
Automated Log-Scale Quantization for Low-Cost Deep Neural Networks

Sangyun Oh1, Hyeonuk Sim2, Sugil Lee1, Jongeun Lee1†

1Department of Electrical Engineering, UNIST, Ulsan, Korea
2Department of Computer Science and Engineering, UNIST, Ulsan, Korea

{syoh,detective,sglee17,jlee}@unist.ac.kr

Abstract

Quantization plays an important role in deep neural net-

work (DNN) hardware. In particular, logarithmic quanti-

zation has multiple advantages for DNN hardware imple-

mentations, and its weakness in terms of lower performance

at high precision compared with linear quantization has

been recently remedied by what we call selective two-word

logarithmic quantization (STLQ). However, there is a lack

of training methods designed for STLQ or even logarith-

mic quantization in general. In this paper we propose a

novel STLQ-aware training method, which significantly out-

performs the previous state-of-the-art training method for

STLQ. Moreover, our training results demonstrate that with

our new training method, STLQ applied to weight parame-

ters of ResNet-18 can achieve the same level of performance

as state-of-the-art quantization method, APoT, at 3-bit pre-

cision. We also apply our method to various DNNs in image

enhancement and semantic segmentation, showing compet-

itive results.

1. Introduction

Quantization plays an important role in implementing

energy-efficient hardware for deep neural networks. Previ-

ous work on quantization mostly considers uniform quan-

tization, but non-uniform quantization schemes such as

logarithmic-scale quantization (log-scale quantization, for

short) [19, 15] can have advantages over linear quantization

in terms of hardware implementation, since it can replace

multiplier hardware with a shifter or an adder, depending

on whether log-scale quantization is applied to one or both

operands.

Log-scale quantization places more quantization bound-

aries for low-magnitude values at the expense of less bound-

†Corresponding author.

This work was supported by Samsung Advanced Institute of Tech-

nology, Samsung Electronics Co., Ltd., IITP grant funded by MSIT of

Korea (No.2020-0-01336, Artificial Intelligence Graduate School Program

(UNIST)), and Free Innovative Research Fund of UNIST (1.170067.01).

aries for high-magnitude values. This can sometimes lead

to a lower expected quantization error overall, but often dis-

proportionately high error that happens at high-magnitude

values can undermine the accuracy of a log-scale quan-

tization scheme significantly, resulting in worse perfor-

mance than linear quantization at the same bit-width [15].

This problem of log-scale quantization has recently been

addressed by selective two-word logarithmic quantization

schemes (e.g. SLQ [16], FLightNN [9]). Selective two-word

logarithmic quantization (STLQ) employs the vanilla log-

scale quantization most of the time, but when the quan-

tization error is higher than a certain threshold, the error

is quantized again, emitting two log-quantized words. The

de-quantization process is straightforward. Importantly, this

scheme allows the same low-complexity hardware of log-

scale quantization to be used while showing similar accu-

racy as linear quantization.

However, the previous work [16, 9] has important short-

comings. First, it uses hyperparameter(s) to control the ratio

of two-word quantization, which is suboptimal if the same

value is used for all layers/channels, or cumbersome to opti-

mize if different values are used. Second, though some pre-

vious work [9] uses trainable latent variables to balance be-

tween accuracy and model sparsity through differentiable

training, their optimization goal does not explicitly target

model size or the number of two-word ratio, but instead

some measure of quantization error, which is only loosely

related to the two-word ratio. Consequently the training re-

sult is not optimal in terms of accuracy vs. two-word quan-

tization ratio. Third, finding the best weight parameters for

a given two-word quantization ratio, which is a very use-

ful use case scenario, is not directly supported by previous

work.

In this paper we propose a novel differentiable training

framework for STLQ. Our method can directly optimize

weights for a given two-word quantization ratio. Starting

with a two-word ratio constraint has a surprising side effect

that we use to our advantage in our training. That is, we

can pre-select and separate the weight parameters that are

likely to require two-word quantization from the rest of the

742

weight parameters, and treat the two groups differently with

different loss functions. We also propose per-tile quantiza-

tion, which is to determine the number of quantized words

per what is known as weight tile, based on the observation

that the only requirement for efficient hardware implemen-

tation of STLQ is that all weight parameters within a weight

tile be quantized with the same number of words.

These optimizations help us achieve significantly better

performance than the state-of-the-art training method for

STLQ [9], which is also based on differentiable training,

and achieve close to floating-point baseline performance for

ResNet models using 3-bit STLQ weight and 3-bit linear ac-

tivation, with a low two-word ratio (5∼15%).

We also apply STLQ and our training method to more

challenging networks and tasks such as MobileNetV2,

ShuffleNetV2, image enhancement [2], and semantic seg-

mentation [4], which typically require higher precision ac-

tivation and weight. Our training result shows very com-

petitive results at 3-bit. It is important to note that in all

the experiments we use 3-bit STLQ quantization but some-

times higher two-word ratios to achieve good performance

(for MobileNetV2 and ShuffleNetV2), which attests to the

flexibility of the STLQ scheme.

