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Abstract

We address the problem of weakly-supervised seman-

tic segmentation (WSSS) using bounding box annotations.

Although object bounding boxes are good indicators to

segment corresponding objects, they do not specify ob-

ject boundaries, making it hard to train convolutional neu-

ral networks (CNNs) for semantic segmentation. We find

that background regions are perceptually consistent in part

within an image, and this can be leveraged to discriminate

foreground and background regions inside object bounding

boxes. To implement this idea, we propose a novel pool-

ing method, dubbed background-aware pooling (BAP), that

focuses more on aggregating foreground features inside the

bounding boxes using attention maps. This allows to ex-

tract high-quality pseudo segmentation labels to train CNNs

for semantic segmentation, but the labels still contain noise

especially at object boundaries. To address this problem,

we also introduce a noise-aware loss (NAL) that makes the

networks less susceptible to incorrect labels. Experimen-

tal results demonstrate that learning with our pseudo la-

bels already outperforms state-of-the-art weakly- and semi-

supervised methods on the PASCAL VOC 2012 dataset, and

the NAL further boosts the performance.

1. Introduction

Semantic segmentation is one of the fundamental tasks

in computer vision, and has received a lot of attention over

the last decades. It aims at assigning a semantic label to

each pixel, which can be leveraged to various applications

including scene understanding, autonomous driving, image

editing, and robotics. Supervised methods based on convo-

lutional neural networks (CNNs) [5, 40, 47] have achieved

remarkable success in semantic segmentation, but they re-

quire lots of training samples with pixel-level labels, which

are extremely labor-intensive to annotate, to train networks.

∗Corresponding author.
1For MCG, we compute intersection-over-union (IoU) scores using

pairs of segment proposals and bounding boxes, and choose the best one

for each box.

Input image. Ground truth. Ours. Ours∗.

GrabCut [48]. MCG1 [44]. WSSL [42]. SDI [27].

Figure 1: Visual comparison of pseudo ground-truth labels. Our

approach generates better segmentation labels than other WSSS

methods using object bounding boxes (WSSL [42] and SDI [27]).

Hand-crafted methods (GrabCut [48] and MCG [44]) fail to seg-

ment object boundaries. Ours∗: Ours with an indication of unreli-

able regions. Best viewed in color.

Weakly-supervised semantic segmentation (WSSS) has re-

cently been introduced to exploit a weak form of super-

visory signals such as image-level labels [11, 14, 22, 28,

32, 56, 60], points [3], scribbles [35, 53, 54], and ob-

ject bounding boxes [8, 27, 42, 52]. WSSS methods us-

ing image-level labels typically leverage class activation

maps (CAMs) [63], obtained from CNNs for image clas-

sification using global average pooling (GAP), to localize

objects. Since CAMs tend to highlight discriminative parts,

these methods more or less resort to off-the-shelf saliency

detectors [13, 21, 24, 33, 57]. This, however, requires ad-

ditional pixel-level ground-truth annotations for salient ob-

jects. Other approaches attempt to exploit object bounding

boxes. They are easy to annotate compared to pixel-level

labels and provide rich semantics to localize objects. The

object bounding boxes, however, contain a mixture of fore-

ground and background, and do not specify exquisite object

boundaries. To overcome this, recent approaches [8, 27, 31]

use off-the-shelf segmentation methods [44, 48].

We introduce a simple yet effective WSSS method us-

ing bounding box annotations. In particular, we investi-

gate two aspects of this problem – How can we gener-

ate high-quality but possibly noisy pixel-level labels (i.e., a

pseudo ground truth) from object bounding boxes (Fig. 1)?

How can we train CNNs for semantic segmentation (e.g.,
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DeepLab [5, 6]) with noisy segmentation labels? Motivated

by the methods using image-level labels [1, 22, 32, 55, 56],

for the first aspect, we leverage a CNN for image classifica-

tion, instead of exploiting off-the-shelf segmentation meth-

ods (e.g., [44, 48]). To this end, we propose a background-

aware pooling (BAP) method using an attention map, en-

abling discriminating foreground and background inside

the bounding boxes. This allows to aggregate features

within a foreground for image classification, while dis-

carding those for a background, resulting in more accu-

rate CAMs, rather than mainly highlighting the most dis-

criminative parts (e.g., faces in the person class) as in

GAP [36, 63]. Specifically, we retrieve background regions

inside the bounding boxes, based on our finding that back-

ground regions are perceptually consistent in part within an

image. This provides attention maps for the background

regions adaptively for individual images. We exploit the

attention maps and CAMs, together with prototypical fea-

tures, to generate pseudo ground-truth labels. For the sec-

ond one, we introduce a noise-aware loss (NAL) to train

CNNs for semantic segmentation that makes the networks

less susceptible to incorrect labels. Specifically, we exploit

a confidence map, using the distances between CNN fea-

tures for prediction and classifier weights for semantic seg-

mentation, to compute a cross-entropy loss adaptively. Ex-

perimental results demonstrate that our approach to using

BAP already outperforms the state of the art on the PAS-

CAL VOC 2012 dataset [10], and the NAL further boosts

the performance. We also demonstrate the effectiveness of

our approach by extending it to the task of instance seg-

mentation on the MS-COCO dataset [38]. We summarize

the contributions of our work as follows:

• We introduce a novel pooling method for WSSS, dubbed

BAP, that uses bounding box annotations, allowing to

generate high-quality pseudo ground-truth labels.

• We propose a NAL exploiting the distances between

CNN features for prediction and classifier weights for se-

mantic segmentation, lessening the influence of incorrect

labels.

• We set a new state of the art on the PASCAL VOC 2012

dataset for weakly- and semi-supervised semantic seg-

mentation. We also provide an extensive experimental

analysis with ablation studies.

Our code and models are available online: https://

cvlab.yonsei.ac.kr/projects/BANA.

2. Related work

WSSS using image-level labels. Image-level labels have

been used for WSSS as an alternative to dense pixel-level

annotations. However, they indicate the presence or absence

of objects of a particular class only, and do not provide any

information for the location of objects, making the problem

extremely challenging. The seminal work of [63] proposes

CAMs to estimate coarse localization maps for objects or

actions by using a CNN trained with the image-level la-

bels. Since then, several WSSS methods exploit CAMs

to generate a pseudo ground truth, which is used to train

CNNs for semantic segmentation in a supervised manner,

by propagating them with DenseCRF [23, 28, 49, 60], using

a stochastic inference [32], incorporating a self-supervised

task [4], or alternatively mining and erasing object-related

regions [22, 34, 55, 56]. These approaches enlarge initial

CAMs, typically activated on the most discriminative parts,

progressively to cover entire objects, but this may highlight

the regions irrelevant to objects (e.g., a background). To

address this problem, off-the-shelf saliency detectors [13,

21, 24, 33, 57] and/or segment proposals [7, 44] have been

used, but they require calibrating saliency/objectness scores

carefully. SSNet [59] proposes to learn WSSS and saliency

detection jointly with a unified network architecture, but

it requires ground-truth saliency annotations. Unlike these

methods using image-level labels, we require no external

models nor ground-truth saliency annotations. Recently,

SeeNet [22] proposes to use background regions for WSSS.

It defines a background explicitly using CAMs whose val-

ues are below a threshold, and prevents spreading CAMs

into the background. Our work is similar to SeeNet in that

both exploit the background regions. Differently, we define

the background regions implicitly using a nonparametric re-

trieval technique, with an assumption that the background

is perceptually consistent in part within an image. We then

leverage them to design a new pooling method and to gen-

erate pseudo ground-truth labels.

WSSS using bounding box labels. An alternative ap-

proach for WSSS is to exploit object bounding boxes as a

supervisory signal. They are easy to annotate compared to

pixel-level labels (e.g., annotating boxes is about 15 times

cheaper than labeling pixel-wise segments [38]), and pro-

vide a definite background with the extent of each ob-

ject. In this context, recent methods [8, 27, 31, 42, 52]

close the performance gap between weakly-supervised and

fully-supervised methods. For example, BoxSup [8] em-

ploys MCG [44] to generate candidate segments and uses

object bounding boxes to update the segments iteratively

along with network parameters. WSSL [42] adopts Dense-

CRF [29] to generate pseudo segmentation labels using

bounding boxes, and proposes an expectation-maximization

algorithm to refine the labels. SDI [27] argues that gen-

erating correct pseudo labels is a crucial step for the per-

formance of WSSS, and proposes to use GrabCut [48] and

MCG to estimate the labels. We also advocate the impor-

tance of high-quality pseudo labels for WSSS, but exploit a

classification network, similar to the methods using image-
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Figure 2: Overview of image classification using BAP. We first extract queries qj using a feature map f and a binary mask M indicating

a definite background. The queries qj are then used to compute an attention map A describing the likelihood that each pixel belongs to a

background. The attention map enables localizing entire foreground regions, leading to better foreground features ri. Finally, we apply a

softmax classifier w to the foreground features ri for each bounding box together with the queries qj . The entire network is trained with a

cross-entropy loss. See text for details (Sec. 3.1). Best viewed in color.

level labels, instead of exploiting the off-the-shelf segmen-

tation methods [44, 48] or additional datasets [2].

