second step, a slight modification is made to the training

procedure of [43]. In the original setting, only source do-

main images are used in a given batch. Instead, when using

pAdaIN, the inputs from the target domain are concatenated

to the batch of source domain images. Thus, when applying

the forward step on inputs from the source domain, pAdaIN

mixes statistics from the target domain to the source do-

main. Note that we do not modify the target domains’ image

features in the forward pass, since we want to adapt to the

target domain itself. Also, while normally pAdaIN is applied

on a larger batch size, due to GPU memory constraints, a

batch-size of two is used, with one image from each domain.

We evaluate our method on the GTAV dataset [32] as

our source domain and Cityscapes dataset as the target do-

main [6] and use the official implementation and training

scheme of FADA [43]. GTAV is a synthetic dataset with

24, 966 urban scene images sourced from a video game ren-

dering engine Grand Theft Auto V and Cityscapes is a real

world urban scene dataset with 2975 training images and 500
validation images. An mIOU metric is used for evaluation.

For a fair comparison to previous methods, we evaluate each

image in a single scale. As can be seen in Tab. 3, our method

improves the state of the art when applied in conjunction

with FADA [43], achieving a gap of 2.3 mIOU. There is

also a gap of 1.7 when adding pAdaIN to a model trained

only for the first phase, i.e., without access to target domain

images. We notice that the greatest improvements occur on

large objects, such as buses, trains, trucks, sidewalks and
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walls and a degradation in the sky category.

4.4. Multi­domain Generalization

A more restrictive setting than that of domain adaptation

is that of domain generalization, in which the unlabeled

target data is not available during training. The “source only”

setting for the GTAV to Cityscapes experiment in Tab. 3,

described above, is one instance of this problem.

We evaluate our method for domain generalization on the

PACS dataset [26]. It consists of four domains: photo, art,

cartoon, and sketch. We follow the multi-source evaluation

protocol of [4], training on three out of the four domains

and evaluating on the fourth. We compare with the latest

domain generalization methods. For the baseline method

comparison, we simply train a network on the source data,

without further modifications. Our models are trained with

SGD, over 30 epochs, batch size 128. The learning rate is set

to 0.001. For the RSC [23] method, we also independently

run the method using the open-source implementation as

published by the authors, using the default configuration

(https://github.com/DeLightCMU/RSC).

Tab. 4 shows the results of our method against that of base-

line methods. As can be seen, when trained with pAdaIN,

our method, on average, beats all baseline methods on both

ResNet18 and ResNet50, except when considered against

the reported values of RSC [23]. We note that our method

outperforms our independently reproduced results of RSC,

which follows the official open source implementation. Our

results improve over the baseline method especially in the

sketch domain. Sketch images consist mostly of the outlines

of the objects with no texture. This indicates, as previously

shown, that performance based on global cues, such as the

object’s outline (shape), is enhanced in this case.

4.5. Robustness Towards Corruptions

Convolutional neural networks tend to be sensitive to

small perturbations [9]. These small perturbations affect the

statistics of the representation layers of the network. It is thus

plausible that a model taught to be insensitive to statistical

shifts of the feature space, such as our method, would be

more robust towards corruptions. To test this hypothesis, we

evaluate our method against ImageNet-C and Cifar-100-C

[9], corrupted versions of ImageNet and CIFAR100.

First, we consider a ResNet50 model trained on Ima-

geNet with or without pAdaIN. As can be seen in Tab. 5, our

method improves upon the baseline method trained without

pAdaIN (with p = 0.01). Next, we consider pAdaIN in

conjunction with AugMix [18], which is the current state of

the art. As can be seen, combining pAdaIN with Augmix

exceeds Augmix and is thus state of the art. For reference,

average test error for additional methods designed for cor-

ruption are reported in Tab. 6. Here we note that our smallest

improvement is for the noise, blur, pixelated and JPEG cor-

Method Photo Art Cart Sketch Avg

Baseline [4] 95.98 77.87 74.86 70.17 79.72

D-SAM [11] 95.30 77.33 72.43 77.83 80.72

JiGen [4] 96.03 79.42 75.25 71.35 80.51

MASF [10] 94.99 80.29 77.17 71.69 81.03

E-FCR [27] 93.90 82.10 77.00 73.00 81.50

MetaReg [2] 95.50 83.70 77.20 70.30 81.70

I-Drop [35] 96.11 80.27 76.54 76.38 82.32

RSC∗ [23] 95.99 83.43 80.31 80.85 85.15

RSC∗∗ [23] 94.10 78.90 76.88 76.81 81.67

Ours 96.29 81.74 76.91 75.13 82.51

Baseline [4] 97.66 86.20 78.70 70.63 83.29

MASF [10] 95.01 82.89 80.49 72.29 82.67

MetaReg [2] 97.60 87.20 79.20 70.30 83.60

RSC∗ [23] 97.92 87.89 82.16 83.35 87.83

RSC∗∗ [23] 93.72 81.38 80.14 82.31 84.38

Ours 97.17 85.82 81.06 77.37 85.36

Table 4. Results on multi-source domain generalization on the

PACS dataset. Top: ResNet18, Bottom: ResNet50. Highlighted

are the best scores per category. We consider RSC [23] reproduced

scores (∗∗) and not the reported ones (∗). See Sec. 4.4 for details.

Cart stands for Cartoon.

ruptions, since these preserve the global statistics and have a

tendency to modify the the fine details. Conversely, weather

and contrast corruptions preserve texture and we, therefore,

see an overall greater improvement for these categories.

4.6. Ablation Analysis

To further evaluate different variants of pAdaIN, we con-

sider a ResNet18 network trained on CIFAR100, as de-

scribed in Sec. 4.1. In Tab. 7 we consider the effect of

using pAdaIN on specific blocks of the ResNet18 network.

