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Abstract

Real-world scenes have a dynamic range of up to 280 dB

that todays imaging sensors cannot directly capture. Exist-

ing live vision pipelines tackle this fundamental challenge

by relying on high dynamic range (HDR) sensors that try to

recover HDR images from multiple captures with different

exposures. While HDR sensors substantially increase the

dynamic range, they are not without disadvantages, includ-

ing severe artifacts for dynamic scenes, reduced fill-factor,

lower resolution, and high sensor cost. At the same time,

traditional auto-exposure methods for low-dynamic range

sensors have advanced as proprietary methods relying on

image statistics separated from downstream vision algo-

rithms. In this work, we revisit auto-exposure control as

an alternative to HDR sensors. We propose a neural net-

work for exposure selection that is trained jointly, end-to-

end with an object detector and an image signal process-

ing (ISP) pipeline. To this end, we use an HDR dataset

for automotive object detection and an HDR training pro-

cedure. We validate that the proposed neural auto-exposure

control, which is tailored to object detection, outperforms

conventional auto-exposure methods by more than 6 points

in mean average precision (mAP).

1. Introduction

From no ambient illumination at night to bright sunny

day conditions, the range of possible luminances computer

vision systems have to measure and analyze can exceed

280 dB, expressed here as the ratio of the highest to the

lowest luminance value [54]. While the luminance range

found at the same time in a typical outdoor scene is 120 dB,

it is the “edge cases” that are challenging. For example,

exiting a tunnel can include scene regions with almost no

ambient illumination, the sun, and scene points with inter-

mediate luminances, all in one image. Capturing this large

dynamic range has been an open challenge for image sens-

ing, and today’s conventional CMOS image sensors are ca-

pable of acquiring around 60-70 dB in a single capture [51].

This sensing constraint poses a fundamental problem for

low-level and high-level vision tasks in uncontrolled sce-

narios, and it is critical for applications that base decision-

making on vision modules in-the-wild, including outdoor

robotics, drones, self-driving vehicles, driver assistance sys-

tems, navigation, and remote sensing.

To overcome this limitation, existing vision pipelines

rely on HDR sensors that acquire multiple captures with

different exposures of the same scene. A large body of

work explores different HDR sensor designs and acquisi-

tion strategies [59, 8, 51], with sequential capture meth-

ods [67, 69, 47, 64] and sensors that split each pixel into

two sub-pixels [66, 29, 30, 2] as the most successfully de-

ployed HDR sensor architectures. Although modern HDR

sensors are capable of capturing up to 140 dB at increasing

resolutions, e.g., OnSemi AR0820AT, the employed multi-

capture acquisition approach comes with fundamental lim-

itations. As exposures are different in length or start at dif-

ferent times, dynamic scenes cause motion artefacts that are

an open problem to eliminate [11, 63, 2]. Custom sensor ar-

chitectures come at the cost of reduced fill-factor, and hence

resolution, and sensor cost, compared to conventional in-

tensity sensors. Moreover, capturing HDR images does not

only require a sensor that can measure the scene but also

necessitates optics for HDR acquisition, without glare and

lens flare. Note also that in contrast to LDR sensors, in-

terleaved HDR sensors cannot implement global shutter ac-

quisition.

In this work, we revisit low dynamic range (LDR) sen-

sors, paired with learned exposure control, as a compu-

tational alternative to the popular direction of HDR sen-

sors. Existing auto-exposure (AE) control methods have

been largely designed as proprietary compute blocks, of-

ten embedded by the sensor manufacturer on the same sil-

icon as the sensor, producing perceptually pleasing images

for human consumption. Conventional AE methods rely

on image statistics [56, 4, 58], such as histogram or gra-

dient statistics, and, as such, do not receive feedback from

the task-specific vision module that ingests the camera im-

ages. Similarly, the vision module responsible for a higher-

level vision task is designed, trained, and evaluated offline,

often using JPEG images without any dependence on the

live imaging pipeline [16, 43, 7]. We explore whether de-

parting from conventional AE methods developed in isola-

tion and instead learning a neural exposure control that is
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jointly learned with a downstream vision module, allows us

to overcome the limitations of conventional LDR sensors

and recent HDR sensors.

