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Abstract

Ever since Machine Learning as a Service emerges as a

viable business that utilizes deep learning models to gener-

ate lucrative revenue, Intellectual Property Right (IPR) has

become a major concern because these deep learning mod-

els can easily be replicated, shared, and re-distributed by

any unauthorized third parties. To the best of our knowl-

edge, one of the prominent deep learning models - Gener-

ative Adversarial Networks (GANs) which has been widely

used to create photorealistic image are totally unprotected

despite the existence of pioneering IPR protection method-

ology for Convolutional Neural Networks (CNNs). This pa-

per therefore presents a complete protection framework in

both black-box and white-box settings to enforce IPR pro-

tection on GANs. Empirically, we show that the proposed

method does not compromise the original GANs perfor-

mance (i.e. image generation, image super-resolution, style

transfer), and at the same time, it is able to withstand both

removal and ambiguity attacks against embedded water-

marks. Codes are available at https://github.com/

dingsheng-ong/ipr-gan.

1. Introduction

Intellectual Property (IP) refers to the protection of cre-

ations of the mind, which have both a moral and commer-

cial value. IP is protected under the law framework in the

form of, e.g. patents, copyright, and trademarks, which en-

able inventors to earn recognition or financial benefit from

their inventions. Ever since Machine Learning as a Service

emerges as a viable business which utilizes deep learning

(DL) models to generate revenue, different effective meth-

ods to prove the ownership of DL models have been studied

and demonstrated [1, 16, 25, 29, 30]. The application do-

mains demonstrated with these pioneering works, however,

are invariably limited to Convolutional Neural Networks

(CNNs) for classification tasks. Based on our knowledge,

the protection for another prominent DL models, i.e. Gener-
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Figure 1: Overview of our proposed GANs protection

framework in black-box setting. The idea is when a trig-

ger, xw is acted as an input, a watermarked image (e.g. with

a hexagon as the watermark) will be synthesized to claim

the ownership. Black area in the trigger noise (f : z → xw)

indicates masked values (see Sec. 3.1.1, Eq. 1).

ative Adversarial Networks (GANs) [5] that create plausible

realistic photographs is missing all together and therefore

urgently needed.

Generally, a common approach to deep neural network

IP protection is based on digital watermarks embedding

methods which can be categorized into two schools: i) the

black-box trigger-set based solutions [1, 30]; and ii) the

white-box feature-based methods [3, 6, 25]. The principle

of digital watermarking is to embed an identification infor-

mation (i.e. a digital watermark) into the network parame-

ters without affecting the performances of original DL mod-

els. In the former, the watermark is embedded in the input-

output behavior of the model. The set of input used to trig-

ger that behavior is called trigger set. The non-triviality of

ownership of a watermarked model is constructed on the

extremely small probability for any other model to exhibit

the same behavior. In the latter, the watermark is embedded

in the static content of CNNs (i.e. weight matrices) with a

transformation matrix. The ownership is verified by the de-

tection of the embedded watermarks.

For the verification process, a suspicious online model

will be first remotely queried through API calls using a spe-

cific input keys that were initially selected to trigger the
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Trained Model BER

DCGAN with X and b 0.00

DCGAN with X′ and b′ 0.00

SRGAN with X and b 0.00

SRGAN with X′ and b′ 0.00

Table 1: Top row - Bit-error rate (BER) of the trained model

using Uchida et al. method [1]. Bottom row - BER of the

model using counterfeit watermark, b′ and optimized trans-

formation matrix, X′. DCGAN is trained on CIFAR10

dataset while SRGAN is trained on DIV2K dataset.

watermark information. As such, this is a black-box ver-

ification where a final model prediction (e.g. image clas-

sification results) is obtained. This initial step is usually

performed to collect evidence from everywhere so that an

owner can identifies a suspected party who used (i.e. in-

fringed) his/her models illegally. Once the owner has suffi-

cient evidence, the second verification process which is to

extract watermark from the suspected model and compare

if the watermark is originated from the owner. This process

is a white-box verification, which means the owner needs to

have to access the model physically, and usually this second

step is gone through the law enforcement.

