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Abstract

In this paper we study structure from motion problems

for 1D radial cameras. Under this model the projection of

a 3D point is a line in the image plane going through the

principal point, which makes the model invariant to radial

distortion and changes in focal length. It can therefore ef-

fectively be applied to uncalibrated image collections with-

out the need for explicit estimation of camera intrinsics.

We show that the reprojection errors of 1D radial cam-

eras are examples of quasiconvex functions. This opens up

the possibility to solve a general class of relevant recon-

struction problems globally optimally using tools from con-

vex optimization. In fact, our resulting algorithm is based

on solving a series of LP problems. We perform an extensive

experimental evaluation, on both synthetic and real data,

showing that a whole class of multiview geometry problems

across a range of different cameras models with varying

and unknown intrinsic calibration can be reliably and ac-

curately solved within the same framework. 1

1. Introduction and Related Work

Quasiconvexity in 3D reconstruction problems have

been studied since the work of [18]. The paper made the

crucial observation that with the pinhole projection, each

residual has convex sublevel sets. Since this property is

preserved by the max operation, it was proposed to solve

the triangulation problem by minimizing the maximal resid-

ual (the L∞-norm) rather than the least squares error. The

above mentioned paper works with regular pinhole cameras

P
3 → P

2. However, cameras with radial distortion intro-

duce a mapping that is not projective, see Figure 1, and

hence they have to be pre-calibrated and their corresponding
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Alice Wallenberg Foundation and an ETH Zurich Postdoctoral Fellowship.

Figure 1. Radial distortion of an image. Image points move along

lines going through the principal point.

images undistorted before we can apply the above frame-

work. In this paper we instead study the 1D radial camera

model that is invariant to changes in focal length and radial

distortion [42]. The model encompasses any radially sym-

metric camera, which includes most camera types (e.g., pin-

hole, fisheye and catadioptric cameras). We show that this

model also belongs to the quasiconvex framework, which

opens up the possibility to solve a class of 3D reconstruc-

tion problems with unknown and varying focal length and

radial distortion parameters, while still being able to guar-

antee global optimality of the obtained solution.

In [20, 22, 24], the work of [18] for triangulation was ex-

tended to a more general class of optimization problems in

multiple view geometry. Some of the problems addressed

within the same framework were triangulation, homogra-

phy estimation, camera resectioning. In addition to study-

ing the standard pinhole residual, the above papers showed

how to handle angular errors as well as covariance weighted

distance measures. In followup works the theory has been

generalized to 1D cameras [12] and triangulation of pla-

nar structures [35]. The perhaps most interesting prob-

lem of this class is the so called known-rotation problem

[40, 22, 46] where the orientation part of the camera is as-

sumed to be known and optimization is performed over the

positions of both the cameras and the 3D points. The abil-

ity to reliably solve this large scale problem lead to a new

class of non-sequential methods [31, 11, 35, 32, 5]. These

methods typically divide the reconstruction problem into
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two parts, where camera orientations are first determined

from relative rotation estimates using rotation averaging

[14, 13, 19, 31, 3, 43, 7, 16, 15] after which camera and

3D point positions are estimated. For traditional sequential

reconstruction algorithms there is a trade-off between us-

ing views that are close enough to obtain sufficiently many

matches and distant enough to obtain a stable enough geom-

etry [33]. In addition they suffer from drift [8] that needs to

be countered by running bundle adjustment multiple times

during reconstruction. The non-sequential approaches are

able to circumvent these issues since they consider all the

data simultaneously [11].

While the least squares formulation of the above prob-

lems can in general have several local minima, see [22] for

an example, one can in many cases use the L∞ formula-

tion to bound the hessian of the least squares formulation to

verify optimality of a candidate solution [17].

The downside of minimizing the maximal error is the

sensitivity to outliers stemming from mismatches. These

typically have large reprojection errors and therefore the

quality of the solution to the L∞-problem can be heavily

affected by them. On the other hand, this makes the formu-

lation efficient for outlier rejection. It can be shown [41]

that the set of residuals that take the maximal value con-

tains at least one outlier. In [34] this result was refined to

show that there is a subset of d+1 residuals, where d is the

number of unknowns of the problem, that take the maximal

value and contains at least one outlier. By searching over

subsets of size d+1 an outlier removal algorithm that works

in polynomial time can be achieved [29]. The algorithm is

however only practical for problems where d is small. For

large scale problems robust relaxations have instead been

proposed [36, 39, 45, 47, 9].

