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Abstract

Low rank inducing penalties have been proven to suc-

cessfully uncover fundamental structures considered in

computer vision and machine learning; however, such

methods generally lead to non-convex optimization prob-

lems. Since the resulting objective is non-convex one of-

ten resorts to using standard splitting schemes such as Al-

ternating Direction Methods of Multipliers (ADMM), or

other subgradient methods, which exhibit slow convergence

in the neighbourhood of a local minimum. We propose

a method using second order methods, in particular the

variable projection method (VarPro), by replacing the non-

convex penalties with a surrogate capable of converting the

original objectives to differentiable equivalents. In this way

we benefit from faster convergence.

The bilinear framework is compatible with a large fam-

ily of regularizers, and we demonstrate the benefits of our

approach on real datasets for rigid and non-rigid structure

from motion. The qualitative difference in reconstructions

show that many popular non-convex objectives enjoy an ad-

vantage in transitioning to the proposed framework.1

1. Introduction

Low rank approximation and factorization methods are

classical approaches for solving various computer vision

problems, such as structure from motion [38, 5, 21, 11,

24, 25], photometric stereo [2, 7, 29] image segmenta-

tion [15], image restoration [9, 29, 20, 27, 45], back-

ground/foreground segmentation [43, 7], etc.

There are two main approaches when it comes to solving

these problems, and which one is used largely depends on

properties of the particular problem being addressed. The
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tonomous Systems and Software Program (WASP) funded by the Knut and

Alice Wallenberg Foundation.

Figure 1: Top row: Weighted nuclear norm penalty (left)

and the corresponding relaxation rh, for a1 = 0 and a2 = 1,

considered in this paper. Bottom row: Level sets, corre-

sponding to the red lines in the top images.

classical problem of low rank recovery with missing data

min
rank(X)≤k

‖W ⊙ (X −M)‖2F , (1)

is a core step in many structure from motion formula-

tions [6]. Here M is a measurement matrix which is only

partially known and W is a binary matrix removing residu-

als corresponding to unknown elements. The traditional ap-

proach, which is typically used when the rank of the sought

matrix is known, enforces a particular rank by restricting

the number of columns of the factors B and C and searches

over the bilinear parameterization of the unknown matrix

X = BCT . Since the resulting objective is a least squares

problem in both B and C, alternating updates of B and C
can be used. While being extremely simple, this approach

has been shown to be prone to “flatlining: requiring exces-

sive numbers of iterations before convergence” [6]. Instead

[6] proposed a damped newton approach and empirically
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verified that this outperforms the alternation approach. In a

number of recent papers Hong et al. [17, 19, 18, 21] showed

that the so called VarPro method is remarkably resilient to

local minima. For example [18] reports convergence to the

best solution from random initialization in 94% of the cases

on the dinosaur sequence which is an admittedly difficult

dataset with 77% missing data.

An alternative approach is to optimize directly over the

elements of X while applying penalties to the singular val-

ues. This is typically applied to problems of the more gen-

eral class

min
X

p(σ(X)) + ‖AX − b‖2. (2)

Here p is some penalty function encouraging a desired dis-

tribution of singular values σi(X) of the matrix X , see e.g.

[29, 20, 27]. This way of directly optimizing over the ele-

ments of X has been made popular by the work on nuclear

norms [34, 8] and their generalizations [26, 28, 12, 14, 13],

which has shown that with an appropriate choice of regu-

larizer (2) can be made convex. While convex regularizers

can be sufficient for applications such as image restoration,

where a relatively high rank is acceptable, they are typically

rather weak and do not give solutions with low enough rank

for structure from motion problems. Consequently, they

have to be combined with thresholding schemes to gener-

ate satisfactory solutions [7, 11].

To achieve better results, non-convex penalty functions

[25, 29, 16, 9] are also frequently used in (2). Since these

formulations are typically not differentiable, optimization

relies on splitting methods such as ADMM [4]. These are

essentially first order methods and, as such, convergence

near the minimum can be slow. Indeed, [4] recommends

to use these when an approximate solution is sufficient, but

suggests to switch to second order methods when accuracy

is needed.

In this paper, we derive such second order methods for a

general class of objectives of the form (2). Our class cov-

ers commonly used regularizers, such as weighted nuclear

norms, soft rank penalties and hard rank constraints. Note

that these functions can be both non-convex and discontinu-

ous. We show how to reformulate these into bilinear objec-

tives, that can be accurately approximated with quadratic

functions, allowing rapid convergence with second order

methods such as VarPro or Levenberg–Marquardt.