1.1. Problem Statement

Literally, both black-box and white-box schemes have

been successfully demonstrated for CNNs [1,16,25,29,30],

however it remains an open question to apply these protec-

tion mechanisms to important GANs variants (see [5] for

a survey). We believe, intuitively, the lack of protection

might be i) partially ascribed to the large variety of GANs

application domains, for which how to embed watermarks

through appropriate regularization terms is challenging, and

ii) directly applying the popular CNN-based watermarking

approach (i.e. Uchida et al. [25]) on GANs has limitation in

ambiguity attack as shown in Table 1. It is shown that the

ownership is in doubt as indicated by the BER results1 (i.e.

both the original b and forged b′ watermarks are detected).

1.2. Contributions

Thus, we are motivated to present a complete IP pro-

tection framework for GANs as illustrated in Fig. 1. The

contributions are twofold: i) we put forth a general IPR

protection formulation with a novel regularization term Lw

(Eq. 3) that can be generalized to all GANs variants; and

ii) we propose a novel and complete ownership verification

method for different GANs variants (i.e. DCGAN, SRGAN

and CycleGAN). Extensive experiments show that owner-

ship verification in both white and black box settings are ef-

fective without compromising performances of the original

1In general, bit-error rate (BER) measures how much the watermark

is deviated. BER=0 implies that the watermark is exactly the same as to

original, so ownership is claimed.

tasks (see Tables 3, 4, 5 and Fig. 6). At the same time, we

tested the proposed method in both removal and ambiguity

attacks scenario (see Tables 7-8 and Fig. 7-8).

2. Related Work

Conventionally, digital watermarks were extensively

used in protecting the ownership of multimedia contents, in-

cluding images [10, 23], videos [2, 19], audio [8, 13, 22], or

functional designs [18]. The first effort that propose to use

digital watermarking technology in CNNs was a white-box

protection by Uchida et al. [25], who had successfully em-

bedded watermarks into CNNs without impairing the per-

formance of the host network. It was shown that the own-

ership of network models were robustly verified against a

variety of removal attacks including model fine-tuning and

pruning. However, Uchida et al. [25] method was limited

in the sense that one has to access all the network weights

in question to extract the embedded watermarks. There-

fore, [16] proposed to embed watermarks in the classifica-

tion labels of adversarial examples, so that the watermarks

can be extracted remotely through a service API without

the need to access the network internal weights parameters.

Later, [1] proved that embedding watermarks in the net-

works’ (classification) outputs is actually a designed back-

dooring and provided theoretical analysis of performances

under various conditions.

Also in both black box and white box settings, [3, 6, 14]

demonstrated how to embed watermarks (or fingerprints)

that are robust to watermark overwriting, model fine-tuning

and pruning. Noticeably, a wide variety of deep architec-

tures such as Wide Residual Networks (WRNs) and CNNs

were investigated. [30] proposed to use three types of water-

marks (i.e. content, unrelated and noise) and demonstrated

their performances with MNIST and CIFAR10. Recently,

[9,29] proposed passport-based verification schemes to im-

prove robustness against ambiguity attacks.

However, one must note that all aforementioned existing

work are invariably demonstrated to protect CNN only. Al-

though adversarial examples have been used as watermarks

e.g. in [16], based on our knowledge, it is not found any pre-

vious work that aim to provide IP protection for GANs. The

lack of protection might be partially ascribed to the large va-

riety of GANs application domains, for which how to em-

bed watermarks through appropriate regularization terms is

challenging and remains an open question. For instance,

the generic watermarked framework proposed by Uchida et

al. [25] for CNNs could not be applied to GANs due to a

major different in the input and output of GANs against the

CNNs. Specifically, the input source for GANs can be ei-

ther a latent vector z or image(s), I rather than just image(s)

in CNN; while the output of GANs is a synthesis image(s)

instead of a classification label. Nonetheless, our prelimi-

nary results (Table 1) and Fan et al. [9] disclosed that [25]
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is vulnerable against ambiguity attacks.