The first work to use the radial constraint was [44]. Later

multiple view geometry with these cameras was studied in

[42]. In [25] a factorization approach for simultaneously

solving for cameras and points was proposed. The approach

is based on a convex relaxation using the nuclear norm and

as such it is relatively sensitive to noise. Minimal solvers

for the absolute pose problem were presented in [26, 27]

and a non-parametric radial distortion model was presented

in [6]. In [30] the 1D radial camera was used to bootstrap

the optimization in multi-camera calibration system. In a

very recent work [28] Larsson et al. present a sequential

reconstruction pipeline using radial cameras. They show

that accurate metric solutions can be constructed from un-

ordered image collections with varying and unknown distor-

tion parameters and focal lengths. To our knowledge there

is however no prior work that has observed or utilized the

quasiconvexity of these problems.

2. Framework

2.1. 1D Radial Cameras and Objective Functions

Radial distortion is common in cameras with a wide field

of view. Under this distortion model image points are dis-

placed by rescaling their coordinates based on the distance

from the principal point, as illustrated in Figure 1. Conse-

quently, image lines going through the principal point are

invariant to radial distortion. Consider a regular pinhole

camera matrix of size 3 × 4, P = K
[
R t

]
with pose

parameters (R, t) and intrinsic calibration

K =





f fs x0

0 fγ y0
0 0 1



 , (1)

where f is the focal length, s skew and γ aspect ratio. The

principal point (x0, y0), if it is known, then the camera can

be normalized by multiplying the image points and the cam-

era matrix from the left with

N =





1 0 −x0

0 1 −y0
0 0 1



 . (2)

We can therefore assume that (x0, y0) = (0, 0). Now con-

sider a 3D point with homogeneous coordinates X which

is projected with P = K
[
R t

]
, and let the 3-vector

[
R t

]
X , which are the local camera coordinates, be de-

noted by (xcam, ycam, zcam)
The resulting projection (in regular coordinates) is

f

zcam
(xcam + sycam, γycam) . (3)

It is clear that under radial distortion this point is on

the line through the origin with the directional vector

(xcam + sycam, γycam), which is independent of the third

coordinate zcam (the depth) and the focal length f . The 1D

radial camera that projects 3D points to lines can therefore

be modeled as P2×4 = K2×2

[
R2×3 t2×1

]
, where R2×3

and t2×1 are the two first rows of R and t respectively and

K2×2 is top left 2 × 2 block of K. Comparing the expres-

sions K2×2

[
R2×3 t2×1

]
and K

[
R t

]
we see that the

difference between these models is that the third row of R

and the third entry of t is lacking in the radial camera. Since

R is a rotation its third row can easily be computed from

the first two. However, the third entry of t cannot be deter-

mined. This corresponds to a movement along the camera’s

viewing direction. Hence the radial camera model only al-

lows us to recover the location of the camera center up to

line in 3D.

2.2. Reprojection Errors

In this section we present the error function that we use

for estimation. The same residual errors were used in [28]
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but these were combined using the two-norm rather than the

max-norm that we intend to use.

Suppose that we have observed a point in the image, rep-

resented by a 2-vector x. Under the radial camera model

this point is assumed to be a sample from a line l with di-

rectional vector v given by the projection v = P2×4X . Un-

der the Gaussian noise assumption the point on the line l

that maximizes the likelihood of the measurement x is the

orthogonal projection of x onto l, which is given by vvT

‖v‖2x.

We therefore let the reprojection error be the distance be-

tween x and its projection given by

r(v) =

∥
∥
∥
∥

(

I −
vvT

‖v‖2

)

x

∥
∥
∥
∥
. (4)

Note that since this objective function is scale invariant, it is

not dependent on what particular directional vector v is used

to represent l. Also, note that the objective function has a

natural unit, namely pixels, so we do measure a distance in

the image plane.

We will further restrict the vector v to the set xT v > 0.