1.1. Framework and Contributions

In this paper we consider a general framework of non-

separable objectives the form

fh(X) = h(σ(X)) + ‖AX − b‖2, (3)

where

h(σ(X)) =

rank(X)
∑

i=1

aiσi(X) + bi. (4)

Here the sequences (ai)
k
i=1 and (bi)

k
i=1 are both assumed to

be non-decreasing. For different choices of a and b the gen-

eral regularizer h reduces to commonly used singular value

penalties. For example, with bi = µ and ai ≡ 0 we get the

soft rank penalty µ rank(X), with ai ≡ 0 if i ≤ k and ∞
otherwise, we get the hard constraint rank(X) ≤ k. With

bi ≡ 0, we get the weighted nuclear norm
∑

i aiσi(X),
but the framework is large and several other regularizers are

possible. We aim to optimize objectives including all such

regularizers using second order methods, such as VarPro.

This requires finding a good approximation—which is two

times differentiable—of the objective function. For this pur-

pose, we propose to use a relaxation rh(σ) of h(σ) devel-

oped in [40] and consider

rh(σ(X)) + ‖AX − b‖2. (5)

This results in a continuous and almost everywhere differ-

entiable objective (see Section 2 for details, Figures 1 and 2

for examples). When introducing the terms γi(B,C) =
(‖Bi‖

2 + ‖Ci‖
2)/2, where Bi and Ci are columns i of B

and C, respectively, we obtain the bilinear formulation

min
B,C

rh(γ(B,C)) + ‖A(BCT )− b‖2. (6)

The main contributions of this paper are:

i) We show that (5) is equivalent to (6) by proving that

rh(σ(X)) = min
X=BCT

rh(γ(B,C)), (7)

see Theorem 1. Furthermore, if ‖A‖ < 1 then the

relaxation (5) is guaranteed to have the same global

optimizers as the original (3), see [10].

ii) We show that (6) can be accurately approximated by

quadratic functions opening up the possibility of ap-

plying second order methods to the problem.

iii) We propose a modified VarPro algorithm and show

that it provides superior performance for difficult ob-

jectives common in computer vision applications.

1.2. Related Work

There are some works that have previously proposed bi-

linear formulations for problems of the form (2). It was

observed in [34] that

‖X‖∗ = min
BCT=X

‖B‖2F + ‖C‖2F
2

. (8)

Thus, when p(σ(X)) = ‖X‖∗ optimization of (2) can be

formulated as

min
B,C

µ
‖B‖2F + ‖C‖2F

2
+ ‖ABCT − b‖2. (9)
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(a) (b) (c) (d)

Figure 2: (a): One dimensional example of h(x), with a1 = 0 and b1 = 1. (b): The relaxation rh(x). Replacing h with

rh makes the objective continuous and differentiable everywhere except in x = 0. In this point rh has several subgradients

(red lines) while on any other point has it unique tangent (e.g. green line). (b): The two dimensional function rh(
b2+c2

2 ).
Parametrizing with squared variables smooths the function around around (b, c) = (0.0) giving an objective that can be

locally well approximated with quadratic functions. (d): The function from (c), sliced along c = 0, with the quadratic

approximations resulting from the subgradients shown in (b).

Interestingly, even though (9) is non-convex, it can be

shown that any local minimizer B,C with rank(BCT ) < k,

where k is the number of columns in B and C, is globally

optimal [1, 15]. In addition, the objective function is smooth

and second order methods can be employed.

A similar formulation was tested for structure from mo-

tion and photometric stereo in [7]. In practice, it was, how-

ever, observed that the nuclear norm is too weak to give low

rank solutions when the data is noisy. Therefore, a “contin-

uation” approach, where the size of the factorization is grad-

ually reduced, is proposed. In [15] the above results where

extended to a general class of 2-homogeneous factor penal-

ties θ(B,C). Interestingly, this formulation allows to add

constraints such as non-negativity to the factors B and C.

Their results show that minBCT=X θ(B,C) is equivalent to

a convex regularization function Ω(X). The property that

a local minimizer B, C with rank(BCT ) < k is global, is

also extended to this class of functions.