Learning from noisy labels. Several methods have been

proposed for correcting or filtering out noisy labels, e.g.,

[25, 41, 46, 50, 61] to name a few. We refer to [15] for

a comprehensive review. In the context of WSSS, pseudo

ground-truth labels generated by a weak form of supervi-

sory signals are not accurate compared to manual anno-

tations, making the task much more difficult. To allevi-

ate the influence of noisy segmentation labels, SDI [27]

discards regions whose labels obtained by MCG [44] and

GrabCut [48] are different, to train a network. Similarly,

the work of [12] exploits multiple pseudo labels that might

complement each other. This work, however, requires 12

different pseudo labels obtained from two classification net-

works. By contrast, we generate two pseudo labels with a

negligible overhead. Recently, BCM [52] introduces a fill-

ing rate constraint. It filters out incorrectly labeled pixels,

based on the mean percentage of foreground pixels within

bounding boxes of each object class. Box2Seg [31] also

uses the filling rate constraint to regularize a class-specific

attention map. The attention map is then used to modu-

late a cross-entropy loss to handle incorrect labels. These

approaches [31, 52] outperform other methods, but require

a pre-training stage to stabilize the training and use addi-

tional parameters to compute losses, which is in contrast to

our NAL.

3. Approach

Our approach mainly consists of three stages: First, we

train a CNN for image classification using object bound-

ing boxes (Fig. 2). We use BAP leveraging a background

prior, that is, background regions are perceptually consis-

tent in part within an image, allowing to extract more accu-

rate CAMs. To this end, we compute an attention map for a

background adaptively for each image. Second, we gener-

ate pseudo segmentation labels using CAMs obtained from

the classification network together with the background at-

tention maps and prototypical features (Fig. 3). Finally,

we train CNNs for semantic segmentation with the pseudo

ground truth but possibly having noisy labels. We use a

NAL to lessen the influence of the noisy labels. In the fol-

lowing, we describe a detailed description of each stage.

3.1. Image classification using BAP

Our classification network consists of a feature extrac-

tor and a (L + 1)-way softmax classifier (L object classes

and the background class). Given an input image, the fea-

ture extractor outputs a feature map f . We denote by B =
{B1, B2, . . . , BK} a set of object bounding boxes in the

input image, where K is the number of bounding boxes, re-

sized w.r.t. the size of the feature map f correspondingly

using nearest-neighbor interpolation. We denote by M a

mask indicating a definite background (i.e., the regions out-

side the bounding boxes), where M(p) = 1 if the position p

does not belong to any bounding boxes, and M(p) = 0 oth-

erwise.

Background attention map. Separating foreground and

background regions inside object bounding boxes allows

the classifier to focus more on learning foreground objects.

As will be seen in our experiments, this results in bet-

ter CAMs localizing entire objects. However, the object

bounding boxes contain a mixture of foreground and back-

ground, and do not provide any information about object

boundaries. To discriminate foreground and background

regions for each bounding box, we pose this problem as

a retrieval task. Specifically, we divide the feature map f
into N × N regular grids. We denote by G(j) each grid

cell, where 1 ≤ j ≤ N2. Note that we ignore invalid cells

that do not overlap with the definite background regions at

all, (i.e., the cells inside object bounding boxes), suggesting

that each input image could have different numbers of valid

grid cells, at most N2. We then aggregate features for in-

dividual grid cells, and use them as queries for retrieval as
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follows:

qj =

∑

p∈G(j)

M(p)f(p)

∑

p∈G(j)

M(p)
. (1)

That is, we obtain individual queries qj by computing

a weighted average of features f on corresponding grid

cell G(j) using the binary mask M . Given the queries, we

retrieve the background regions inside the bounding boxes,

and obtain an attention map A as follows:

A(p) =
1

J

∑

j

Aj(p), (2)

where J is the number of valid grid cells and

Aj(p) =

{

ReLU
(

f(p)
‖f(p)‖ ·

qj
‖qj‖

)

,p ∈ B

1 ,p /∈ B
. (3)

We denote by ‖ · ‖ L2 normalization. This computes cosine

similarity between features inside the bounding boxes B and

queries qj , and truncates the results into the range of [0, 1]
by the ReLU [30] function. Accordingly, the attention

map A quantifies the likelihood that each pixel inside the

bounding boxes belongs to a background. It is more likely

to be a background, as the value of the attention map A ap-

proaches to one.

BAP. We use the attention map A to aggregate foreground

features for each bounding box Bi
2 as follows:

ri =

∑

p∈Bi

(1−A(p))f(p)

∑

p∈Bi

(1−A(p))
, (4)

which corresponds to weighted average pooling, where the

weight is the probability of the point at p ∈ Bi being

a foreground. Note that it becomes GAP, when all re-

gions inside the bounding box are considered as a fore-

ground (i.e., A = 0).