In all other experiments, we apply it to all layers. As can be

seen, the effect of pAdaIN is most prominent when applied

at the deeper blocks, specifically at blocks 3 and 4.

Next, we wish to understand the importance of using

statistics, of the feature representation from natural images.

Instead of swapping statistics between the feature representa-

tions of images, we swap the statistics of an image’s feature

representation with random statistics sampled from a normal

distribution with zero mean and unit variance. We set the

probability for this to happen at p = 0.01, as in the default

pAdaIN setting. We observed that as the model converged to

minimal loss on the training set, the validation performance

was very unstable, both in terms of loss and test accuracy.

The overall accuracy is 57.3, which is significantly lower.

We believe this is due to the distribution shift from the statis-

tics of natural images, happening with probability p.

As discussed in Sec. 3.1, in our method, we regard

µ(xπ(i)) and σ(xπ(i)) as constants and do not backpropagate

through them. As can be seen in Tab. 8, setting µ(xi) and

σ(xi) as constant results in a degradation in performance.
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Dataset Network Architecture E mCE Noise Blur Weather Digital

Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

INet-C Baseline ResNet50 22.9 76.7 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77

INet-C pAdaIN ResNet50 22.3 72.8 78 79 81 70 87 74 76 74 71 64 55 65 82 66 71

C100-C Augmix [18] DenseNet-BC 24.2 38.9 60 51 41 27 55 31 29 36 39 35 28 37 33 39 41

C100-C Augmix+pAdaIN DenseNet-BC 22.2 37.5 58 49 40 26 54 30 28 35 38 33 25 36 32 37 40

C100-C Augmix [18] ResNext-29 21.0 34.4 56 48 32 23 49 27 25 32 35 32 24 32 30 34 37

C100-C Augmix+pAdaIN ResNext-29 17.3 31.6 58 48 24 20 54 23 21 28 30 25 19 27 27 33 36

Table 5. Clean Top-1 Error (E), Mean Corruption Error (mCE) and Corruption Error values of various corruptions. First, we consider an

ImageNet trained ResNet50 model with or without pAdaIN, evaluated on IMAGENET-C (INet-C). Second, we consider DenseNet and

ResNext models trained on CIFAR-100 either with Augmix alone or together with pAdaIN and evaluated on CIFAR-100-C (C100-C).

Baseline Cutout Mixup CutMix Auto- Adversarial Augmix pAdaIN+

[8] [46] [46] Augment [7] Training [30] [18] Augmix

DenseNet-BC 59.3 59.6 55.4 59.2 53.9 55.2 38.9 37.5

ResNext-29 53.4 54.6 51.4 54.1 51.3 54.4 34.4 31.6

Table 6. Classification error in comparison to state of the art baselines on CIFAR-100-C for ResNext [45] and DenseNet [20]. pAdaIN in

conjunction with Augmix [18] exceeds the state of the art. Baseline indicates a network trained on CIFAR-100 without any modifications.

0 1 2 3 1-3 4 3-4 all

76.1 75.9 76.1 76.5 76.4 77.5 78.1 77.8

Table 7. Accuracy (bottom) on different block numbers (top) for

which pAdaIN is applied on a ResNet18 trained on CIFAR100.

µ(xi), σ(xi) Yes Yes No No -

µ(xπ(i)), σ(xπ(i)) No Yes Yes No -

Accuracy 77.8 77.6∗ 75.2 75.1 76.1

Table 8. Accuracy for alternative backpropagation schemes for

a ResNet18 trained on CIFAR100. Yes indicates backprop and

No otherwise. We advocate for the leftmost scheme. Rightmost

column is without using pAdaIn. *indicated unstable training.

Applying backpropagation through µ(xπ(i)) and σ(xπ(i)) as

well, results in unstable training.

In addition, we analyze the effect of applying a fixed per-

mutation across all layers in contrast to uniformly drawing

one at each step of pAdaIN independently in the forward

pass. To this end, we consider a ResNet18 model trained on

CIFAR100, this reduces the accuracy to 68.02, compared to

pAdaIN accuracy of 77.82 and 76.13 for the baseline model.

Computational time. We measure the additional time in-

curred by incorporating pAdaIN into training. Using the

same computational resources (4× Nvidia V100 GPUs) the

training times for a ResNet50 on ImageNet for 300 epochs is

108 hours with and without pAdaIN (p=0.01). Thus training

with pAdaIN does not result in increase in time complexity.

5. Conclusions

While CNN image classifiers are extremely powerful,

they are still reliant on global image statistics that are easy

to manipulate without changing the image semantics. In

this work, we make use of the normalization mechanism in

order to remove the reliance on this bias. The method is

probabilistic and has a parameter p that controls the tradeoff

between training on deliberately mismatched image statistics

and employing the matching global statistics. Naturally,

there is exploitable information in these statistics that can

help in image recognition benchmarks.

Since the texture is often defined as image statistics, and

since previous work has focused on removing the bias to-

ward texture, it is important to make the distinction between

texture and global image statistics. As our motivating exam-

ple shows, texture patterns are largely invariant to changes

in global image statistics, even if these occur simultaneously

across multiple encoding channels.

Indeed, contrary to results of methods for correcting tex-

ture bias, we demonstrate that the increase in classification

performance goes hand in hand with the increase in classifi-

cation capabilities on texture datasets. We do not believe this

to be a misinterpretation by previous work, since we tested

the performance of selected texture bias removal methods

on texture datasets and observed a decrease in performance.

We, therefore, view the two effects as distinct.

Despite this distinctiveness, both our and texture bias

removal methods demonstrate an increase in the recognition

ability in the face of domain shifts. As future work, we would

like to explore combining the two approaches together.
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