We propose a neural auto-exposure network that predicts

optimal exposure values for a downstream object detection

task. This control network and the downstream detector

are trained in an end-to-end fashion jointly with a differ-

entiable image processing pipeline between both models,

which maps the RAW sensor measurements to RGB images

ingested by the object detector model. The training of this

end-to-end model is challenging as AE dynamically mod-

ifies the RAW sensor measurement. Instead of an online

training approach which would require a camera and anno-

tation in-the-loop, we train the proposed model by simu-

lating the image formation model of a low-dynamic range

sensor from input HDR captures. To this end, we acquire an

automotive HDR dataset. We validate the proposed method

in simulation and using an experimental vehicle prototype

that evaluates detection scores for fully independent cam-

era systems with different AE methods placed side-by-side

and separately annotated ground truth labels. The proposed

method outperforms conventional auto-exposure methods

by 6.6 mAP points across diverse automotive scenarios.

Specifically, we make the following contributions:

• We introduce a novel neural network architecture that

predicts exposure values driven by an object detection

downstream network in real time.

• We propose a synthetic training procedure for our auto-

exposure network that relies on a synthetic LDR image

formation model.

• We validate the proposed method in simulation and on

an experimental prototype, and demonstrate that the

proposed neural auto-exposure control method outper-

forms conventional auto-exposure methods for auto-

motive object detection across all tested scenarios.

2. Related Work

High Dynamic Range Imaging As existing sensors are

not capable of capturing the entire range of luminance val-

ues in real-world scenes in a single shot, HDR imaging

methods employ multiplexing strategies to recover this dy-

namic range from multiple measurements with different ex-

posures [45, 9, 54]. These approaches can be combined

with smart metering strategies ([15, 28, 36, 17]). For static

scenes, conventional HDR acquisition methods rely on tem-

poral multiplexing by sequentially capturing LDR images

for different exposures and then combining them through

exposure bracketing [45, 9, 54, 21, 49, 24]. These meth-

ods suffer from motion artefacts for dynamic scenes, which

a large body of existing work addressed in post-capture

stitching [36, 38, 14, 20, 27, 34, 57], optical flow [44],

and deep learning [32, 33]. While these methods are suc-

cessful for photography, they are, unfortunately, not real-

time and leave high-resolution HDR imaging for robotics

an open challenge. For safety-critical applications, includ-

ing autonomous driving, recent work that hallucinates HDR

content from LDR images [12, 13, 40, 41, 46] is not an al-

ternative for detection and navigation stacks that must mea-

sure the real world. At the same time, HDR image process-

ing pipelines have been manually designed and optimized in

the past, in isolation from the downstream detector task [5].

Our work bridges this gap and optimizes camera control for

challenging HDR scenarios, driven by a downstream task

loss.

Adaptive Camera Control Although auto-exposure con-

trol is fundamental to acquisition with all conventional

low-dynamic range sensors, especially when employed in

dynamic outdoor environments, existing exposure control

software (and auto-white balance control) has been largely

limited to proprietary algorithms [53, 68]. This is because

the feedback of exposure control algorithms must exceed

real-time capture rates, and, as a results, exposure control

algorithms are often implemented in hardware on the sensor

or as part of the hardware image signal processing pipeline

(ISP). Existing classical algorithms pose optimal exposure

selection as an optimal control problem on image statis-

tics [56, 4, 65], or they rely on efficient heuristics [39, 52].

A further successful direction solves model-predictive con-

trol problems [52, 60, 61] to predict optimal exposure val-

ues. Recently, a number of works select exposure values

to optimize local image gradients [58, 10] instead of global

image statistics. Although commodity smartphone devices

rely heavily on semantic auto-exposure, especially driving

portrait photography, only very few semantic auto-exposure

methods are documented [71, 37]. Only recently, Yang et

al. [70] have proposed to personalize semantic exposure

control using reinforcement learning, performing similar to

modern smartphone exposure control methods. Instead of

tailoring exposure control to user preference, we address

automotive exposure control that is optimized for a down-

stream perception task, such as object detection, driven by

an end-to-end IoU loss.