Geometrically this means that the angle between x and v is

less than 90◦. For noise free data x and v have either the

same (xT v > 0) or opposite (xT v < 0) directions. In case

of opposite directions we see from (3) that zcam < 0 which

means that the 3D point X is behind the camera and cannot

be visible. Figure 2 shows the geometric interpretation of

our reprojection error.

Figure 2. Geometric interpretation of the reprojection error r(v).
The constraint vTx > 0 is shown as light blue. Note that rescaling

v does not change r(v).

In what follows we will show that the residual error func-

tion is indeed an example of a quasiconvex function which

makes it possible to globally solve a class of reconstruction

problems with standard methods from convex optimization.

2.3. Quasiconvexity and Optimization

A function f on a convex set C is called quasiconvex if

its sub-level sets

Sα(f) = {v ∈ C; f(v) ≤ α} (5)

are convex for all α. From the definition it is easy to see

that such a function has non-increasing objective values on

a line segment (1− λ)v + λv∗ from an arbitrary point v to

a global minimizer v∗. Therefore, there are no strict local

minimizers other than the global ones (although the func-

tion can be constant on parts of the domain).

Optimization problems with multiple quasiconvex resid-

uals can be reliably optimized under the max-norm. The

reason is that quasiconvexity is preserved by the max oper-

ation, that is,

f(v) = max
i

fi(v) (6)

is quasiconvex on C = ∩iCi if fi is quasiconvex on Ci. In

Section 3 we describe how to optimize quasiconvex func-

tions using the so called bisection algorithm.

We now show that residual functions of the type (4) are

quasiconvex in the parameters v on the set vTx > 0. First

note that Pv :=
(

I − vvT

‖v‖2

)

is a symmetric matrix and a

projection. Therefore

r(v)2 = xTPT
v Pvx = xTPvx = ‖x‖2 −

(vTx)2

‖v‖2
. (7)

Rearranging terms gives

r(v)2 ≤ ǫ2 ⇔ (‖x‖2 − ǫ2)‖v‖2 ≤ (vTx)2. (8)

Note that if ǫ > ‖x‖ then the inequality is trivially fulfilled

for all v. Under the assumption that vTx > 0 we can equiv-

alently write

r(v) ≤ ǫ ⇔
∥
∥
∥

√

‖x‖2 − ǫ2v
∥
∥
∥ ≤ vTx. (9)

For a fixed x the above constraint is a known as a second

order cone and is well known to be convex [4].

Figure 3 shows the objective function r(v) and its level

contours. Note that without the constraint vTx > 0 the

sublevel sets are non-convex.

Figure 3. The objective function r(v) (left) when x = (1/2, 1/2)
and its level contours (right).

It is easy to show that quasiconvexity is preserved under

affine transformations. We therefore conclude this section

by noting that any function of the form r̃(u) = r(Au+ B)
is quasiconvex on xT (Au+B) > 0. In Section 4 we show a

number of multi-view geometry applications that fulfill this

condition.
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3. Optimization

In this section, a brief description of the so called bisec-

tion algorithm is given that we will use for optimization. We

are interested in solving

min
v,ǫ

ǫ (10)

s.t. f(v) ≤ ǫ, (11)

where f(v) is a quasiconvex function. If ǫ is fixed and we

only minimize over v, then we obtain a convex feasibility

problem since by definition the inequality in (11) is a con-

vex constraint. Therefore testing whether there is a solu-

tion with objective value ǫ can be solved efficiently using

standard methods. The bisection algorithm refines a lower

bound ǫl and an upper bound ǫu on the optimal ǫ by solving

a sequence of feasibility problems, see Algorithm 1. Recall

that Sǫ(f) denotes the set of solutions to the convex feasi-

bility problem f(v) ≤ ǫ, cf. (5).

Data: ǫl, ǫu
Result: ǫ, v

while ǫu − ǫl > τ do

ǫ = ǫu+ǫl
2

;

if Sǫ(f) 6= ∅ then

v ∈ Sǫ(f);
ǫu = ǫ;

else

ǫl = ǫ;

end

end

Algorithm 1: The bisection algorithm for minimizing a

quasiconvex function f .