Last but not least, one must differentiate a plethora of

neural network based watermarking methods, which aim

to embed watermarks or hide information into digital me-

dia (e.g. images) instead of networks parameters. For in-

stance, [21] employed two CNN networks to embed a one-

bit watermark in a single image block; [26] investigated a

new family of transformation based on deep learning net-

works for blind image watermarking; and [31] proposed an

end-to-end trainable framework, HiDDeN for data hiding

in color images based on CNNs and GANs. Nevertheless,

these methods are meant to protect the IP of processed digi-

tal media, rather than that of the employed neural networks.

3. Watermarking in GANs

GANs consists of two networks, a generative network,

G that learns the training data distribution and a discrimina-

tive network D that distinguishes between synthesize and

real samples [11]. This paper proposes a simple yet com-

plete protection framework (black-box and white-box) by

embedding the ownership information into the generator, G
with a novel regularization term. Briefly, in black-box sce-

nario, we propose the reconstructive regularization to allow

the generator to embed a unique watermark, at an assigned

location of the synthesize image when given a trigger input

(see Fig. 1). While, in white-box scenario, we adopt and

modify the sign loss in [9] that enforces the scaling factor,

γ in the normalization layer to take either positive or nega-

tive values. With this, the sign of γ can be transformed into

binary sequences that carry meaningful information.

For this work, we decided to demonstrate on three GANs

variants, namely, DCGAN [24], SRGAN [17] and Cycle-

GAN [32] to present the flexibility of our proposed frame-

work. With trivial modifications, our method can easily ex-

tend to other deep generative models, i.e. VAE, as long as

X outputs an image given a vector or image as the input.

3.1. Black­box

In general, we propose a reconstructive regularization

that instructs the generator, G to map a trigger input to a

specific output. Herein, the challenge is defining an appro-

priate transformation function to ensure that the distribution

of trigger set is distinct from the actual data. In GANs, since

the generator, G always output (synthesize) an image, the

specific output will be a watermark-based image since the

watermark (e.g. company’s logo) holds unambiguous visual

information which is straightforward to verify the owner-

ship. The detailed implementations are described below:

3.1.1 DCGAN

Technically, the input to DCGAN is a latent vector ran-

domly sampled from a standard normal distribution, z ∼

Figure 2: Image pair of the generated images using latent

inputs, G(z) (left) and trigger inputs, G(xw) (right), re-

spectively. Each pair is a DCGAN model trained on differ-

ent watermarks.

N (0, 1). Hence, we define a new input transformation func-

tion, f , that maps the latent vector to a trigger latent vector

(f : z 7→ xw) as follow:

f(z) = z ⊙ b+ c(1− b) and b ∈ {0, 1}D(z) (1)

Intuitively, Eq. 1 masks the n ∈ W value of the latent

vector, z to a constant value, c ∈ R where the position of

the n values are determined by a predefined bitmask, b and

D is the dimension.

Then, in order to transform the generator output to a spe-

cific target, we define the new output transformation func-

tion as g : G(z) 7→ yw where it will apply an unique wa-

termark on the generator output. The equation can be picto-

rially represented as:

= g



 ,



 (2)

After defining both the input/output transformation func-

tions, we define the reconstructive regularization derived

from the structural similarity (SSIM) [27] which measures

the perceived quality between two images. Since the range

of SSIM is in [0, 1], we define the regularization to optimize

as:

Lw (xw,yw) = 1− SSIM (G(xw),yw) (3)

For the experiment purpose, we have chosen Spectral

Normalization GAN (SN-GAN) [20] which is a variant of

DCGAN. Taking the generator’s objective function (Eq. 4),

we optimize the regularization term defined in Eq. 3 and the

generator’s objective function simultaneously:

LDC = −Ez∼pz(z)

[

D̂ (G (z))
]

(4)

LDCw
= LDC + λLw (5)

with the reconstructive regularization scaled by associated

hyper-parameter, λ to balance between the quality of gen-

erated image and the perceived similarity of the generated

watermark when the trigger input is provided.
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Figure 3: First image is a sample of trigger input xw to

SRGAN. Next three images are the special targets G(xw)
from SRGAN models trained on different watermarks.