We also compare against state-of-the-art quantization,

APoT [17], which is more a novel quantizer than a train-

ing method. Our 3-bit ResNet results compare favorably

against APoT in terms of accuracy vs. FixOPS (a mea-

sure of hardware complexity). Considering the advantages

of STLQ such as the reusability of logarithmic hardware

and flexibility to increase performance by adjusting two-

word ratio, we believe that our training method for STLQ is

a very valuable contribution.

We make the following contributions. First, we propose

a novel training framework for STLQ. It takes a two-word

quantization ratio as a constraint, and finds the best trained

weights. Second, our training method significantly outper-

forms the previous state-of-the-art STLQ training method.

Third, we have applied this method to various applications

such as image classification, image enhancement, and se-

mantic segmentation, which has shown competitive results.

2. Related Work

Previous studies introduced various quantization meth-

ods that utilize non-uniform distribution of weights.

LogNet [15] proposed log-scale quantization and hardware

for power-of-two values using shifter operation. Distilla-

tion [21] proposed training method that improves quanti-

zation performance by adding the quantization levels to the

task loss and letting levels to be learned during training.

LQ-Nets [26] proposed method to learning the quantiza-

tion levels from the quantization error by introducing Quan-

tization Error Minimization (QEM). SLQ [16] proposed

log-scale quantization using two words (one is optional),

searched for a threshold value that minimizes the overhead

for extra word, and proposed energy-efficient hardware as

well. APoT [17] proposed a new quantizer that reduces the

quantization error through an addition based representations

of power-of-two values from predetermined bit sets and ap-

plies scalable parameters for weight and activation in train-

ing process.

Another studies introduced quantization-aware training

(QAT). QAT have attempted to explore quantization-related

learnable parameters in the training process. Usually these

parameters correspond to small decimal values and jointly

trained with weights. PACT [6] introduced decimal value

called alpha to scale the clipping of activations which in-

volved in training process. QIL [13] proposed training

method to find the optimal quantization boundaries by

learning the precision delta of linear-scale. FLightNN [9]

proposed a method of finding the threshold value for quan-

tization error through training and suggested a filter unit

based hardware optimization.

3. Preliminaries on Log-Scale Quantization

3.1. Logarithmic Quantization

Consider an N-bit integer q, which is quantized to log-

scale from a real number x in [−1,1]. The range of q is

[−M, M − 1], where M = 2N−1. Then the reconstructed

value x̃ can be given as follows.

LogDequant : x̃ =

{

0 if q = 0

sign(q)2−|q| otherwise.
(1)

We define log-scale quantizer as follows.

LogQuant : q =

⎧

⎪

⎨

⎪

⎩

clip
(

−
⌊

log2
|x|
U

⌉

,1,M−1
)

if x > 0

0 if x = 0

−clip
(

−
⌊

log2
|x|
U

⌉

,1,M
)

otherwise.

where clip is the clipping function defined as clip(x,a,b) =
min(max(x,a),b), ⌊⌉ the round operation, and U a scaling

factor (e.g., may be set to the maximum of |x|). Let LogQ

denote the function from x to x̃, where ◦ is a function com-

position, simulating the effect of log-scale quantization.

LogQ : x → x̃ = LogDequant◦LogQuant (2)

3.2. Selective Two-word Logarithmic Quantization

Selective two-word logarithmic quantization (STLQ) ap-

plies log-scale quantization once or twice depending on the

quantization error.

Round 1:

x̃1 = LogQ(x), r1 = x− x̃1 (3)

743

Yes

No

Round 1

Round 2

Output: Single-word Output: Two-word

Figure 1. Selective two-word logarithmic quantization (STLQ).

Step 1. Floating-point training (= pre-training)

↓
Step 2. For a given R value, determine the selection ten-

sor C and initialize the auxiliary tensor v

↓
Step 3. Fine-tune w,v using a new loss function until

v = 0

Figure 2. Overview of our training flow for STLQ.

Round 2:

x̃2 = LogQ(r1), r2 = r1 − x̃2 (4)

The quantizer emits either {LogQuant(x),LogQuant(r1)} if

two-word quantization is used, or LogQuant(x) otherwise.

To efficiently handle the variable number of quantized

words, it has been suggested [9] that the granularity of

choosing the number of quantized words, or quantization

cardinality granularity, be a filter (of a weight tensor) rather

than an individual element. In this case, filters whose aver-

age quantization error (e.g. ||r1||2) exceeds a certain thresh-

old can be quantized with two words (per element).

4. Our Proposed Training Method

4.1. Budget-constrained Quantization

Unlike previous work, our training framework takes the

ratio of two-word quantization R as input, and generates

the best trained weight satisfying the constraint. In this sec-

tion we assume that quantization cardinality granularity is a

weight element. Later we extend it to a larger unit.