Post-Capture Tonemapping A large body of work has ex-

plored tonal adjustments to high-dynamic range or low-

dynamic range images after the capture process, driven

by scene semantics [31, 6, 35, 48, 22]. Recent tone-

mapping approaches rely on deep convolutional neural net-

works [18, 42] to perform tonal and exposure-adjustments

post-capture. While these approaches can compress dy-

namic range after captures, allowing to balance local gra-

dient magnitudes that can be minute compared to the global

intensity range of HDR images [54], they cannot recover

details lost during the capture process, including saturated
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Figure 1: Dynamic range in the image processing pipeline.

and low-light flux-limited regions. In this work, we jointly

train the exposure control with the post-processing and

downstream network, allowing us to outperform existing

automotive auto-exposure methods in all tested conditions

for synthetic and diverse experimental driving campaigns.

Recently, several works address parameter optimization

[62, 50] for non-differentiable hardware ISPs and are or-

thogonal to the proposed method as they exclude camera

control. In contrast, we learn auto-exposure control and rely

on differentiable ISPs

3. Single-Shot Image Formation

Direct sunlight has a luminance around 1.6 · 109 cd/m2,

while starlight lies around 10−4 cd/m2. Accordingly, the

total range of luminances the human eye is exposed to

ranges from 10−6 cd/m2 to 108 cd/m2 which is a range of

280 dB. However, the range of differences that the eye can

discern is lower, at 60 dB in very bright conditions (contrast

ratio of 1000) and 120 dB in dimmer conditions (contrast

ratio of 106), see [11] Chapter 15. The dynamic range of a

camera employing a 12-bit sensor is bounded from above by

84 dB because of the bounded and quantized sensing, and

we note that the effective dynamic range is even lower be-

cause of optical and sensor noises (around 60-70 dB) [54].

Examples of such optical noise sources are veiling glare,

stray light and aperture ghosts. The sensor noise tends to

dominate the optical noise for LDR cameras while the con-

verse is true for HDR cameras. The dynamic range is pro-

gressively shrunk throughout the image processing pipeline

(Figure 1). It follows that choosing where this dynamic

range lies in the scale of possible luminances is critical to

capture the useful information for the task at hand. This is

the role of the AE.

The image formation model considered in this work is

illustrated in Figure 2. Specifically, we consider the record-

ing of a digital value by the sensor at a pixel as the result

of the following single-shot capture process. Radiant power

φ exposes the photosite during the exposure time t, creat-

ing yp(φ · t) photoelectrons. We express φ in electrons (e-)

(following [25]) and t in seconds (s). Dark current creates

yd(µd) electrons, where µd is the average number of elec-

trons in the absence of light. This measurement results in

ye accumulated electrons, that is

ye = max(yp(φ · t) + yd(µd),Mwell), (1)

Figure 2: The irradiance at a photosite flows through a se-

quence of linear and nonlinear operations that result in a

digital value which is the sensor RAW measurement. Each

of these steps add noise and affects the overall measurement

image quality.

where Mwell is the full well capacity expressed in electrons.

These ye electrons are converted to a voltage which is

amplified before being converted to a digital number that

is recorded by the sensor as a pixel value. The voltage is

affected by noise before amplification (readout noise) and

after amplification (analog-to-digital conversion noise).

This process results in the following model for raw pixel

measurement, see also [25] and [3]. A value recorded by

the sensor is expressed in digital numbers (DN), a dimen-

sionless unit.