Similar approaches to non-convex formulations have

also been proposed. Shang et al. [36] showed that

penalization with the Schatten semi-norms ‖X‖q =
q

√

∑N
i=1 σi(X)q , for q = 1/2 and 2/3, can be achieved

using a convex penalty on the factors B and C. A gener-

alization to other values of q is given in [44]. A separable

regularizer of the form p(σ(X)) =
∑n

i=1 p̃(σi(X)) was

considered in [41]. It was shown that when p̃(σ) is concave

and non-decreasing on σ ≥ 0 then

p(σ(X)) = min
BCT=X

n
∑

i=1

p̃(γi(B,C)). (10)

Separable penalties, such as the once mentioned above,

are limited in the sense that they only consider the sin-

gular values separately. The penalty can therefore only

be based on the magnitude of the singular values. As a

consequence, they cannot count the number of non-zero

singular values, thus making it impossible to penalize all

matrices with rank larger than a predefined threshold. A

non-separable formulation has very recently been addressed

in [22]. Here (10) was generalized to weighted nuclear

norms, that is p(σ(X)) =
∑n

i=1 aiσi(X). Note that, in

contrast to the original nuclear norm, these are not con-

vex since they are able to penalize smaller singular values

harder (when (ai)
n
i=1 is increasing).

One of the main benefits of our framework is that there

are provably fewer local minima [10], compared to using

the unrelaxed penalty used in [22]. Valtonen Örnhag et

al. [33] considered a special case of our framework, where

the rank is known a priori. They did, however, not show

equivalence between the proposed bilinear regularizer and

the corresponding original formulation.

2. Overview of the Approach

In this section we present our general framework and ex-

plain and motivate our algorithmic approach.

2.1. A Continuous Relaxation

Objective (3) is typically discontinuous, and, therefore,

local approximation (linear or quadratic) is not directly fea-

sible. To circumvent this issue, we consider the quadratic

envelop [10] rh(x) of h(x)

rh(x) =
(

h(x) + ‖x‖2
)∗∗ − ‖x‖2, (11)

that is, we add a quadratic term to h, compute the con-

vex envelope of the result, and subtract the quadratic term.

Throughout the paper we will use the function g(x) :=
rh(x) − ‖x‖2 =

(

h(x) + ‖x‖2
)∗∗

. In general, rh and g
do not have closed form expressions, but are obtained from

g(x) = max
z∈❘n

(

2〈x, z〉 −
n
∑

i=1

[

[

|z[i]| − ai
]2

+
− bi

]

+

)

,

(12)
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where [·]+ := max(·, 0) and z[i] denotes the element with

the i:th largest magnitude in z. The optimization over z is

convex and can be solved efficiently, as outlined in [40].

Note that in (3) the function h always takes sorted non-

negative vectors σ(X). For a general vector x we therefore

think of h as being permutation and sign invariant, that is

h(x) =

card(x)
∑

i=1

ai
∣

∣x[i]

∣

∣+ bi, (13)

where card(x) is the number of non-zero elements in x.

Figure 1 shows an example of rh and h with bi = 0,

i.e. h(σ(X)) is a weighted nuclear norm of X . Both func-

tions are permutation invariant; however, rh is additionally

continuous and differentiable almost everywhere, except

where one of the variables is equal to zero. Figure 2a shows

a one dimensional example where a1 = 0 and b1 = 1. In

this case the function h is discontinuous, which is generally

the case when any of the bi variables are non-zero. Fig-

ure 2b shows the relaxation rh for the choice of h in 2a.

Replacing h with rh gives us the relaxation (5) which in

terms of regularity is significantly better behaved than (3).

There are, of course, many ways of approximating the h
function. The reason for choosing this particular relaxation

is that it can be shown [10] that if ‖A‖ < 1 it has the same

global minimizer as (3). In addition it has been shown that

if RIP [34] holds, then, under moderate noise, (5) only has

one stationary point for some choices of h [30, 31].