Our training method is based on two ideas. The first is

predestination, meaning that since we know the ratio of

two-word quantization R, we may better split the weight pa-

rameters into two sets, and apply different optimizations to

each set. The selected weight parameters are trained to min-

imize task loss without any pressure on the residual while

the unselected ones are trained to minimize the residual.

The second is auxiliary tensor v, which has the same dimen-

sion as the weight tensor, and models, for the unselected

ones, the degree of transition from two-word quantization

to single-word quantization. By making the auxiliary tensor

an independent variable that is jointly trained with weight

+

LogQ

+

Select
top R%

+

LogQ

Pre-trained
weight

Figure 3. Determining the selection tensor C and initial value v0

of auxiliary tensor.

tensor, weight training can be decoupled from residual re-

duction.

Figure 2 illustrates the overall flow of our training frame-

work. First we train a network without quantization; the

resulting weight is called pre-trained weight (w). Second,

from the pre-trained weight and two-word ratio R, we de-

termine the selection tensor C, which partitions the weight

parameters into two sets, as well as initialize the auxiliary

tensor. Third we jointly train w and v until all unselected

ones have transitioned to single-word quantization.

4.2. Selection Tensor

Figure 3 illustrates our selection and auxiliary tensor ini-

tialization algorithm. First we apply log-scale quantization

to the pre-trained weight, and examine the residual r1 to de-

cide which ones to select for two-word quantization.

w̃1 = LogQ(w), r1 = w− w̃1 (5)

We simply select the top R% elements based on the first

round residual. The rationale is this: Since w is a pre-trained

weight, and our fine-tuning will not disrupt w in a ma-

jor way, it is reasonable to assume that elements with the

greatest residual (|r1|) are the ones that need second round

quantization the most. Once selected, they always have two

rounds of quantization; in other words, C is never updated.

C = Select(|r1|,R) (6)

Selection tensor C is a binary tensor, not trainable, of the

same size as w. Its elements are 1 for selected weight pa-

rameters and 0 for the others. This selection is made on a

per-layer basis (i.e., R% is chosen from each layer).

4.3. Fine-tuning and Initializing Auxiliary Tensor

Now the crucial question is how to remove second round

quantization from the unselected elements without affecting

the performance of a neural network. Rather than removing

second round quantization all at once, which is very likely

to leave an unrecoverable performance gap, we gradually

phase out the effect of r1 by multiplying a scale factor to it.

Moreover, we design the scale factor to be an independent

variable v and train it via gradient descent along with w

such that the task loss can be minimized. To encourage v to

744

decrease over time, we add a regularization term to the loss

function.

Specifically, the new loss function is as follows:

�(w,v) = �task(w̃)+λ ||v||22 (7)

w̃ = w̃1 +LogQ(r1 ◦ (C+v)) (8)

where ◦ is Hadamard product, and λ is a weighting factor

(hyperparameter) balancing the task loss and the new loss

term. The auxiliary tensor v is complementary to C, mean-

ing it has nonzero elements only where C is zero. For unse-

lected elements, v models the fractional degree of transition

from two-word quantization (v = 1) to single-word quanti-

zation (v = 0).

We initialize v to v0 below (though we believe other ini-

tialization schemes would also work), where fs is a scale

function that applies softmax (excluding the C = 1 ele-

ments) and normalization (i.e., divide by the max element)

in sequence, so that the largest residual has v= 1. The effect

of this initialization is that smaller (in magnitude) residuals

will phase out first. Applying softmax to small values (note:

r1 ≪ 1) reduces their differences, with the subsequent nor-

malization pulling all values close to 1.

v0 = fs(|r1 ◦ (1−C)|) (9)

fs(x) = normalize(softmax(x)) (10)

The new term in the loss function plays the same role as

weight decay for v, but the gradient of v, ∂�
∂v

, is also con-

tributed by the task loss, since v is involved in the forward

calculation (see (8)). As a result, the effect of second round

quantization is gradually reduced in a manner that best min-

imizes the task loss. During training, we truncate the el-

ements of v that are less than ε in magnitude, to prevent

small fluctuations of v near zero (we set ε to 0.001 in our

experiments), and also ensure that v remains complemen-

tary to C. After fine-tuning, the quantized weights are given

as follows: {w̃1, w̃2} for the chosen elements (C = 1), and

w̃1 for the others (C = 0).

4.4. Per-Tile Quantization

To address the hardware design issue caused by the vary-

ing number of quantized words among weight parameters,

the previous work [9] suggests a per-filter scheme, i.e., de-

cide the number of quantized words for each filter. While

that can avoid the problem, it is an over-design for hardware

accelerators. The root cause of the problem is that hardware

accelerators often consist of a large array of processing el-

ements (PEs), which can become out of synchronization if

some PEs take two cycles while others take one, leading

to significantly increased application latency. In short, the

variable number of quantized words implies variable-cycle

MAC (multiply-accumulate) operation, which is very inef-

ficient for array processing.