3.1.2 SRGAN

SRGAN has been the foundation for most, if not all, the

recent super-resolution tasks, in which the generator of SR-

GAN takes a low resolution image, I and generate a re-

spective high resolution image. As such, the input trans-

formation function, f defined in Section 3.1.1 will not be

applicable. For that reason, we define an alternative input

transformation function, h that maps an image input to a

trigger set (h : I 7→ xw). This function is almost identical

to Eq. 2 with an exception that a random noise is embedded

on the input image, rather than a watermark. The function,

h can be visually represented as:

= h







 (6)

For the output transformation function, since the output

from all variant of GANs is the same (i.e. an image), we can

re-use g and reconstructive regularization (Eq. 3) to trans-

form the output of SRGAN to embed a unique watermark

on the generated high-resolution image. The generator loss

function composed of a content loss and an adversarial loss

and we use the VGG loss defined on feature maps of higher

level features as described in [17]:

LSR = lSR
V GG/5,4 + 10−3lSR

Gen (7)

To this end, the new objective function of our protected

SRGAN is denoted as

LSRw
= LSR + λLw (8)

3.1.3 CycleGAN

The generators in CycleGAN [32] take an image, I from

a domain as input and translate the image into a same size

image of another domain. Provided with this fact, we can

use the function h defined in Eq. 6 to map a training input

to a trigger set and consistently employ function g defined

in Eq. 2 to embed the watermark on the output image. Yet,

we use the same reconstructive regularization defined in Eq.

Figure 4: Image pairs, xw/G(xw) from different Cy-

cleGAN models trained on horse2zebra (first row) and

Cityscapes (second row) datasets, respectively

3 and add to the generator loss of CycleGAN. Even though

there are two generators in CycleGAN, we only need to se-

lect one of them as our target for protection. The objective

function of the selected generator is given as:

LGAN =Ey∼pdata(y) [logDY (y)] +

Ex∼pdata(x) [log(1−DY (x))]

LCyc =Ex∼pdata(x) [‖F (G(x))− x‖1]

LC = LGAN + LCyc (9)

Thus, the new objective for our CycleGAN is:

LCw
= LC + λLw (10)

Verification. For the verification in black-box setting,

initially, any suspected online GAN models will be queried

remotely by owner (company) via API calls to gather ev-

idence. That is to say, owner (company) submits a list of

trigger set data as query to the GANs online service that is

in question. Evidence will be collected as a proof of owner-

ship if the response output is embedded with the designated

watermark logo (see Fig. 2, 3, 4 for examples). Moreover,

the verification of the embedded watermark can be mea-

sured by calculating the SSIM between the expected output

yw and the output generated by the model G(xw), with trig-

ger input is provided, and the sample results are shown in

Fig. 7a. SSIM score reflects the perceived similarity be-

tween the generated watermark and the ground truth water-

mark and a score of above 0.75 should give an unambigu-

ous, distinctive watermark that can be used in ownership

verification (see Fig. 5).

3.2. White­box

In order to provide a complete protection for GANs, we

adopt the sign loss introduced in [9] as a designated key

(i.e. signature) which have been proven to be robust to both

removal and ambiguity attacks. Specifically, such signa-

tures are embedded into the scaling factors, γ of normaliza-

tion layers with C channels in the generators, which can be
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Figure 5: Different perceived quality of watermark and the

SSIM score respectively.

GAN Channels Capacity

DCGAN 448 56 bytes

SRGAN 2112 264 bytes

CycleGAN 5248 656 bytes

Table 2: The amount of information that can be embedded

into GAN generators.

then retrieved and decoded for ownership verification pur-

pose. Eq. 11 serves as a guidance for the sign of a weight

in the normalization layers.

Ls(γ,B) =
C
∑

i=1

max (γ0 − γibi, 0) (11)

where B = {b1, · · · , bC | b ∈ {−1, 1}} is the defined bi-

nary bit signature that, when optimize this objective, will

enforce the i-th channel’s scaling factor, γi to take either

positive or negative polarity (+/-) as designated by bi. γ0 is

a constant to control the minimum value of γ (to avoid all

0s γ).