Loss. We apply the (L + 1)-way softmax classifier w to

individual features for the foreground and background re-

gions (i.e., ri and qj , respectively) to train the classification

network with a standard cross-entropy loss. This enables

better distinguishing foreground objects from a background.

3.2. Pseudo label generation

We introduce two approaches, complementary to each

other, to generate pseudo ground-truth labels. First, we

leverage CAMs for each object bounding box obtained from

2We use the RoIAlign method [19] to extract features inside object

bounding boxes.

"!
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Figure 3: Generating pseudo labels. We compute u0 and uc using

a background attention map and CAMs, respectively, which are

used as a unary term for DenseCRF [29] to obtain pseudo segmen-

tation labels Ycrf. We extract prototypical features qc for each class

using the labels Ycrf, and use them as queries to retrieve high-level

features from the feature map f , from which we obtain additional

pseudo labels Yret. See text for detail (Sec. 3.2). Best viewed in

color.

the classification network using BAP. We exploit Dense-

CRF [29] with a unary term for each object class c defined

as:

uc(p) =

{

CAMc(p)
maxp(CAMc(p))

,p ∈ Bc

0 ,p /∈ Bc

, (5)

where we denote by Bc a set of bounding boxes containing

objects of the class c and

CAMc(p) = ReLU(f(p) · wc). (6)

wc is the classifier weight for the object class c. For the

background class, we use the background attention map A
as follows:

u0(p) = A(p). (7)

Note that we could also use the CAM for the background

class directly, similar to other object classes, but it high-

lights the most frequently observed regions in the dataset

during training, lessening the discriminative ability of CRF

to separate foreground and background inside the bounding

boxes. For a pairwise term, we follow other WSSS methods

that use contrast-sensitive bilateral potentials using color

values and positions as in [29]. We concatenate the unary

terms for each object class in Eq. (5) and the background in

Eq. (7), and input them to DenseCRF together with an in-

put image to obtain segmentation labels Ycrf. Second, while

the first approach using DenseCRF delineates object bound-

aries, low-level features (e.g., color and texture) in the pair-

wise term might result in incorrect segmentation labels. We

thus leverage high-level features f obtained from the clas-

sification network to complement this. Specifically, we pro-

pose to use a retrieval technique similar to BAP. We extract

a prototypical feature for each class as follows:

qc =
1

|Qc|

∑

p∈Qc

f(p), (8)
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where Qc is a set of locations labeled as the class c
in Ycrf (including the background class) and | · | indicates the

number of pixels. We use prototypical features as queries to

retrieve similar ones from the feature map f , and compute

a correlation map for each class as follows:

Cc(p) =
f(p)

‖f(p)‖
·

qc
‖qc‖

. (9)

We then obtain pseudo segmentation labels Yret by applying

the argmax function over the correlation maps Cc
3.

3.3. Semantic segmentation with noisy labels

We train DeepLab [5, 6] for semantic segmentation with

the pseudo pixel-level labels, Ycrf and Yret. We extract a fea-

ture map φ from the penultimate layer, and pass it through

a softmax classifier W 4, resulting in a (L+ 1)-dimensional

probability map H . To alleviate the influence of incorrect

labels, we exploit the regions S , where both Ycrf and Yret

give the same label, to compute the loss as follows:

Lce = −
1

∑

c |Sc|

∑

c

∑

p∈Sc

logHc(p), (10)

where Hc is a probability for the class c, and Sc is a set of

locations labeled as the class c in S . We also exploit other

regions ∼S , where Ycrf and Yret give different labels, rather

than discarding them completely as in [27]. These regions

are less reliable than S , but might contain correct labels. It

is, however, hard to determine whether the label is correct

or not. Motivated by the work of [39, 45], we assume that

a classifier weight represents a center of each class in the

feature space, suggesting that the weight can be thought of

as a representative feature for the corresponding class. We

thus distinguish the label noise by using the distances be-

tween CNN features and classifier weights. To implement

this idea, we first compute a correlation map for each class

as follows:

Dc(p) = 1 +

(

φ(p)

‖φ(p)‖
·

Wc

‖Wc‖

)

, (11)

where we denote by Wc the classifier weight for the corre-

sponding class c. We use cosine similarity as a metric with

adding one to force the correlation score to be positive. We

then compute a confidence map as follows:

σ(p) =

(

Dc∗(p)

maxc(Dc(p))