Isensor = q(g · (ye + npre) + npost), (2)

where npre is the thermal and quantum noise introduced be-

fore amplification, and npost is the readout noise introduced

after and during amplification. Both npre and npost are ex-

pressed in DN. The constant g is the camera gain and ex-

pressed in digital numbers per electron (DN/e-). It can be

further broken down into g = K ·g1, where g1 is the gain at

ISO 100 and K is the camera setting of the gain e.g., K = 1
for ISO 100, K = 2 for ISO 200, bounded by the maximum

analog gain. The function q is quantization performed by

the analog-to-digital converter,

q(x) = min (⌊x+ 0.5⌋,Mwhite) , (3)

where Mwhite is the white level i.e., the maximum value that

can be recorded by the sensor. Here we assume that the im-

age of the target camera is recorded as a 12-bit raw image

so we use Mwhite = 212 − 1. For the purpose of training

with stochastic gradient descent optimization we override

the gradient of ⌊·⌋ (the floor function) as the function uni-

formly equal to 1 i.e., the gradient is computed as if ⌊·⌋ was

replaced by the identity function.

The model presented above differs from [25] and [3] in

that the quantization is modeled explicitly with function q,

while [25] and [3] model it as a quantization noise, which

is included in the post-amplification noise npost. However,

we still express the quantization error as a variance when

considering the signal-to-noise ratio (SNR). For a detailed

derivation of the different noise quantities, SNR and dy-

namic range, see the Supplementary Material.
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feature branch is shown on the left of the AE block and the semantic feature branch is illustrated on the right. In the pooling

operations, n x n does not refer to a receptive field but means the feature map is divided up into a n by n array.

4. Learning Exposure Control

As a computational alternative to the popular direction of

HDR sensors, in this section, we propose to revisit low dy-

namic range sensors, paired with learned exposure control.

An illustration of the proposed method is shown in Figure 3.

Specifically, given frame number t, the proposed learned

exposure control network predicts the exposure and gain

values of the next frame (t + 1) from global image statis-

tics and scene semantics in two network branches. The first

branch, “Histogram NN”, operates on a set of histograms

computed from the image at three different scales. While

this branch efficiently encodes global image features, the

second branch “Semantic NN” exploits semantic features

that are shared with a downstream object detector module.

Both global and semantic features are summed together to

form a joint feature vector and a head predicts the final ex-

posure value from it. The two branches can either be used

indepnedently or jointly. We refer to the joint model as “Hy-

brid NN”. In the following, we describe the two network

branches.

4.1. Global Image Feature Branch

To incorporate global image statistics without the need

for a network with a very large receptive field, we rely

on histogram statistics as input to the first branch of the

proposed learned auto-exposure method. Specifically, this

branch takes as input a set of histograms at 3 different

scales. We note that histogram statistics can be esti-

mated with efficient ASIC blocks on the sensor or in a co-

processor [1]. At the intermediate scale, and respectively

the finest scale, the image is divided into a 3 by 3 and a 7

by 7 array of sub images. At the coarsest scale we consider

the whole image. From each of these 59 images a 256-

bin histogram is computed based on the first green pixel of

the Bayer pattern. These histograms are stacked together to

form an input to the neural network histogram branch with

shape [256, 59]. To predict auto-exposure values, we use a

six-layer neural network. The first three layers are 1D con-

volutional layers with kernel size 4 and stride 4. The last

three layers are fully connected. A full architecture defini-

tion can be found in the Supplementary Material.

Each of the layers 1 to 5 are followed by a ReLU activa-

tion function. The last layer is followed by a custom acti-

vation function that computes the final exposure adjustment

for frame t as:

ut = exp(2 · (sigmoid(x)− 0.5) · log(Mexp)) (4)

where x is the preactivation of layer 6. The constant Mexp >
0 is the maximum exposure change, it is a bound such that

ut ∈ [M−1

exp ,Mexp]. In our implementation we set Mexp =
10.

4.2. Semantic Feature Branch

The second branch of the proposed method incorporates

semantic feedback into the auto-exposure control. To this

end, we reuse the computation of the feature extractor of the

object detector from the current frame. We use the output

of ResNet conv2 (see [26]) as the input to our semantic fea-

ture branch. We first apply channel compression from 128

to 26 channels and refer to the output as the compressed

feature map (CFM). Then we apply pyramid pooling at 4

scales. At the coarsest of the four scales we apply average

pooling of the output of conv2 along the two spatial dimen-

sions. At the finest scales we use a growing size of max

and average pooling operations on the CFM. A full architec-

ture definition can be found in the Supplementary Material.