Then, this regularization term is added to the objective

functions of DCGAN (Eq. 5), SRGAN (Eq. 8) and Cycle-

GAN (Eq. 10). To this end, the overall objective for the

generators are respectively denoted as:

LDCws
= LDC + λLw + Ls

LSRws
= LSR + λLw + Ls

LCws
= LC + λLw + Ls

With the sign loss incorporated into the training objective,

the scaling factor of normalization layers in generator are

now in either positive or negative value where the unique bi-

nary sequence can be used to resemble the ownership infor-

mation of a particular network. The capacity of embedded

information (see Table 2) is constrained by the total num-

ber of channels in normalization layers. For example in our

DCGAN model, the total number of channels for each layer

are 256, 128 and 64 respectively. Thus, we can embed at

most 448 bits, equivalent to 56 bytes into the model. As

for SRGAN, intuitively, more information can be embed-

ded as it has more layers than DCGAN model and so does

CycleGAN. The detail information is represented in supp.

material. We refer readers to Section 4.6 for superior per-

formances of the sign-loss based method, demonstrated by

extensive experiment results.

Verification. Given the evidence from black-box verifi-

cation step in Section 3.1, the owner can subsequently go

through law enforcement and perform white-box verifica-

tion which to access the model physically to extract the sig-

nature. As an example shows in our supp. material, we em-

bed an unique key ”EXAMPLE” into our DCGAN’s batch

normalization weight. It shows how to decode the trained

scale, γ to retrieve the signature embedded. Also, please

note that even that there are two or more similar alphabets,

their γ are different from each other, respectively.

4. Experimental Results

This section illustrates the empirical study of our pro-

tection framework on the GAN models. To make a dis-

tinction between the baseline models and the protected

models, we denote our proposed GAN models with sub-

script w and ws where GANw models (i.e. DCGANw,

SRGANw, CycleGANw) are the protected GANs in black-

box setting using only the reconstructive regularization,

Lw whereas GANws models (i.e. DCGANws, SRGANws,

CycleGANws) represent the protected GAN generators in

both black-box and white-box settings using both of the reg-

ularization terms, Lw and sign loss, Ls.

4.1. Hyperparameters

We strictly followed all the hyperparameters and the

architecture defined in the original works for each GAN

model. The only modification that we had made is adding

regularization terms to the generator loss. As discussed in

Section 3.1, we trained the DCGAN models using CIFAR10

dataset [15] aligned using the architecture and the loss func-

tion proposed in [20]. We used the logos shown in the top

left corner of Fig. 2 as our watermark that revealed when the

trigger input is presented as illustrated in Fig. 1. The coef-

ficient, λ is set to 1.0 for all experiments unless stated oth-

erwise. Unlike SRGAN and CycleGAN, the transformation

function, f (Eq. 1) used in DCGAN has extra parameters

n and c to consider, in which we decided to employ n = 5
and c = −10 after a simple ablation study as reported in

Section 4.7. The size of the watermark is 16×16 compared

to the generated image with resolution 32 × 32 so that the

watermark is not too small to be visible. Besides, CIFAR10,

the exactly same setting were used to train on the CUB200

dataset [28] which has a higher resolution (64× 64).

Likewise, we trained SRGAN on randomly sampled

350k images from ImageNet [7] and adopted the architec-

ture and hyper-parameters presented in [17]. In the super

resolution task, the training images are up-sized 4 times

from 24 × 24 to 96 × 96. As discussed in Section 3.1, we

used the transform function, h (Eq. 6) to paste a random

noise of size 12×12 onto the input image, at the same time,

we employed function, g (Eq. 2) to attach a watermark of

size 48× 48 onto the output image.

As for CycleGAN, we trained the model on Cityscapes

dataset [4] but only protect one of the generator (label →

3634



CIFAR-10 CUB-200

DCGAN 26.54± 1.04 58.34± 1.50
DCGANw 24.83± 0.37 53.07± 4.07
DCGANws 26.27± 0.54 56.64± 2.74

Table 3: Fidelity in DCGAN: Scores are in FID ( ↓ is better).

photo) as to prevent redundancy. Except the regularization

terms (Lw, Ls), we keep to the parameters defined in [33].

The setting is very similar to SRGAN’s with the resolution

of the random noise and watermark in 32× 32 compared to

the size of the training images in 128× 128.