)γ

, (12)

where c∗ is a label obtained by Ycrf (i.e., c∗ = Ycrf(p)),
and γ (≥ 1) is a damping parameter. The confidence map

3We upsample uc, u0, and Cc by bilinear interpolation such that they

have the same resolution as the input image.
4Following [16, 45], we use a cosine similarity based classifier that

encourages the classifier weights to be more representative for the corre-

sponding classes. More details are given in the supplementary material.

provides the likelihood of each label being correct. The

rationale for this is that the correlation values of Dc∗(p)
and maxc(Dc(p)) will be similar, when the label c∗ is con-

fident, and vice versa. Note that we can adjust the con-

fidence values with the damping parameter γ. When γ

approaches to infinity, the values become binary, consid-

ering the most confident labels only and acting as a hard

constraint. That is, σ(p) = 1 only when Dc∗(p) =
maxc(Dc(p)), and σ(p) ≈ 0 otherwise. We exploit the

confidence map as a weighting factor to compute the cross-

entropy loss as follows:

Lwce = −
1

∑

c

∑

p∈∼Sc
σ(p)

∑

c

∑

p∈∼Sc

σ(p) logHc(p),

(13)

where we denote by ∼Sc a set of location labeled as the

class c in ∼S . Accordingly, the overall NAL is defined with

a balance parameter λ as follows:

L = Lce + λLwce. (14)

4. Experiments

In this section, we describe implementation details, and

present a detailed analysis of our method with ablation

studies. We then compare our model with state-of-the-

art WSSS methods. We obtain experimental results us-

ing PyTorch [43] with a NVIDIA Titan RTX GPU. More

results including qualitative comparisons can be found in

the supplementary material.

4.1. Implementation details

Dataset and evaluation. We use the PASCAL VOC 2012

dataset [10] consisting of 1, 464/1, 449/1, 456 samples of

21 classes (including the background class) for train, val,
and test, respectively. Following the common practice

in [8, 28, 32, 52], we use augmented 10, 582 training sam-

ples provided by [18] to train our models. We use the

mean intersection-over-union (mIoU) metric to measure the

precision of pseudo segmentation labels and segmentation

results. We obtain results for the test set on the official

PASCAL VOC evaluation server. For instance segmenta-

tion, we use MS-COCO [38] for 115K/5K/20K samples

of train, val, and test, respectively, containing 81 classes

including the background class. We use the average preci-

sion (AP) metrics to evaluate pseudo labels and segmenta-

tion results.

Classification network. We adopt the classification net-

work in AffinityNet [1], a slight modification of VGG-

16 [51] pre-trained for ImageNet classification [9], to ex-

tract the feature map f . Initially, classifier weights are sam-

pled randomly from a Gaussian distribution with zero mean

and standard deviation of 1e-2. We train the classification

network for 15 epochs with a batch size of 20 using the
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Table 1: Comparison of pseudo labels on the PASCAL VOC

2012 [10] train and val sets in terms of mIoU. Numbers in bold

indicate the best performance. We report the supervision types

with the number of annotations. For MCG [44], we manually

choose the segment proposal that gives the highest IoU score with

each bounding box. ∗: pseudo labels contain unreliable regions.

Method train val

Supervision: Image-level labels (10K)

AffinityNetCVPR’18 [1] 59.7 -

Supervision: Boxes (10K)

Box 65.4 62.2

GrabCutTOG’04 [48] 65.7 66.1

MCGPAMI’16 [44] 66.2 66.9

WSSLICCV’15 [42] 69.7 71.1

SDICVPR’17 [27] 79.7∗ 60.5∗

Ours

GAP 75.5 76.1

BAP: Ycrf w/o u0 77.0 77.8

BAP: Ycrf 78.7 79.2

BAP: Yret 70.8 69.9

BAP: Ycrf & Yret 85.3∗ 68.2∗

SGD optimizer with momentum of 0.9 and weight decay of

5e-4. Learning rates are initially set to 1e-4 and 1e-3 for the

pre-trained layers and the classifier, respectively, and they

are divided by 10 after 10 epochs. We augment the training

set with horizontal flipping, random cropping (321 × 321),

random scaling, and color jittering.

Segmentation network. For fair comparison, we ex-

ploit two models for semantic segmentation: DeepLab-

V1 (LargeFOV) [5, 6] with VGG-16 [51] and DeepLab-

V2 (ASPP) [6] with ResNet-101 [20]. We train DeepLab-

V1 (V2) for 45 (20) epochs with a batch size of 20 (10), and

adjust the learning rate using the poly schedule [6].