We flatten and concatenate the tensors of the previous pool-

ing operations, which is followed by a densely connected

layer. The two output feature vectors, from each of the

branches, are summed followed by a common densely con-

nected layer with a custom activation function as described

in Section 4.1.

4.3. Exposure Prediction Filtering

To further improve the accuracy of the exposure control

at inference time, we aggregate exposure predictions across

consecutive frames with an exponential moving average of
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the logarithm of the exposure,

log et = µ · log et−1 + (1− µ) · log (et−1 · ut) (5)

i.e. with et = et−1·u
1−µ
t , et is the next exposure value, et−1

is the exposure for the previous frame, ut is the exposure

adjustment predicted by the neural networks of Sections 4.1

and 4.2. We set the smoothing hyperparameter to µ = 0.9
in our implementation.

4.4. Shutter Speed and Gain from Exposure Value

The neural exposure prediction described above pro-

duces a single exposure value et = K · texp with the gain K
and the exposure time texp. Since maximizing the exposure

time maximizes the SNR (see Supplemental Material), it is

K = max(1, et/Tmax), texp = et/K (6)

where Tmax is the maximum allowed exposure time, which

we set to Tmax = 15ms.

5. Training

An overview of our training approach is illustrated in

Figure 4. In the following, we describe the training method-

ology in detail.

5.1. HDR Training Dataset

The proposed training pipeline simulates LDR raw im-

ages from HDR captures. The HDR image data takes the

form of 3 LDR JPEG images that are combined at training

time to form a linear color image. JPEG images are con-

venient to save disk space and time when loading training

examples, rather than using the 24 bit linear images directly

to make the dataset. The training dataset consists of 1600

pairs of images that have been acquired using a test vehicle

and using a camera with a Sony IMX490 HDR image sen-

sor. Each pair of images consists of two successive frames

of which the second one has been manually annotated for

automotive 2D object detection. We refer to the Supple-

mental Material for additional details. About 50% of the

images have been taken during day time, 20% at dusk and

30% at night time, with diverse weather conditions. The

driving locations include urban and suburban areas, coun-

tryside roads and highways. The raw HDR data was pro-

cessed by a state-of-the-art ARM Mali C71 ISP to obtain

three LDR images. These images are rescaled to the reso-

lution of the target image sensor (Sony IMX249) and saved

in the sRGB color space.

5.2. LDR Image Capture Simulation

The proposed AE model is trained on LDR raw images

simulated using the image formation model from Sec. 3.

Specifically, we calibrate the sensor noise parameters and

set the camera gain, K, and exposure time t, see Supple-

mental Material for details.

The irradiance φ for each pixel of the image is simulated

using images taken by the HDR camera described above.

This is done by taking the three JPEG encoded LDR images

whose combined dynamic range covers the full 140 dB of

the HDR image. More specifically, for each LDR image Ji,

the scaled linear image is, Ii = αi·ϕ(Ji). Here the exposure

factor αi = (Ki · ti)
−1 is decreasing with i, and ϕ is the

inverse tonemapping operator to recover a linear image in

[0, 1]. Hence, each image Ii has values in the range [0, αi].

Latent HDR Image. A linear HDR image Ihdr is pro-

duced from the n scaled linear light images by computing

the minimum variance unbiased estimator (following [25]),

i.e., the weighted average of pixel values across the set of

LDR images with weights equal to the inverse of the noise
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variance,

Ihdr =

∑
3

i=1
wi · Ii

∑
3

i=1
wi

with wi =
δIi<Mwhite

α2

i · Vunsat

, (7)

where Vunsat is the variance of unsaturated pixels, see Sup-

plemental Material for a derivation.

Irradiance Simulation. We simulate the irradiance per

pixel φsim with the help of the linear light HDR image Ihdr

described above, that is φsim := Bayer(γ·Ihdr). Here, Bayer
is the Bayer pattern sampling of the image sensor. The con-

version factor γ maps DN to the corresponding irradiance.