The bisection algorithm which is known to have lin-

ear convergence is also the basis for other, computationally

more efficient variants, see [2, 10, 46]. For instance, the

Scaled Dinkelbach’s Algorithm, evaluated in [2], has super-

linear convergence.

3.1. Feasibility Tests Using Linear Programs

In case of 1D radial cameras we need to check feasibility

of constraint sets of the type (9). We will show that these

are equivalent ta a linear constraint set and therefore the

feasibility problem can be solved with linear programming.

The constraint (8) can equivalently be written

vT
(
(‖x‖2 − ǫ2)I − xxT

)

︸ ︷︷ ︸

:=M

v ≤ 0. (12)

If x = (x1, x2) we let x⊥ = (x2,−x1). The matrix xxT

has eigenvalues λ1 = ‖x‖2 and λ2 = 0 with corresponding

eigenvectors e = 1

‖x‖x and e⊥ = 1

‖x‖x⊥. Therefore the

matrix M has eigenvalues γ1 = −ǫ2 and ‖x‖2 − ǫ2 with

eigenvectors e and e⊥. Therefore M = EΓET , where E =
[
e e⊥

]
and

Γ =

(
−ǫ2 0
0 ‖x‖2 − ǫ

)

. (13)

If we let v̄ = ET v we see that (12) can be written

v̄TΓv̄ ≤ 0 ⇔ −ǫ2v̄21 + (‖x‖2 − ǫ2)v̄22 ≤ 0. (14)

Note that v̄1 = vT x
‖x‖ > 0. Solving for v̄2 gives

|v̄2| ≤

√

ǫ2

‖x‖2 − ǫ2
v̄1, v̄1 > 0, (15)

or equivalently

±vTx⊥ ≤

√

ǫ2

‖x‖2 − ǫ2
vTx, vTx > 0, (16)

which corresponds to the three linear inequality constraints.

In practice vTx > 0 is replaced by vTx > τ for some small

positive number τ . For the different applications listed in

Section 4 the v variables are linear expressions in the un-

knowns. It is therefore clear that the feasibility problem

will be a linear program for these applications.

4. Applications

In this paper we have shown that the radial reprojection

error (4) can be minimized in a quasiconvex optimization

framework. This allows us to recover globally optimal so-

lutions in a wide variety of geometric estimation problems

where the radial reprojection model is valid. In the follow-

ing sections we show some example applications where this

framework can be used.

Experimentally we focus on evaluating the approach

with respect to stability and invariance to radial distortion

and changes in focal length for a wide range of differ-

ent camera models and scene settings. In all experiments,

we use MOSEK [1] to solve the LP problems and we set

τ = 10−6 pixels in the bisection algorithm and initialize

with ǫl = 0 and ǫu = 200.

4.1. Triangulation

To determine the position of a 3D point X from projec-

tions vi = PiX for 2× 4 radial cameras Pi, i = 1, ..., n we

want to minimize

f(X) = max
i

ri(PiX) (17)

where ri(·) is the residual function (4) for point xi and

the optimization domain is over the set xT
i PiX > 0, i =
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Original images + Radial distortion + Image noise

Reproj. err. 3D err. Reproj. err. 3D err: Reproj. err. 3D err.

Reproj. err. 3D err. Reproj. err. 3D err: Reproj. err. 3D err.

Figure 4. Triangulation results with the radial camera model (blue) vs. pinhole (orange). Histograms show log of the reprojection errors

(log pixels) and log of the 3D errors (log meters). The radial camera model is invariant to the radial distortion (middle column) but is more

sensitive to image noise (right column) due to the weaker geometric constraints. Top row: Corner (7618 pts, 9 cams). Bottom row: De

Guerre (11178 pts, 35 cams).

(a) (b) (c) (d)

Figure 5. Estimated P
2
→ P transform from a grid of planar points to a images containing a calibration pattern. Green points in (a) and

(c) show matches to the grid. Red line segments show the lines obtaind from the estimated transformation in the vicinity of a match. In (b)

and (d), the undistorted images obtained from the estimated transformation are shown.

1, ..., n. Note that the back projection of an image line is a

plane in 3D. Since any three planes intersect in 3D the trian-

gulation problem can only be uniquely solved when n ≥ 3.