Therefore to avoid the variable-cycle MAC problem, we

only need to ensure that weight parameters used simulta-

neously have the same number of quantized words. Fortu-

nately, the set of weight parameters used simultaneously,

which is called weight tile or tile, is known at design time.

For instance, a weight tile in DianNao [5] has the dimen-

sion (Tn,Tm) = (16,16), where Tn is the size along the input

channels and Tm is the size along the output channels. Since

a tile is typically much smaller than a filter, we can expect

higher performance from a per-tile scheme.

Extending our training framework for per-tile quantiza-

tion is straightforward. We assume that the tile dimension is

known at training time. The main change in our framework

is the size of tensor C, the elements of which now corre-

spond to tiles in a weight tensor. Figure 5 shows an exam-

ple of the DianNao’s tile (Tn,Tm) applied to a convolution

layer, where C and v0 now have the following dimension:

(⌈ M
Tm
⌉,⌈ N

Tn
⌉,K,K), where M and N are the number of out-

put and input channels, respectively, and K is the size of a

convolution filter. To rank tiles, we use the �2-norm of the

first residual, ||r1||2, where r1 is of a weight tile, and not of

the entire weight tensor.

4.5. Discussion: Differences from Previous Work

One minute difference from the previous work [9] is that

while the previous work tries to minimize the number of

quantized words for all elements, we do so for unselected

ones only. In other words, we need not suppress second

round quantization for the C = 1 elements (i.e., chosen ele-

ments), which helps us achieve high accuracy even with low

R values.

Another difference is that instead of minimizing r1 di-

rectly (e.g. by adding a penalty term for ||r1||2 to the loss

function), we introduce an independent variable v and re-

gard the product v◦ r1 as the actual residual to be passed to

the second round quantization. By doing so, we can ensure

that the actual residual will converge to zero, irrespective

of how r1 or w changes during training, which can lead to

faster convergence.

Lastly, we determine the number of quantized words on

a per-tile basis as opposed to on a per-filter basis.

5. Experimental Setup

To evaluate the effectiveness of our training method,

we use various datasets and convolutional neural network

(CNN) models in three applications: image classification,

image enhancement, and semantic segmentation. In all our

Also slightly larger model size due to increased meta data describing

the number of quantized words per tile.

Note that we use the same quantization parameters such as scale factor

U within a layer. In that sense, our per-tile quantization is still per-layer

quantization; only the number of quantized words can be different at the

granularity of a tile.

745

- Select bottom 70%
- Gradually phased out
- Degree of transition: [0, 1]0.85 0.30 0.53

0.80 0.37 0.29

0.40 0.15 0.70

1 0 0

1 0 0

0 0 1

Pre-trained weight ()

-0.15 0.05 0.03

-0.20 0.12 0.04

-0.10 0.10 0.20

Quantization error
()

1 0.25 0.50

1 0.25 0.25

0.50 0.25 0.50

Quantized weight () - Select top 30%
- Keep unchanged

Two-word ratio 30%0.15 0.05 0.03

0.20 0.12 0.04

0.10 0.10 0.20

0 0.93 0.91

0 1.00 0.92

0.98 0.98 0

0.15 0.05 0.03

0.20 0.12 0.04

0.10 0.10 0.20

1 0.93 0.91

1 1.00 0.92

0.98 0.98 1

-0.15 0.05 0.03

-0.20 0.12 0.04

-0.10 0.10 0.20

L2-norm
regularization

-0.147 0) 0)

-0.202 0) 0)

0) 0) 0.203

Final
Fine-tuning

Softmax + Normalize

(non-trainable)
(trainable)

Figure 4. Example for our training flow (R = 30%).

…

…

…

…

…

…

…

…

+

Figure 5. Per-tile quantization example for a convolution layer.

Table 1. Networks from [9], which are the largest models using

relatively large datasets. Layers is the total number of convolution

layers and Filters is the maximum channel depth of the network.
Network Params Base Model Layers Filters Dataset

ResNetA 0.7M ResNet-18 18 128 CIFAR-100

ResNetB 2.8M ResNet-18 18 256 CIFAR-100

ResNetC 1.8M ResNet-18 10 256 ImageNet

experiments we quantize all convolution (including decon-

volution) layers. All our training was performed using Py-

Torch 1.6.0 [1] on Python 3.6 running on NVIDIA RTX

2080Ti GPU with CUDA 9.0 and cuDNN 7.3.0.

5.1. Image Classification

We use 8 CNNs from image classification, including

three modified ResNet-18 models (ResNet A, B, C), three

original ResNet models (ResNet-18, ResNet-34, ResNet-

50) [11] and two well-known light-weight models, Mo-

bileNetV2 [23] and ShuffleNetV2 [18].