4.2. Evaluation Metrics

To evaluate the generative models quantitatively, we use

a set of metrics to measure the performance of each model.

For image generation task with DCGAN, we calculate the

Frechet Inception Distance (FID) [12] between the gener-

ated and real images tested on CIFAR10 and CUB-200 as

the benchmark datasets. For image super-resolution with

SRGAN, we use PSNR and SSIM as our metrics and em-

ploy Set5, Set14, BSD100 (testing set of BSD300) as the

benchmark datasets. According to the original paper [17],

all measures were calculated on the y-channel. We per-

formed the same in order to have a fair comparison with

[17]. As for CycleGAN, we measure the FCN-scores as

presented in [33] on the Cityscapes label → photo which

consists of per-pixel acc., per-class acc. and class IoU.

The watermark quality is measured in SSIM between the

ground truth watermark image and the generated watermark

image when a trigger, xw is presented. To avoid a confu-

sion with SSIM used in SRGAN, we denote this metrics as

Qwm which implies the quality of watermark. The signa-

ture embedded into the normalization weights are measured

in bit-error rate (BER) when compared to the defined signa-

ture, B (see Eq. 11).

4.3. Fidelity

In this section, we compare the performance of each

GAN models against the GAN models protected using

the proposed framework. According to Table 3, it is ob-

served that the performances of the protected DCGAN

(i.e. DCGANw and DCGANws) are comparable or slightly

better in terms of FID score on CIFAR-10 datasets. How-

ever, there is a slightly drop in performance when trained

using CUB-200 datasets.

The difference in performances of the protected SRGAN

(i.e. SRGANw and SRGANws) and the baseline SRGAN

is subtle, where the PSNR deviates for 0.87 and SSIM de-

viates for 0.02 at most across all the datasets. Moreover,

qualitatively, we also illustrate in Fig. 6 that the perfor-

mance of our proposal does not degrade much compared to

the baseline after added regularization terms to the training

objective. Meanwhile, CycleGANw has an identical FCN-

Set5 Set14 BSD

SRGAN 29.38/0.85 25.92/0.71 25.08/0.67

SRGANw 29.35/0.85 25.46/0.71 24.21/0.65

SRGANws 29.14/0.85 26.00/0.72 25.35/0.67

Table 4: Fidelity in SRGAN: Scores are in PSNR/SSIM (↑
is better).

Per-pixel acc. Per-class acc. Class IoU

CycleGAN 0.55 0.18 0.13

CycleGANw 0.55 0.18 0.13

CycleGANws 0.58 0.19 0.14

Table 5: Fidelity in CycleGAN: Scores are in per-pixel acc.,

per-class acc. and class IoU (↑ is better).
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0.45

27.67dB
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29.97dB
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30.33dB

0.92
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Figure 6: Fidelity (SRGAN): From left to right - bicubic

upsample, output from SRGAN, SRGANw, SRGANws, re-

spectively. Scores are in (PSNR(db) / SSIM).

score with the baseline CycleGAN and CycleGANws has a

noticeable improvement. In short, adding the regularization

terms has minimal effect to the performance of the GANs

in respective tasks while it may slightly improve the perfor-

mance in some conditions.

4.4. Verification

Black-box. In this section, we will discuss the verifica-

tion process using the quality of the watermark, Qwm which

is the SSIM computed at the generated watermark with the

ground truth watermark. Table 6 and Fig. 7a shows that the

score is high (close to 1) when the trigger inputs are given

in comparison to the normal inputs. This implies that the

watermark generated is very similar to the ground truth wa-

termark (see Fig. 2, 3, 4). As a result, this provides a strong

evidence for the owner to claim the ownership to the spe-

cific GAN model as the model will output an unambiguous

logo that represent the owner.

White-box. Subsequently, if the black-box verification

does not provide convincing evidence, the next step is to

further investigate the weights of suspicious model in used.

That is, to extract the signature from the weights at the
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(a) Verification (b) Fine-Tuning (c) Overwriting

Figure 7: Distribution of watermark quality, Qwm measured

in SSIM using 500 samples. (a) shows the distributions be-

fore the removal attacks (b) shows the distributions after

fine-tuning, (c) shows the distributions after overwriting.