Noise simulation. Sensor noise is simulated at training

time to match the distribution of the target LDR sensor.

Since the captured data already contains noise, we add only

the amount that reproduces the target sensor’s noise charac-

teristic through noise adaptation. We also apply noise aug-

mentation for each training example by randomly varying

the strength of the simulated noise around the noise strength

targeted by noise adaptation, see Supplemental Material.

5.3. Network Training

During training, a single example is made up of two con-

secutive frames forming a mini sequence along with bound-

ing boxes and class labels for the second frame, see Fig-

ure 4.

The full training pipeline consists of the following six

steps. We first simulate a 12-bit capture for the first frame

with a random exposure erand shifted from a base exposure

ebase by a shift factor κshift, that is erand = κshift · ebase. The

base exposure ebase is computed adaptively from the HDR

frame pixel values as ebase = 0.5 ·Mwhite · (γ · Īhdr)
−1, with

Īhdr as the mean value of Ihdr. The logarithm of κshift is

sampled uniformly in [log 0.1, log 10].

We then predict an exposure change with the proposed

network using the given frame as input, and we simulate a

12-bit capture of the next frame with this adjusted exposure.

The resulting frame is then processed by an ISP and an ob-

ject detector predicts bounding boxes on the output RGB

image of the ISP. The entire imaging and detection pipeline

is supervised only with the object detector loss at the end.

We use the same loss as in Girshick et al. [19, 55], but also

add a weighted penalty on the L2 norm of the weights of the

AE neural network. All steps are implemented with Tensor-

Flow graphs such that the auto exposure network can be

trained based on the object detector loss. For brevity, we

refer the reader to the Supplemental Material for additional

training details.

We note that, even with histograms alone, the other com-

ponents of the pipeline (ISP, feature extractor, object detec-

tor) are trained jointly with the AE model, such that no op-

timal exposure exists for a given training example i.e., the

Table 1: Object detection performance (AP at IoU 0.5)

for three exposure shift simulation scenarios, for 6 classes

and mean AP accross classes (mAP). The base exposure is

shifted by a factor randomly sampled in {0.667, 1.5} for

small shifts, {0.25, 4} for moderate shifts and {0.1, 10} for

large shifts. Results within one standard deviation of the

corresponding best result are highlighted with *.

Method

Classes

Bike
Bus Car

Person
Traffic Traffic mAP

& Truck & Van Light Sign

GRADIENT AE [58] 17.56 31.26 60.70* 28.92 21.90 30.07 31.73

AVERAGE AE 16.01 29.74 59.56 28.85 21.53 29.70 30.90

HISTOGRAM NN (ours) 19.87* 33.11 60.43 29.55 22.60 31.42 32.83

SEMANTIC NN (ours) 20.19 34.15 60.87* 30.21* 23.35 30.87 33.27

HYBRID NN (ours) 20.18* 37.06 61.07 30.60 23.98 31.18* 34.01

Mild exposure shift k = 1.5

GRADIENT AE [58] 17.02 25.47 57.27 24.93 20.87 27.95 28.92

AVERAGE AE 15.50 29.09 58.08 27.17 21.29 28.63 29.96

HISTOGRAM NN (ours) 19.80 33.99 60.32 29.41 22.69 31.34* 32.92

SEMANTIC NN (ours) 19.76 32.55 60.72* 30.38* 23.50 31.41 33.05

HYBRID NN (ours) 20.29 37.29 61.22 30.44 23.95 31.28* 34.08

Moderate exposure shift k = 4

GRADIENT AE [58] 13.22 19.81 48.00 18.61 16.18 21.62 22.91

AVERAGE AE 12.99 25.10 53.83 23.81 18.62 26.30 26.77

HISTOGRAM NN (ours) 18.32 32.06 60.39 28.44 22.70 31.12 32.17

SEMANTIC NN (ours) 17.65 26.82 60.19 28.97 23.20 30.75 31.26

HYBRID NN (ours) 19.42 35.18 61.01 29.81 23.70 30.96* 33.35

Large exposure shift k = 10

Table 2: Impact of fine tuning in the training pipeline.