ResNet A, B, and C are included to provide a direct com-

parison with the FLightNN results [9]. They are the three

largest models in their results, and we use the same setting

as in the previous work. Details of the models are sum-

marized in Table 1. The other five models are used with-

out modification, and trained with ImageNet dataset. Mo-

bileNetV2 and ShuffleNetV2 have scaling parameters for

controlling model complexity, which are set to the default

value, 1.0.

5.1.1 Training of Unmodified Models

For the five unmodified models, we used a pre-trained

weight from the Torchvision models provided by Py-

Torch [1] and used SGD (Stochastic Gradient Descent) opti-

mizer [24] with momentum 0.9 and weight decay 1e-6, and

LR (Learning Rate) is set to 1e-4 with cosine decay sched-

uler for fine-tuning cases which performing 10 epochs.

5.1.2 Training of Modified ResNet Models

For ResNet A and B, we trained the full precision (FP) base-

line models from scratch. The same training protocol was

for both A and B: a total of 200 epochs are performed using

SGD optimizer with momentum 0.9 and weight decay 5e-4.

LR started at 0.1, and gamma for LR decay is set to 0.2 and

applied to 60, 120, and 160 epoch.

ResNet C was also trained from scratch in FP, for a total

of 120 epochs. We used SGD optimizer with momentum

0.9 and weight decay 5e-4. LR started at 0.01 and we used

a step scheduler with LR gamma 0.1, which was applied to

60, 90, and 120 epoch.

746

Table 2. Quantization performance results for CIFAR-100 dataset.

For fair comparison, we manually trained baseline FP (full pre-

cision) models from scratch which have similar performance of

reference FP cases. Lx indicates latent variables for x case in

Method [9]. Our all cases have same Select Ratio 5% and Per-Tile

Quantization (PTQ) is enabled. Tile size is 16×16.

Model Method [9]
Bit Width Top-1 Storage

(W-A) (%) (MB)

ResNetA

FP 32-32 69.16 2.80

LightNN-2 8-8 68.84 0.70

LightNN-1 4-8 67.32 0.40

Fixed Point 4-8 67.67 0.40

FLightNNa La-8 68.59 0.40

FLightNNb Lb-8 68.76 0.60

Ours

32-32 (FP) 69.15 2.80

4-8 71.16 0.41

3-6 70.93 0.28

3-5 70.89 0.28

3-4 70.56 0.28

3-3 69.31 0.28

ResNetB

FP 32-32 71.22 11.20

LightNN-2 8-8 70.96 2.80

LightNN-1 4-8 69.71 1.40

Fixed Point 4-8 69.34 1.40

FLightNNa La-8 70.85 1.40

FLightNNb Lb-8 70.87 2.40

Ours

32-32 (FP) 71.20 11.20

4-8 73.43 1.43

3-6 73.37 1.12

3-5 73.21 1.12

3-4 73.14 1.12

3-3 71.62 1.12

Table 3. Quantization performance results for ImageNet dataset.

Lx indicates latent variables for x case in Method [9]. Our all cases

have the same Select Ratio 5% and Per-Tile Quantization (PTQ) is

enabled. Tile size is 16×16.

Model Method [9]
Bit Width Top-5 Storage

(W-A) (%) (MB)

ResNetC

LightNN-2 8-8 75.04 1.80

LightNN-1 4-8 72.94 0.90

FLightNNa La-8 74.80 1.50

FLightNNb Lb-8 75.00 1.70

Ours

32-32 (FP) 79.52 3.79

4-8 79.76 1.52

3-6 79.71 1.27

3-5 79.39 1.27

3-4 78.02 1.27

3-3 74.93 1.27

5.2. Image Enhancement

Image enhancement and semantic segmentation require

higher-precision activation compared with image classifi-

cation, thus can be a better fit with logarithmic quantiza-

tion. For image enhancement, we use the SID network [2],

which adopts U-Net [22] as the default backbone architec-

ture. The U-Net model is an encoder-decoder network con-

sisting of 19 convolutional layers and 4 deconvolutional lay-

ers. We use the Sony dataset, which is a set of images taken

at 4240×2832 resolution through the Sony α7S-II camera

that has a full-frame Bayer sensor. It has three categories ac-

cording to the exposure time, which contain 1190, 699, and

808 images each, for a total of 2697 images. 10% of these

images selected randomly are used as the validation set.

For training, we used the pre-trained weight and train-

ing protocol published by the authors. We used Adam op-

timizer [14] with momentum 0.9 and input is randomly

cropped to 512×512 in each training iteration. We set the

LR to 1e-5 for fine-tuning.

5.3. Semantic Segmentation

We used the network (and the pre-trained weight) from

DeepLabV3+ [4], which has various backbone CNN en-

coder options. We chose ResNet-101, MobileNetV2 and

DRN [25] as our baseline encoders. We fine-tuned those

model variations with the PASCAL VOC 2012 [10] dataset,

which provides annotations for 20 foreground objects and

one background class as well as 10582 images for training

and 1449 images for validation.