Figure 4 shows the result of solving the triangulation

problem on two datasets. Here we have solved for all 3D-

points that are co-visible in 4 or more views. In the left

column we show the result obtained with the original image

observations. In this case the real images are largely free of

radial distortion. The histograms show the logarithm (base

10) of the radial-reprojection error in pixels (both for the ra-

dial camera and the pinhole model) and the logarithm (base

10) of the 3D-errors (in meters). The 3D errors are com-

puted with respect to a baseline reconstruction from [11].
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In the middle column we have added synthetic radial dis-

tortion by applying the polynomial

f(r) = 1 + k1r
2 + k2r

4 + k3r
6, (18)

with (k1, k2, k3) = (−1.5, 0.75, 0.5), to the normalized im-

age coordinates. (Examples of the distorted images can be

seen in Table 1.) In the case of the radial model the recon-

struction quality is unaffected due to its invariance.

To the right we instead added synthetic noise with stan-

dard deviation 5 pixels to the real image coordinates. Be-

cause the radial model uses less data it is more sensitive

to noise and in general gives larger errors. We also note

that there is a small set of points (not shown in the 3D re-

construction) that are highly sensitive to noise giving very

inaccurate 3D positions of as much as 104 − 105 (meters).

4.2. Plane-Induced Radial Projections

If a planar object is projected into a scene under regular

perspective projection there is a homography H between

the points of the plane Xi and the corresponding points of

the image xi. To introduce invariance to radial distortion we

instead apply a 2× 3 matrix H2×3 to the homogeneous co-

ordinates of the points in the plane and interpret the result

as directional vectors of lines going through the principal

point. Note that H2×3 can be viewed as a P
2 → P

1 projec-

tion. The resulting objective function is therefore

f(H2×3) = max
i

ri(H2×3Xi), (19)

where ri(·) is the residual error corresponding to the point

xi. In Figure 5 (a) and (c) we present the results of fitting a

square grid of points to images of a calibration pattern cap-

tured by wide-field-of-view GoPro4 camera. Here the green

points are measurements and the red line segments are the

corresponding lines resulting form the projection. (For vi-

sualization purposes we only plot the part of the line which

is close to its corresponding point.) The blue point is the

principal point. Given the 2×3 homographies, the third row

and radial distortion parameters can be estimated using the

method proposed by Thirthala and Pollefeys [42]. Figure 5

(b) and (d) show the undistorted images with the estimated

parameters from this method. The full data set contained

32 images and in Figure 6 we plot the radial reprojection

errors (in pixels) over all images. We can see that the ho-

mography estimation accurately recovers the mapping from

the checkerboard to the distorted image.

4.3. Resectioning

To determine an unknown radial camera matrix P from

the projections vi = PXi of 3D points Xi, i = 1, ..., n we

minimize
f(P ) = max

i
ri(PXi) (20)

where again ri(·) is the residual for point xi and the opti-

mization takes place over the set xT
i PXi > 0, i = 1, ..., n.

Figure 6. Histogram of residuals (in pixels) when fitting a grid of

planar points to the GoPro images in Figure 5.

Note that here we are searching for a general 2 × 4 cam-

era matrix which has 7 degrees of freedom and hence we

need n ≥ 7. Such a matrix can always be factorized into

K2×2

[
R2×3 t2×1

]
where the matrices are as described in

Section 2.1. Within our quasiconvex framework it is how-

ever not possible to constrain the entries of K2×2 since this

results in additional non-convex constraints.

To evaluate the quasiconvex formulation for resection-

ing we consider three datasets (Munsterhof building, Gross-

munster and Kirchenge) captured with a DSLR camera with

a fisheye lens, which was also used in [28]. See Table 2 for

some example images. The scenes are reconstructed with

COLMAP [38] using ground truth intrinsic calibration (ob-

tained from offline calibration). From the reconstruction we

extract 2D-3D correspondences and for each image, we es-

timate a 1D radial camera. We then linearly estimate the

third row of the projection matrix as well as the focal length

(see [26, 27] for details), followed by non-linear refinement

of the reprojection error. For the refinement we use the

OpenCV Fisheye camera model (with distortion initialized

to zero) since this camera model was used in the COLMAP

reconstruction and fits the camera well. Figure 7 shows the

estimated camera positions and the distribution of the re-

projection errors. The estimated cameras align well with

the ground truth poses and the reprojection error plots show

that we can accurately self-calibrate the intrinsic parameters

by bootstrapping the optimization from the radial estimate.