Method k = 1.5 k = 4 k = 10

GRADIENT AE pretrained on LDR dataset 19.73 17.71 13.36

AVERAGE AE pretrained on LDR dataset 18.94 18.02 15.35

GRADIENT AE fine tuned on HDR dataset without AE 31.66 27.13 20.91

AVERAGE AE fine tuned on HDR dataset without AE 31.10 29.41 25.37

GRADIENT AE fine tuned on HDR dataset with AE 31.73 28.92 22.91

AVERAGE AE fine tuned on HDR dataset with AE 30.90 29.96 26.77

training cannot be done without the object detector and the

computer vision task loss in the loop.

6. Evaluation

In this section, we assess the proposed learned auto-

exposure method and compare it to existing baseline algo-

rithms. Evaluating auto-exposure algorithms requires im-

age acquisition with the predicted exposure, or a simulation

of the capture process. To this end, we first validate the

method on capture simulations in Table 1, allowing us to

emulate the identical sensor irradiance present at the sen-

sor. For the experimental comparisons in Table 3, we em-

ploy completely separate camera systems, each controlled

by different free-running auto-exposure algorithms in real-

time, and mount them side-by-side in a capture vehicle. The

proposed method outperforms existing auto-exposure meth-

ods both in simulation and experimentally.

6.1. Synthetic Assessment

We first evaluate the proposed method by simulating

scene intensity shifts using captured HDR data. To this end,

we use a dataset of 400 pairs of consecutive HDR frames

taken with the HDR Sony IMX490 sensor that was also used

for capturing the training set. We apply noise adaptation,
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Figure 5: Comparison of the two proposed methods and the two baselines, see text, using simulations of mild (k = 1.5) and

moderate (k = 4) exposure shifts.

but no noise augmentation, see Supplemental Material. For

each pair of frames, we simulate a random test exposure in

the same way as in the training pipeline except here κshift is

sampled with equal probabilities in the set {k−1, k}, with

k = 1.5 for mild shifts, k = 4 for moderate shifts and

k = 10 for large shifts. The evaluation metric is the object

detection average precision (AP) at 50% IoU over the 400

pairs and their horizontal flip. For each tested AE method

and each k ∈ {1.5, 4, 10}, the experiments are repeated 12

times and we compute the mean and the standard deviation

of the AP score. For fair comparisons, we fine-tune the de-

tector networks separately for all auto-exposure baselines.

Quantitative and Qualitative Validation. We compare

five AE algorithms. The three proposed algorithms i.e.,

each of the two branches proposed as standalone and the

hybrid model, are compared along with two baseline algo-

rithms, an average-based AE algorithm [1], and an AE al-

gorithm [58] driven by local image gradients. The average-

based AE employs an efficient and fast scheme [1] that ad-

justs the mean pixel value Imean of the current raw frame

and adjusts the exposure by a factor 0.5 ·Mwhite/Imean. The

gradient-based AE from Shim et al. [58] aims to adjust ex-

posure to maximize local image gradients. We use the pro-

posed parameters λ = 1000, δ = 0.06, and Kp = 0.5. Both

baseline algorithms (see Supplemental Document) are im-

plemented using TensorRT and run in real-time on a Nvidia

GTX 1070.

Table 1 lists the average precision (AP) of all compared

algorithms for six automotive classes, see evaluation de-

tails in the Supplemental Document. These synthetic re-

sults validate the proposed method as it outperforms the

two baseline algorithms for each of the 6 classes and across

all three exposure shift scenarios, with a larger margin for

larger shifts. While the semantic branch outperforms the

global image feature branch for smaller shifts, the opposite

is true for larger shifts. The hybrid model takes advantage

of the complementarity of both branches and outperforms

the single branch models for all exposure shifts. Figure 5

shows qualitative comparisons confirming that the proposed

method can recover from extreme exposures in cases where

the baselines fail.

Table 2 compares the baseline algorithms when finetun-

ing on the HDR dataset with and without the AE in the

pipeline and when pretraining on the LDR dataset only.