We followed the training protocol from [3] and the poly

learning scheduler from [20] with the LR 7e-4, cropped to

513×513 with batch normalization layers [12], which ran

for 10 epochs for fine-tuning.

6. Experimental Results

6.1. Comparison with FLightNN

To compare with FLightNN [9], the state-of-the-art

training method for STLQ, we use the three modified

ResNet models. First, since there is no official pre-trained

weight, we prepared baseline models through scratch train-

ing (see Section 5.1). For fair comparison, we confirmed

that the baselines have almost the same performance as the

FLightNN’s. All our results are fine-tuned by adding 10

epochs to the end point of the baseline training and gamma

for LR is 1.0. In addition, we applied 5% select ratio and

enabled Per-Tile Quantization (PTQ) in all cases.

In Table 2 and Table 3, we compared the results at the

same bit precision as of FLightNN, as well as lower preci-

sion settings. In the tables, FP means floating-point, Fixed

Point linear quantization, and Storage the capacity to be

stored as an actual model file, which is the metric used in

the previous work (LightNN models are a previous version

of FLightNN).

The table clearly indicates that our method performs sig-

nificantly better than FLightNN at the same precision set-

https://github.com/cchen156/Learning-to-See-in-the-Dark

747

Table 4. Select ratio ablation study for various applications on the validation test. We measure Top-1 accuracy of FP (full precision)

cases by PyTorch official models [1]. Quantization is applied to all convolutional layers. STLQmax (Select Ratio 100%) is the STLQ case

with all weight parameters quantized to two words. We used ImageNet [8] dataset for Image Classification, Sony dataset [2] for Image

Enhancement, and PASCAL VOC 2012 [10] for Semantic Segmentation.

Image Classification Method
Bit Width Top-1 Select Ratio Perf. Diff Params

(W-A) (%) (%) (%) (M)

ResNet-18 [11]

Baseline 32-32 (FP) 69.75 N/A 11.68

STLQmax 5-5 69.74 100 (0.01) 4.31

Proposed

5-5 69.72 15 (0.03) 1.73

3-3

69.30 15 (0.45) 1.73

69.28 10 (0.47) 1.66

69.19 5 (0.56) 1.59

ResNet-34 [11]

Baseline 32-32 (FP) 73.30 N/A 21.78

STLQmax 5-5 73.13 100 (0.17) 8.10

Proposed

5-5 73.08 15 (0.22) 3.19

3-3

73.01 15 (0.29) 3.19

72.87 10 (0.43) 3.05

72.65 5 (0.65) 2.92

ResNet-50 [11]

Baseline 32-32 (FP) 76.13 N/A 25.50

STLQmax 5-5 75.70 100 (0.43) 9.31

Proposed

5-5 75.56 15 (0.57) 3.88

3-3

74.38 15 (1.75) 3.88

74.30 10 (1.83) 3.74

74.15 5 (1.98) 3.59

MobileNetV2 [23]

(depth scale: ×1.0)

Baseline 32-32 (FP) 71.87 N/A 3.47

STLQmax 3-6 69.10 100 (2.77) 0.87

Proposed 3-6

68.92 50 (2.95) 0.73

68.80 40 (3.07) 0.70

68.55 35 (3.32) 0.69

ShuffleNetV2 [18]

(width scale: ×1.0)

Baseline 32-32 (FP) 69.36 N/A 2.26

STLQmax 3-6 66.46 100 (2.90) 0.57

Proposed 3-6

66.38 30 (2.98) 0.47

66.14 25 (3.22) 0.46

66.05 20 (3.31) 0.45

Image Enhancement Method
Bit Width PSNR Select Ratio Perf. Diff Params

(W-A) (dB) (%) (%) (M)

SID [2]

(backbone: U-Net [22])

Baseline 32-32 (FP) 28.59 N/A 7.76

STLQmax 3-6 27.80 100 (0.79) 1.94

Proposed 3-6

27.78 15 (0.81) 1.12

27.74 10 (0.85) 1.07

27.67 5 (0.92) 1.02

Semantic Segmentation Method
Bit Width mIoU Select Ratio Perf. Diff Params

(W-A) (%) (%) (%) (M)

DeepLabV3+ [4]

(backbone: ResNet-101 [11])

Baseline 32-32 (FP) 78.37 N/A 59.23

STLQmax 3-6 78.22 100 (0.15) 14.81

Proposed 3-6

78.16 15 (0.21) 10.31

78.08 10 (0.29) 10.04

77.96 5 (0.41) 9.78

DeepLabV3+ [4]

(backbone: MobileNetV2 [23])

Baseline 32-32 (FP) 71.24 N/A 5.78

STLQmax 3-7 69.14 100 (2.10) 1.45

Proposed 3-7

68.76 50 (2.48) 1.33

68.72 45 (2.52) 1.32

68.58 40 (2.66) 1.31

DeepLabV3+ [4]

(backbone: DRN [25])

Baseline 32-32 (FP) 79.16 N/A 40.68

STLQmax 3-6 79.03 100 (0.13) 10.17

Proposed 3-6

78.87 15 (0.29) 7.97

78.72 10 (0.44) 7.84

78.70 5 (0.46) 7.71

748

ting, as well as having the same level of storage (model

size). In many cases, our lower precision results are often

better than the result of the previous method, with a signifi-

cant margin. This result clearly shows the superiority of our

training method.