Hyperparameter settings. Following the experimental

protocol in [8, 42], parameters for DenseCRF [29] are cho-

sen by cross-validation on the held-out set of 100 validation

images fully-annotated. We set the grid size N to 4 for

training a classification network using BAP in order to see

diverse background queries. We empirically find that using

confident background regions in Eq. (7), that is, threshold-

ing A with 0.99, and setting N to 1 provide better results

when generating pseudo labels. We use a grid search to set

the threshold value for A and the grid size N on the same

held-out set for DenseCRF. For DeepLab, we use default

settings in [5, 6]. Other parameters are fixed to all exper-

iments (γ = 7, λ = 0.1). In the supplementary material,

we provide quantitative comparisons and more analysis on

these parameters.

4.2. Analysis

Accuracy of pseudo labels. We compare in Table 1 mIoU

scores of pseudo segmentation labels on the PASCAL VOC

2012 [10] train and val sets. Note that our pseudo label

generator can segment foreground objects given bounding

boxes, even for unseen images during training. To the base-

Table 2: Comparison of pseudo labels on the MS-COCO [38]

train set. Note that the results for ‘VOC-to-COCO’ do not use

any samples in the MS-COCO train set during training.

Method AP AP50 AP75 APS APM APL

VOC-to-COCO

BAP: Ycrf 11.7 28.7 8.0 3.0 15.0 27.1

BAP: Yret 9.0 30.1 2.8 4.4 10.2 16.2

COCO-to-COCO

BAP: Ycrf 17.2 40.5 12.5 5.9 20.4 32.2

BAP: Yret 17.2 49.7 7.6 12.0 17.1 22.5

line, we consider the bounding box itself as a foreground

object (‘Box’), which outperforms AffinityNet [1] using

image-level labels. This suggests that the bounding box

is a strong indicator for segmenting objects. WSSL [42]

using DenseCRF [29] outperforms the baseline and hand-

crafted methods [44, 48] by a considerable margin. To

validate our approach to using a classification network

with bounding boxes, we train a CNN with GAP for im-

age classification, and generate pseudo labels using CAMs

and DenseCRF (‘GAP’). We can clearly see that this ap-

proach already outperforms WSSL significantly, demon-

strating the effectiveness of our approach. GAP, however,

does not discriminate foreground and background regions

inside bounding boxes. BAP overcomes this problem, and

provides better CAMs, resulting in more accurate pseudo

labels (‘BAP: Ycrf’). Note that BAP does not introduce any

additional parameters, similar to GAP. For comparison, we

generate pseudo labels by replacing the background atten-

tion map u0 in Eq. (7) with the CAM for the background

class (‘BAP: Ycrf w/o u0’), the performance of which is

lower than ‘BAP: Ycrf’. A plausible explanation is that

the CAM for the background class highlights the most fre-

quently observed regions only. In contrast to this, the atten-

tion map u0, a by-product of our BAP, marks background

regions adaptively for individual images. We also report the

mIoU scores for the pseudo labels obtained by a retrieval

technique (‘BAP: Yret’). Although this provides worse re-

sults than ‘BAP: Ycrf’, due to the use of the low-resolution

feature map f , as will be shown later, they are complemen-

tary to each other. Note that both pseudo labels of SDI [27]

and ours (‘BAP: Ycrf & Yret’) contain unreliable regions as

shown in Fig. 1, making it hard to compare them with other

methods. ‘BAP: Ycrf & Yret’ show better results than SDI,

but this should not be considered as fair comparison since

performance would be different depending on the quantity

of unreliable regions.

Our pseudo label generator is generic in that the adaptive

attention map u0 allows to segment foreground objects for

unseen classes during training. For example, even if we do

not have a classifier weight for a novel class (see Eq. (6)),

we can exploit 1 − u0 as a class-agnostic foreground at-

tention map. To validate this, we perform a cross-dataset

evaluation in Table 2, where we generate pseudo labels on

the MS-COCO [38] train set by using the generator trained
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Input. GAP. BAP.

(a) CAMs. (b) Violin plots of filling rate.

Figure 4: (a) Visual comparison of CAMs using GAP and BAP.

Our model using BAP provides better CAMs, highlighting the en-

tire objects while suppressing irrelevant regions. (b) Comparison

of filling rate distributions on the PASCAL VOC 2012 [10] train

set. Best viewed in color.

on PASCAL VOC 2012 [10] (‘VOC-to-COCO’). For com-

parison, we train and evaluate our generator on the same

dataset (‘COCO-to-COCO’). From this table, we observe

three things: (1) VOC-to-COCO gives reasonable pseudo

labels even though it does not use any training samples of

COCO during training. This is because our model com-

putes the attention map adaptively, allowing to handle un-

seen object classes; (2) Two pseudo labels, Ycrf and Yret, are

complementary to each other. For example, Yret gives bet-

ter results for small objects, while Ycrf performs better for

large objects; (3) COCO-to-COCO provides better results,

demonstrating the flexibility of our approach.