These results show that even non-trainable AE algorithms

can benefit from the proposed training pipeline.

6.2. Experimental Assessment

We validate the proposed method experimentally by im-

plementing the proposed method and best baseline AE al-

gorithm from the simulation section on two separate cam-

era prototype systems that are mounted side-by-side in a

test-vehicle. The captured frames from the same automotive

scenes but different camera systems are annotated manually

and separately for a fair comparison.

Prototype Vehicle Setup. We compare the object detec-

tion results of the proposed method (hybrid model) with the

average AE baseline method. Each of the two cameras is

free-running and takes input image streams from separate

imagers mounted side-by-side on the windshield of a ve-

hicle, see Figure 7. Images are recorded with the object

detector and each AE algorithm running live. For fair com-
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conditions.
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Figure 7: Side-by-side capture setup for the experimental

comparison of the proposed Hybrid NN with the average-

based auto-exposure control baseline, see text.

parisons, we use the individually finetuned detector with the

average AE baseline method. All compared AE methods

and inference pipelines run in real-time on two separate ma-

chines, each equipped with a Nvidia GTX 1070 GPU.

The driving scenarios are highway and urban ones in Eu-

ropean cities during the daytime. We include several tunnels

in the test set to also assess conditions of rapidly changing

illumination. The route is taken two times during two suc-

cessive days at the same time of the day. The input to the

pair of compared algorithms is swapped between the two

drives, such that the algorithm receiving input from the left

camera the first day receives input from the right camera

the second day and conversely. A total of 3140 frames is

selected for testing each AE algorithm. Frames are selected

in pairs, one from each algorithm, such that they match the

sampling time. The selected test frames are annotated for

four of the six classes listed in Section 6.1.

Quantitative and Qualitative Validation. All separately

acquired images were manually annotated by humans for

the automotive classes that the models were trained for.

Using these ground-truth annotations, the detection perfor-

mance of each pipeline is evaluated as shown in Table 3.

These results confirm the improvement in object detection

using the proposed model in both simulation and real-world

experiments.

Figure 6 shows a qualitative comparison that further val-

idate the proposed method in challenging high dynamic

range conditions. Specifically, the method is capable of

carefully balancing the exposure between dark and bright

Table 3: Experimental object detection evaluation for the

proposed hybrid NN and the average-based AE method run-

ning side-by-side in the prototype vehicle from Figure 7.

The reported scores are the average precision at IoU 0.5 for

each of the 4 classes and the mean across classes.

Method
Classes

mAP
Bike Bus & Truck Car & Van Person

AVERAGE AE 11.93 28.92 54.20 20.17 28.80

HYBRID NN (ours) 13.96 34.09 58.90 22.53 32.37

objects even in rapidly changing conditions.

For additional comparisons to HDR exposure selection

and fusion, we implemented the method from Gupta et al.

[23] and compare to it in the Supplemental Document.

7. Conclusion

Exposure control is critical for computer vision tasks as

under or overexposure can lead to significant image degra-

dations and signal loss. Existing HDR sensors and recon-

struction pipelines approach this problem by aiming to ac-

quire the full dynamic range of a scene with multiple cap-

tures of different exposures. This brute-force capture ap-

proach has the downside that these captures are challenging

to merge for dynamic objects, and sensor architectures suf-

fer from reduced fill-factor. In this work, we revisit low dy-

namic range (LDR) sensors, paired with learned exposure

control, as a computational alternative to the popular direc-

tion of HDR sensors. Existing auto-exposure control meth-

ods have been largely restricted to proprietary ASIC blocks,

prohibiting access to the vision community. This work pro-

poses a neural exposure control method that is optimized for

downstream vision tasks and makes use of the scene seman-

tics to predict optimal exposure parameters. We validate

the effectiveness of our approach in simulation and experi-

mentally in a prototype vehicle system, where the proposed

neural auto-exposure outperforms conventional methods by

more than 6 points in mean average precision. In the future,

we envision joint optimization of the sensor architecture it-

self along with the proposed exposure control as an exciting

step towards learning the cameras of tomorrow.
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