6.2. Ablation Study for Various Select Ratios

We used the official pre-trained weights for ablation

study, and ran fine-tuning for 10 epochs. As previously

mentioned, we did not change the training hyperparameters,

but only the scheduler option so that additional epochs can

be performed. We compare mainly against STLQmax, which

is the upper bound to our STLQ training performance.

The purpose of our training method is to optimize the

model to predetermined select ratio while maintaining a

similar level of performance as STLQmax as much as pos-

sible. Therefore, we first obtained STLQmax that has mini-

mum combination of weight-activation bits and a small per-

formance degradation from baseline. In this case, we were

able to obtain models with a performance degradation of

around 1% at weight 3-bit and activation 3-6 bit in most

applications.

However, in the case of image enhancement and se-

mantic segmentation which use relatively high-resolution

images, the minimum required activation bit was higher

(6-7 bits) while 3-bit weight was sufficient. Another phe-

nomenon is that in image classification, light-weight mod-

els [23, 18] require more activation bits as well. In this case,

6-bit activation was required even at the performance degra-

dation of up to 3%, so we selected 3-bit weight and 6-bit

activation for STLQmax.

The training results are summarized in Table 4, which

shows that our training method can often achieve perfor-

mance close to the floating-point baseline, and generally has

very small differences from the STLQmax results even at 5%

two-word ratio. One exception is the light-weight models,

which require higher two-word ratios of up to 50%. This

is caused by the depthwise separable convolution [7] layers

which already reduce the model size significantly. On the

other hand, our result on light-weight models demonstrates

that the STLQ scheme powered by our training method can

be used flexibly to handle various kinds of workloads, by

just varying the two-word ratio without changing the base

precision (3-bit).

6.3. Comparison with APoT Quantization

We also compare our training results with that of

APoT [17], which is more a novel quantizer rather than

a training method, though it also includes training tech-

niques. There are a number of differences between the two

approaches. APoT uses a customized quantizer that is a hy-

brid between linear and STLQ quantizers. Also APoT is ap-

plied to both weight and activation whereas we apply STLQ

to weight only (activation is linear quantized).

APoT (18, 5-5)
APoT (18, 4-4)

APoT (18, 3-3)

APoT (18, 2-2)

APoT (34, 5-5)

APoT (34, 4-4)

APoT (34, 3-3)

APoT (34, 2-2)

0.95

0.96

0.97

0.98

0.99

1.00

0 200 400 600 800 1000 1200

Accuracy vs. FixOPS

Ours (18, 3-3)

Ours (34, 3-3)

FixOPS (M)

Ac
cu

ra
cy

 (n
or

m
al

iz
ed

)

: ResNet-18
: ResNet-34

Figure 6. Accuracy-FixOPS comparison with APoT quantization.

Figure 6 shows the result. Since the baseline (floating-

point) accuracy of APoT is different from that of ours, we

use normalized accuracy, which is the the validation accu-

racy divided by the floating-point accuracy. The FixOPS is

the metric suggested by APoT [17]. The two-word ratio of

our models (for both) is 15%.

The graph shows that our 3-bit training results compare

favorably against APoT. In fact, our method outperforms

3-bit APoT in both accuracy and FixOPS in the case of

ResNet-18. In the case of ResNet-34, ours has slightly bet-

ter accuracy with slightly higher FixOPS.

Considering certain advantages stemming from the fact

that STLQ uses essentially the same hardware as logarith-

mic quantization hardware but is equipped with the flexibil-

ity to easily boost accuracy by modulating two-word ratio

(as partially demonstrated by our MobileNetV2 and Shuf-

fleNetV2 result), we believe that our training method for

STLQ is a very valuable contribution.

7. Conclusion

We proposed a new training method that minimizes

the overhead of current STLQ-based state-of-the-art tech-

niques [16, 9] and performs significantly better at low pre-

cision via a fully automated approach. This is enabled by

exploiting the two-word ratio constraint as well as a finer-

granularity of deciding the number of quantized words.

Through our experiments we showed that our method can

achieve the same level of performance as state-of-the-art

quantization method (APoT [17]) at 3-bit precision, in ad-

dition to performing significantly better than the previous

differentiable training-based method for STLQ. An impor-

tant advantage of STLQ is that its performance can be mod-

ulated not only by the base precision but also by the two-

word quantization ratio, which can be exploited e.g. when

designing a single hardware architecture running various

models with different levels of challenge/complexity, which

is left for future work.

749

References

[1] Pytorch: An open source machine learning frame-

work, 2020.

[2] Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun.