4.4. SfM with Known Rotations

The most interesting problem is perhaps to determine

both camera positions ti and 3D points Xj simultaneously.

Here we minimize

f(t1, ..., tm, X1, ..., Xn) = max
ij

rij(
[
Ri ti

]
[
Xj

1

]

),

where rij(·) is the residual function (4) for image point xij

and Xj are the regular Cartesian 3D coordinates of point j.
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0 1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

Reprojection error (px)

Est. (Radial)

Est. (Full)

Ground truth

0 1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

Reprojection error (px)

0 1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

Reprojection error (px)

Figure 7. Camera resectioning with the radial camera model. The figure shows results for the three fisheye datasets (Munsterhof building,

Grossmunster and Kirchenge) considered in Section 4.3. Top: Estimated camera positions are shown in green and the ground truth in blue.

The principal axes of the radial cameras are shown as red lines. Bottom: Cumulative distribution of the reprojection errors. Note that we

accurately recover the intrinsic calibration by boostrapping the optimization with the radial camera model estimate.

While it may seem artificial to assume that the rotational

parts of the cameras are known this problem has been shown

to be useful in the context of non-sequential reconstruction

for regular pinhole models. In contrast to the previous ex-

amples this is a large scale application potentially involving

millions of variables. Hence efficient methods with opti-

mality guarantees are of interest here.

Table 1 shows the results of solving the known rota-

tion problem. The datasetsare taken from [11] and come

with 3D reconstructions which we use as ground truth. We

added synthetic radial distortion using (18) to these im-

ages and solved the problem using the radial camera for-

mulation (with rotations extracted from the provided cam-

eras). To simulate varying distortion we used (k1, k2, k3) =
σ(−1.5, 0.75, 0.5) with a random σ ∈ [0, 1]. One example

image with distortion for each data set is shown in Table 1.

Column L∞ of Table 1 shows the maximal reprojection er-

rors (orthogonal point-to-line distance). For comparison we

also report maximal reprojection errors obtained when us-

ing a regular pinhole camera on the same data.

Table 1 also shows the resulting reconstructions. Recall

that the radial camera does not have any well defined cam-

era center. Here the red lines show the viewing directions of

the camera. To evaluate the quality of these reconstructions

we registered the obtained 3D point cloud to the ground

truth reconstruction using a rigid transformation. Note that

due to the weaker camera formulation there will be points

whose 3D positions are uncertain. In order not to make

these affect the registration we use RANSAC with a rela-

tively generous threshold (0.1 times the standard deviation

of the ground truth point cloud). We then computed the 3D-

RMS errors (in meters), first with all the points, and then

only with the inliers. In general the obtained reconstruc-

tions are close to the baseline, however, there are typically a

number of points that do not make the inlier threshold. Note

that the maximal reprojection error over all these data sets

is less than 6 pixels (with image size 1296× 1936).

For completeness we also test the known rotation prob-

lem on three datasets with real radial distortion taken from

from [28]. Resulting reconstructions are shown in Table 2.

In this case the point clouds from [28] had extreme stan-

dard deviations and we therefore used a fixed threshold of

1 m for the RANSAC registration.

5. Conclusions

In this paper we have shown that the 1D radial reprojec-

tion error is a quasiconvex function. This extends previous

work to any camera with with radially symmetric distortion,

enabling globally optimal minimization of reprojection er-

rors for a more general class of cameras and reconstruction

problems by simply solving a series of LP problems. We

have presented an extensive empirical evaluation for sev-

eral different camera models showing that the approach is

reliable and provides accurate estimates of both scene ge-

ometry and camera positions despite varying and unknown

intrinsic camera calibration. This makes it possible to con-

struct structure from motion and SLAM systems based on

the presented framework.
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Corner (6558 pts, 9 cams.)

L∞ : Inlier nr: 3D-RMS (all): 3D-RMS (inliers):

Radial: 1.8 6545 0.049 0.028

Pinhole: 27.0 5631 0.137 0.065

De Guerre (10298 pts, 35 cams.)