Qwm BER

DCGANws 0.97± 0.01 0

SRGANws 0.93± 0.10 0

CycleGANws 0.90± 0.02 0

Table 6: Quality of the watermark, Qwm and BER in DC-

GAN, SRGAN and CycleGAN.

normalization layers and convert the signatures into ASCII

characters as shown in supp. material. In this experiment,

we embed the word ”EXAMPLE” into the normalization

layers, however, in real use case, the owner can embed any

words such as company name etc. as the ownership infor-

mation. In this experiment, all of the protected GAN mod-

els has BER=0 which implies the signature embedded 100%

matches with the defined binary signature, B.

4.5. Robustness against removal attacks

Fine-tuning. Here, we simulate an attacker fine-tune the

stolen model with a dataset to obtain a new model that in-

herits the performance of the stolen model while trying to

remove the embedded watermark. That is, the host network

is initialized using the trained weights embedded with wa-

termark, then is fine-tuned without the presence of the reg-

ularization terms, i.e. Lw and Ls.

In Table 7, we can observe a performance drop (26.54

→ 30.50) when the attacker fine-tune DCGANws to re-

move the embedded watermark while the watermark qual-

ity, Qwm is still relatively high (0.92) indicates that the wa-

termark generated is still recognizable, further supported by

Fig. 7c which shows the distribution of Qwm after fine-

tuning has no obvious changes. We also observe the same

behaviour when fine-tuning SRGANws and CycleGANws

in which the performance is slightly declined (see Tables 8

and 9). Qualitatively, we also can clearly visualize that the

watermark before and after the fine-tuning is well preserved

for all the GAN models. Empirically, this affirms that our

method is robust against removal attempt by fine-tuning as

the attempt is not beneficial and failed in removing the em-

bedded watermark.

Overwriting. We also simulate the overwriting scenario

where the attacker is assumed to embed a new watermark

into our trained model using the same method as proposed.

FID Qwm BER

DCGANws 26.54± 1.04 0.97 0

Fine-tune 30.50± 1.10 0.96 0

Overwrite 35.68± 1.10 0.49 0

Table 7: First row is the FID scores, watermark quality,

Qwm and BER for DCGANws. Second row shows the

scores after fine-tuning and third row shows the scores after

overwriting attack.

Set5 Set14 BSD Qwm BER

SRGANws 29.14/0.85 26.00/0.72 25.35/0.67 0.93 0

Fine-tune 26.07/0.85 23.75/0.72 23.58/0.68 0.83 0

Overwrite 27.65/0.84 25.08/0.72 24.66/0.68 0.17 0

Table 8: First row is the PSNR/SSIM scores, watermark

quality, Qwm and BER for SRGANws. Second row shows

the scores after fine-tuning and third row shows the scores

after overwriting attack.
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Figure 8: From left to right shows the performance of DC-

GAN, SRGAN, CycleGAN when different percentage (%)

of the sign(γ) is being modified (compromised).

Per-pixel acc. Per-class acc. Class IoU Qwm BER

CycleGANws 0.58 0.19 0.13 0.90 0

Fine-tune 0.55 0.18 0.14 0.85 0

Overwrite 0.57 0.17 0.13 0.15 0

Table 9: First row is the FCN-scores, watermark quality,

Qwm and BER for CycleGANws. Second row shows the

scores after fine-tuning and third row shows the scores after

overwriting attack.

Tables 7, 8, 9 show the results of the attempt. Although

we can notice the proposed method is being compromised

(i.e. Qwm drops in all 3 GAN models), the performance

has also worsened explicitly. However, if we ever met such

condition, we can still claim the ownership by further in-

vestigate the normalization layers and retrieve the signature

embedded into the weights since the signature remains in-

tact in all sort of removal attacks (see next).

4.6. Resilience against ambiguity attacks

Through Tables 7, 8 and 9, we can observe that the em-

bedded signature remains persistent even after removal at-

tacks such as fine-tuning and overwriting as the BER re-

mains 0 throughout the experiments. Thus, we can conclude

that enforcing the sign in defined polarity using sign loss is
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Figure 9: Image pairs from left to right is GANws with 0%

and 10% of the total signs were being randomly toggle.

rather robust against diverse adversarial attacks.