Learning to see in the dark. IEEE Conf. Comput. Vis.

Pattern Recog. (CVPR), 2018.

[3] Liang-Chieh Chen, George Papandreou, Florian

Schroff, and Hartwig Adam. Rethinking atrous con-

volution for semantic image segmentation. arXiv,

arXiv:1706.05587, 2017.

[4] Liang-Chieh Chen, Yukun Zhu, George Papandreou,

Florian Schroff, and Hartwig Adam. Encoder-decoder

with atrous separable convolution for semantic image

segmentation. Eur. Conf. Comput. Vis. (ECCV), 2018.

[5] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang,

Chengyong Wu, Yunji Chen, and Olivier Temam. Di-

annao: A small-footprint high-throughput accelera-

tor for ubiquitous machine-learning. Proc. 19th Int.

Conf. Archit. Support Program. Lang. Oper. Syst. (AS-

PLOS), 2014.

[6] Jungwook Choi, Zhuo Wang, Swagath Venkatara-

mani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan,

and Kailash Gopalakrishnan. Pact: Parameterized

clipping activation for quantized neural networks.

arXiv, arXiv:1805.06085, 2018.

[7] F. Chollet. Xception: Deep learning with depthwise

separable convolutions. IEEE Conf. Comput. Vis. Pat-

tern Recog. (CVPR), 2017.

[8] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and

L. Fei-Fei. ImageNet: Large Scale Visual Recognition

Challenge (ILSVRC), 2012.

[9] Ruizhou Ding, Zeye Liu, Ting-Wu Chin, Diana Mar-

culescu, and R. D. (Shawn) Blanton. Flightnns:

Lightweight quantized deep neural networks for fast

and accurate inference. Proc. of the 56th Annual

ACM/IEEE Design Automation Conference (DAC),

2019.

[10] M. Everingham, L. Van Gool, C. K. I. Williams, J.

Winn, and A. Zisserman. The PASCAL Visual Object

Classes Challenge (VOC), 2012.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition.

IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),

2016.

[12] Sergey Ioffe and Christian Szegedy. Batch normaliza-

tion: Accelerating deep network training by reducing

internal covariate shift. Proc. Int. Conf. Mach. Learn.

(ICML), 2015.

[13] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo

Son, Youngjun Kwak, Jae-Joon Han, Sung Ju Hwang,

and Changkyu Choi. Learning to quantize deep net-

works by optimizing quantization intervals with task

loss. IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),

2018.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. Int. Conf. Learn. Repre-

sent. (ICLR), 2015.

[15] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and

S. S. Wong. Lognet: Energy-efficient neural networks

using logarithmic computation. IEEE International

Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), 2017.

[16] Sugil Lee, Hyeonuk Sim, Jooyeon Choi, and Jongeun

Lee. Successive log quantization for cost-efficient

neural networks using stochastic computing. Proc. of

the 56th Annual ACM/IEEE Design Automation Con-

ference (DAC), 2019.

[17] Yuhang Li, Xin Dong, and Wei Wang. Additive

powers-of-two quantization: An efficient non-uniform

discretization for neural networks. Int. Conf. Learn.

Represent. (ICLR), 2020.

[18] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and

Jian Sun. Shufflenet v2: Practical guidelines for effi-

cient cnn architecture design. Eur. Conf. Comput. Vis.

(ECCV), 2018.

[19] Daisuke Miyashita, Edward H. Lee, and Boris Mur-

mann. Convolutional neural networks using loga-

rithmic data representation. CoRR, abs/1603.01025,

2016.

[20] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han.

Learning deconvolution network for semantic seg-

mentation. Int. Conf. Comput. Vis. (ICCV), 2015.

[21] Antonio Polino, Razvan Pascanu, and Dan Alistarh.

Model compression via distillation and quantization.

arXiv, arXiv:1802.05668, 2018.

[22] O. Ronneberger, P. Fischer, and T. Brox. U-net: Con-

volutional networks for biomedical image segmenta-

tion. Proc. Int. Conf. Med. Image Comput. Comput.-

Assist. Intervent (MICCAI), 2015.

[23] Mark Sandler, Andrew G. Howard, Menglong Zhu,

Andrey Zhmoginov, and Liang-Chieh Chen. Inverted

residuals and linear bottlenecks: Mobile networks for

classification, detection and segmentation. IEEE Conf.

Comput. Vis. Pattern Recog. (CVPR), 2018.

[24] Ilya Sutskever, James Martens, George Dahl, and Ge-

offrey Hinton. On the importance of initialization and

momentum in deep learning. Proc. Int. Conf. Mach.

Learn. (ICML), 2013.

[25] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser.

Dilated residual networks. IEEE Conf. Comput. Vis.

Pattern Recog. (CVPR), 2017.

750

[26] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye,

and Gang Hua. Lq-nets: Learned quantization for

highly accurate and compact deep neural networks.

Eur. Conf. Comput. Vis. (ECCV), 2018.

751