L∞ : Inlier nr: 3D-RMS (all): 3D-RMS (inliers):

Radial: 3.7 9182 4.20 0.297

Pinhole: 37.4 6501 3.17 0.508

Round Church (36467 pts, 92 cams.)

L∞ : Inlier nr: 3D-RMS (all): 3D-RMS (inliers):

Radial: 4.6 33124 2.00 0.270

Pinhole: 83.1 21503 2.87 0.535

Sri Thendayuthapani (53505 pts, 98 cams.)

L∞ : Inlier nr: 3D-RMS (all): 3D-RMS (inliers):

Radial: 5.3 50389 3.75 0.348

Pinhole: 73.7 35298 2.57 0.735

Doge Palace Council Chamber (73110 pts, 176 cams.)

L∞ : Inlier nr: 3D-RMS (all): 3D-RMS (inliers):

Radial: 5.1 71528 1.40 0.376

Pinhole: 97.5 45828 4.02 1.087

Sri Veeramakaliamman (53176 pts, 157 cams.)

L∞ : Inlier nr: 3D-RMS (all): 3D-RMS (inliers):

Radial: 5.2 51265 8.06 2.794

Pinhole: 134.5 29437 35.85 6.222

Doge Palace Yard (39890 pts, 241 cams.)

L∞ : Inlier nr: 3D-RMS (all): 3D-RMS (inliers):

Radial: 5.4 35334 1.583 0.678

Pinhole: 91.5 28646 11.88 1.651

Table 1. Results on the known rotation formulation with synthetic and varying radial distortion.

Fisheye Facade (14411 pts, 148 cams.)

L∞ : Inlier nr: 3D-RMS (all): 3D-RMS (inliers):

Radial: 3.5 13364 70100000 0.189

Pinhole: - - - -

Munsterhof Building (27020 pts, 126 cams.)

L∞ : Inlier nr: 3D-RMS (all): 3D-RMS (inliers):

Radial: 3.16 25233 189000 0.208

Pinhole: - - - -

Grossmunster (87663 pts, 373 cams.)

L∞ : Inlier nr: 3D-RMS (all): 3D-RMS (inliers):

Radial: 3.5 85967 91200 0.105

Pinhole: - - - -

Kirchenge (120993 pts, 369 cams.)

L∞ : Inlier nr: 3D-RMS (all): 3D-RMS (inliers):

Radial: 3.2 115290 1.771 0.173

Pinhole: - - - -

Table 2. Results on the known rotation formulation with real radial distortion.
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[5] Á.P. Bustos, T.-J. Chin, A. Eriksson, and I. Reid. Visual

SLAM: Why bundle adjust? In International Conference on

Robotics and Automation (ICRA), 2019. 1

[6] F. Camposeco, T. Sattler, and M. Pollefeys. Non-parametric

structure-based calibration of radially symmetric cameras. In

International Conference on Computer Vision (ICCV), 2015.

2

[7] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert. Initializa-

tion techniques for 3D SLAM: A survey on rotation estima-

tion and its use in pose graph optimization. In International

Conference on Robotics and Automation (ICRA), 2015. 2

[8] K. Cornelis, F. Verbiest, and L. Van Gool. Drift detec-

tion and removal for sequential structure from motion algo-

rithms. IEEE Trans. Pattern Analysis and Machine Intelli-

gence (PAMI), 26(10):1249–1259, 2004. 2

[9] Y. Dai, M. He, and H. Li. Two efficient algorithms for outlier

removal in multi-view geometry using L∞ norm. In Inter-

national Conference on Image and Graphics, 2009. 2

[10] Z. Dai, Y. Wu, F. Zhang, and H. Wang. A novel fast method

for L∞ problems in multiview geometry. In European Con-

ference on Computer Vision (ECCV), 2012. 4

[11] O. Enqvist, F. Kahl, and C. Olsson. Non-sequential struc-

ture from motion. In International Conference on Computer

Vision Workshops (ICCVW), 2011. 1, 2, 5, 7

[12] O. Enqvist, F. Kahl, C. Olsson, and K. Åström. Global op-
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