We also simulated a scenario of an insider threat where

the watermark and scale signs were exposed completely. As

shown in Fig. 8, it shows that the FID of DCGANws in-

creases drastically (from 26 → 91) and SSIM of SRGANws

drops, despite only 10% of the signs are modified. Qualita-

tively, Fig. 9 clearly shows the quality of the generated im-

ages is badly deteriorated when the signs are compromised.

This is same for SRGANws and CycleGANws where the

quality of the generated SR-images and (label → photo)

images are very poor in quality where obvious artefact is

observed even the signature signs are modified at only 10%.

In summary, we can deduce that the signs enforced in

this way remain rather persistent against ambiguity attacks

and attackers will not be able to employ new (modified)

scale signs without compromising the GANs performance.

4.7. Ablation Study

4.7.1 Coefficient λ.

The coefficient, λ is multiplied to the reconstructive regu-

larizing term, Lw to balance between the original objective

and the quality of generated watermark. We perform an ab-

lation study and from Table 10, we show that when λ is

low (0.1), the FID score is at the lowest, meaning the GAN

model has a very good performance in the original task. Op-

positely, when λ is set to very high (10.0), the quality of the

watermark, Qwm is at the best, but the FID score is the low-

est along the spectrum. However, qualitatively, it is hardly

to visualize this. As a summary, there is a tradeoffs between

GAN model performance and the watermarking quality. We

find that λ = 1.0 is reasonable as the quality of watermark

is relatively good without hurting the performance of the

original task too much.

4.7.2 n vs. c.

This experiment investigates the effects of different n and c
settings to the original DCGAN performance (measured in

FID) and the quality of the generated watermark (measured

in SSIM). We conclude that setting n = 5 and c = −10
perform the best (See Table 11) in terms of quality of both

generated image and watermark, however, the choice can

be vary depends on the situation. Notice that it performs

λ 0.1 0.5 1.0 5.0 10.0

FID 25.88 26.57 28.19 32.46 47.38

Qwm 0.926 0.956 0.965 0.979 0.982

Table 10: λ vs. GAN performance measured in FID and

quality of the generated watermark measured in SSIM. Im-

age pairs from left to right is λ=0.1; λ=1.0 and λ=10.

❍
❍
❍
❍
❍

n
c

-10 -5 0 +5 +10

5
26.05 26.37 276.36 25.98 26.19

0.961 0.960 0.367 0.953 0.958

10
28.35 27.49 332.88 26.18 27.11

0.958 0.953 0.338 0.956 0.956

15
25.51 26.85 316.78 27.27 26.24

0.954 0.945 0.343 0.951 0.953

Table 11: Effect of n and c to model’s performance in terms

of FID (above) and the quality of generated watermark mea-

sured in SSIM (below).

the worst when setting c = 0 and the performance increases

when the magnitude of c increases, moving away from 0.

This effect explains the reason why the trigger input set

must have a very different distribution from the training

data. For DCGAN, the training input has a normal distri-

bution of µ = 0, and setting c to 0 will not change the dis-

tribution, thus causing confusion between the normal input

and trigger input.

5. Discussion and Conclusion

This paper illustrates a complete and robust ownership

verification scheme for GANs in black-box and white-box

settings. While extensive experiment results are conducted

for three representative variants i.e. DCGAN, SRGAN and

CycleGAN, the formulation lay down is generic and can

be applied to any GAN variants with generator networks as

the essential component. Empirical results showed that the

proposed method is robust against removal and ambiguity

attacks, which aim to either remove existing watermarks or

embed counterfeit watermarks. It was also shown that the

performance of the model’s original tasks (i.e. image gen-

eration, super-resolution and style transfer) were not com-

promised. The importance of this work, in our view, can be

highlighted by numerous disputes over IP infringements be-

tween giant and/or startup companies, which are now heav-

ily investing substantial resources on developing new DNN

models. We hope that the ownership verification for GANs

will provide technical solutions in discouraging plagiarism

and, hence, reducing wasteful lawsuit cases.
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