Comparison of CAMs. To verify that our BAP improves

the quality of CAMs, we provide visual examples of CAMs

in Fig. 4(a). We can clearly see that our BAP localizes the

entire extent of objects (e.g., man’s legs in the first example)

and does not highlight the irrelevant regions (e.g., airstrip in

the third example). Quantitative comparisons of BAP and

GAP in terms of the precision of CAMs and classification

performance can be found in the supplementary material.

Comparison of filling rates. Recent methods [31, 52] show

that a filling rate, the percentage of foreground pixels in-

side the bounding box, can be a good indicator to select the

most confidence regions for back propagation. They use

GrabCut [48] to generate pseudo labels, and adopt the la-

bels from WSSL [42], respectively. The per-class filling

rates computed with these methods, however, vary signif-

icantly, and they are far from the ground truth. We show

in Fig. 4(b) examples of violin plot distributions for filling

rates. We compare the filling rates estimated by SDI [27],

WSSL, ours, and the ground truth. We can see that the fill-

ing rates generated by our pseudo labels are more closer

to the ground truth than other methods. We expect that

our pseudo labels could improve the performance of other

WSSS methods using the filling rate5.

5Since these methods [31, 52] do not provide the source code at the

time of submission, we could not perform this experiment.

Table 3: Comparison of mIoU scores using different losses for

the regions, ∼S, where Ycrf and Yret give different labels, on the

PASCAL VOC 2012 [10] val set. We provide both mIoU scores

before/after applying DenseCRF [29].

Method val

Baseline 61.8 / 67.5

w/ Entropy Regularization [17] 61.4 / 67.3

w/ Bootstrapping [46] 61.9 / 67.6

w/ Lwce (Eq. (13)) 62.4 / 68.1

Input image. Ours. Ours∗. Ground truth.

Confidence maps σ.

Figure 5: Visual comparison of our pseudo labels Ycrf, the same

ones but with an indication of unreliable regions using Yret, and the

ground truth for the input image (top). Visualization of confidence

maps at (from left to right) 0, 11, 22, 33 and 45 epochs (bottom).

Best viewed in color.

NAL. We show in Table 3 mIoU scores of DeepLab-V1 [5]

using different losses for regions ∼S , where Ycrf and Yret

give different labels. To the baseline, we ignore ∼S com-

pletely as in [27]. We can see that a bootstrapping tech-

nique [46] boosts the mIoU performance slightly, while an

entropy regularization method [17] does not. Our NAL pe-

nalizes incorrect labels adaptively, achieving the best result.

This suggests that some pseudo labels in the regions ∼S
are correct and exploiting them can boost the performance.

We compare in Fig. 5 our pseudo labels with the ground

truth, and visualize an evolution of the confidence map in

Eq. (12) during training. As the input image contains two

different objects having similar color, i.e., dark stripes and

a dog, our pseudo labels Ycrf are incorrect for the stripes,

which could be, however, marked with Yret. We can also see

that our NAL assigns low confidence scores to the stripes,

while maintaining high scores for the dog’s legs.

4.3. Segmentation results

PASCAL VOC. We compare in Table 4 the mIoU perfor-

mance of our approach and state-of-the-art methods using

DeepLab-V1 [5, 6]. We can see that our model trained

with Ycrf already outperforms the state of the art by a sig-

nificant margin without altering the training scheme [5, 6].

This demonstrates that our approach to using a classification

network with bounding boxes could be a promising way to

generate a pseudo ground truth. We can also see that ex-

ploiting both labels, Ycrf and Yret, together with our NAL

further boosts the performance. We also report results for
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semi-supervised semantic segmentation. Following the ex-

perimental protocol in [8, 27, 42, 52], we use ground-truth

segmentation labels of 1, 464 images in the original train
set (13.8% of the total images). Our method again achieves

the best performance on the val and test sets.

We report in Table 5 segmentation results using

DeepLab-V2 [6]. It shows that we can achieve higher mIoU

scores with a deeper CNN. The behavior of mIoU scores

is almost the same as the one for DeepLab-V1 in Table 4.

Our model trained with Yret even outperforms BCM [52] in

this case. This suggests that our pseudo labels are more

likely to be exploited by deeper CNNs, further demon-

strating the importance of high-quality pseudo labels for

WSSS. Although Box2Seg [31] gives the best performance,

it adopts UPerNet [58] which requires a feature pyramid

network [37] (FPN), a pyramid pooling module [62] (PPM),

and additional decoders. Note that UPerNet yields perfor-

mance similar to PSPNet [62] that outperforms DeepLab-

V2 significantly.

MS-COCO. We show in Table 6 a quantitative comparison

of our models and other methods for instance segmentation.

To this end, we train Mask-RCNN [19] with our pseudo la-

bels. Since Mask-RCNN uses a binary cross-entropy loss

for each object class, we could not obtain the correlation

map in Eq. (11). We thus compute the loss for the regions S
only. For comparison, we report results of Mask-RCNN

trained with ground-truth segmentation labels. From this

table, we can see that Mask-RCNN trained with VOC-to-

COCO outperforms AISI [14], demonstrating that the gen-

eralization ability of our method. Note that AISI gener-

ates a pseudo ground truth using image-level labels, but re-

quires the instance-level saliency detector [13] trained with

ground-truth saliency annotations. Our model trained on

COCO-to-COCO outperforms the other one using VOC-to-

COCO, demonstrating again the importance of high-quality

pseudo labels (see the results in Table 2).

5. Conclusion

We have presented a novel pooling method for WSSS,

dubbed BAP, using a background prior, that discriminates

foreground and background regions inside object bounding

boxes. We have shown that our BAP allows to produce bet-

ter pseudo ground-truth labels compared to the conventional

GAP. We have proposed a NAL for training a segmentation

network, making it less susceptible to incorrect pseudo la-

bels. Finally, we have shown that our approach achieves

state-of-the-art performance on PASCAL VOC and MS-

COCO.
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Table 4: Quantitative comparison with state-of-the-art meth-

ods using DeepLab-V1 (VGG-16) [5, 6] on the PASCAL VOC

2012 [10] dataset in terms of mIoU. Numbers in bold indicate the

best performance and underscored ones are the second best.

Method val test

Supervision: Image-level labels (10K) with Saliency (3K)

SeeNetNIPS’18 [22] 61.1 60.7

FickleNetCVPR’19 [32] 61.2 61.9

OAAICCV’19 [26] 63.1 62.8

ICDCVPR’20 [11] 64.0 63.9

Supervision: Boxes (10K)

BoxSupICCV’15 [8] 62.0 64.6

WSSLICCV’15 [42] 60.6 62.2

SDICVPR’17 [27] 65.7 67.5

BCMCVPR’19 [52] 66.8 -

Ours

w/ Ycrf 67.8 -

w/ Yret 66.1 -

w/ NAL 68.1 69.4

Supervision: Boxes (9K) with Masks (1K)

BoxSupICCV’15 [8] 63.5 66.2

WSSLICCV’15 [42] 65.1 66.6

SDICVPR’17 [27] 65.8 66.9

BCMCVPR’19 [52] 67.5 -

Ours w/ NAL 70.5 71.5

Table 5: Quantitative comparison with state-of-the-art meth-

ods using DeepLab-V2 (ResNet-101) [6] on the PASCAL VOC

2012 [10] dataset in terms of mIoU. Numbers in bold indicate the

best performance and underscored ones are the second best. Con-

trary to others, Box2Seg [31] adopts UPerNet [58] that consists of

the FPN [37], the PPM [62], and three decoders. †: models using

pre-trained weights on MS-COCO [38]. ∗: models using 10% of

the total images with ground-truth segmentation labels.

Method val test

Supervision: Image-level labels (10K) with Saliency (3K)

SeeNetNIPS’18 [22] 63.1 62.8

FickleNetCVPR’19 [32] 64.9 65.3

OAAICCV’19 [26] 65.2 66.4

ICDCVPR’20 [11] 67.8 68.0

Supervision: Boxes (10K)

SDI
†
CVPR’17

[27] 74.2 -

BCM
†
CVPR’19

[52] 70.2 -

Box2SegECCV’20 [31] 76.4 -

Ours†

w/ Ycrf 74.0 -

w/ Yret 72.4 -

w/ NAL 74.6 76.1

Supervision: Boxes (9K) with Masks (1K)

BCM
†
CVPR’19

[52] 71.6 -

Box2Seg∗
ECCV’20

[31] 83.1 -

Ours† w/ NAL 78.7 79.4

Table 6: Quantitative comparison for instance segmentation on

the MS-COCO [38] test set.

Method AP AP50 AP75 APS APM APL

Mask-RCNN [19] 35.7 58.0 37.8 15.5 38.1 52.4

AISI [14] 13.7 25.5 13.5 0.7 15.7 26.1

Ours (‘VOC-to-COCO’) 16.9 38.2 13.0 7.3 17.1 26.5

Ours (‘COCO-to-COCO’) 22.2 47.1 18.7 11.2 22.1 31.4
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