2.2. Bilinear Parameterization

The regularity of our formulation improves even fur-

ther when we introduce the bilinear terms γi(B,C) =
(‖Bi‖

2 + ‖Ci‖
2)/2 and consider (6). Here we have replaced X

with a factorization BCT and instead of penalizing the sin-

gular values of X we penalize the vector γ(B,C) con-

taining the elements γi(B,C). Note that the regular-

izer rh(γ(B,C)) depends on which particular factorization

BCT = X of X that we chose. The main theoretical result

of this paper states that for any fixed matrix X we have

min
BCT=X

rh(γ(B,C)) = rh(σ(X)), (14)

hence, minimization over factorizations BCT of X will re-

sult in the same penalty as the singular value vector σ(X).
Furthermore, since the second term ‖A(BCT ) − b‖2 =
‖AX − b‖2, regardless of which factorization we choose,

it is clear that minimization of (6) is equivalent to (5).

Figure 2c shows rh(
b2+c2

2 ) as a function of (b, c). Note

that introducing the squared variables makes the resulting

function smooth at (b, c) = (0, 0). To illustrate our main

result, we also plot red curves on the surface corresponding

to all points where bc = 0.25. While the regularization term

can take many values over bc = 0.25, the two minimizers

(b, c) = ±(0.5, 0.5), shown as black dots, both give the

value rh

(

0.52+0.52

2

)

= rh(0.25).

2.3. Quadratic Approximation and Optimization

The basis for our algorithm is the ability to accurately

approximate rh(γ(B,C)) with a quadratic relaxation. The

principle can be illustrated by considering a general smooth

function r(γ) with the first order Taylor approximation

around η

r(γ) ≈ r(η) + 〈∇r(η),γ − η〉. (15)

When inserting γ = γ(B,C) we obtain (ignoring the con-

stants r(η) and −〈∇r(η),η〉) the quadratic approximation

〈∇r(η),γ(B,C)〉 =
n
∑

i=1

r′i(η)
‖Bi‖2 + ‖Ci‖2

2
, (16)

where r′i is the partial derivative with respect to the i:th en-

try of r. Since our particular regularizer rh is not differen-

tiable everywhere (when parametrized with x) we make use

of the so called subdifferential ∂rh(x) of rh. For a convex

function g we have 2z ∈ ∂g(x) if and only if

g(y) ≥ g(x) + 〈2z,y − x〉, (17)

for all y. For the g defined in (12) it can be shown that (17)

holds if and only if z is a minimizer in (12). At a point

where the function is differentiable the gradient is the only

element in the subdifferential, and the right hand side of

(17) is the Taylor approximation. However, in general it

can contain several vectors and these can be seen as lower

bounding linear approximations, as in (17).

If, as in our case, rh(x) = g(x) − ‖x‖2 we have

that 2(z − x) ∈ ∂rh(x) when 2z ∈ ∂g(x). For a non-

convex function the above inequality becomes approximate

around x (up to higher order terms). Figure 2b shows ex-

amples of subgradients at two points. At x = 0 (red point)

where the function is not differentiable there are several

such linear bounds, while at x = 0.5 there is only one tan-

gent. For our class of functions, an element of zi is only

non-unique when xi = 0.

Suppose now that we want to approximate rh(γ(B,C))
around a point η = γ(B̄, C̄). Up to higher order terms, we

then have

rh(γ) ≥ rh(η)−2〈z−η,η〉+2
n∑

i=1

(zi−ηi)
‖Bi‖

2 + ‖Ci‖
2

2
. (18)

Since 2z ∈ ∂g(η) it can be shown that zi can only take one

value when ηi 6= 0, see also Figure 2 (we also give a proof

of this in the supplementary material). Therefore the terms

rh(η) and 〈z − η,η〉 are constants. In addition, it can be

shown that for any i where ηi = 0, zi can be chosen freely

as long as its magnitude is smaller than a certain number
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Table 1: Log-loss for the Door, Back, Heart, and Paper datasets, for η = 0.05 and K = 8, for Rh for Nuclear Norm (NN)

regularization, Weighted Nuclear Norm (WNN) regularization, and with linearly-increasing weights (LI) and singular value

based (SV) weights. For our proposed method, we also show in red the relative loss improvement compared to the ADMM

solution, i.e. 100× lossADMM−lossOurs

lossADMM
.

Method NN WNN LI SV

Cathedral (Rank 4)
ADMM -0.4528 -2.4548 — —

Ours -0.4528 (0%) -3.8110 (95.6%) — —

Door (Rank 4)
ADMM -1.1946 -1.6247 — —

Ours -1.1946 (0%) -4.6275 (99.9%) — —

École (Rank 4)
ADMM -0.8747 -1.6869 — —

Ours -0.8747 (0%) -4.4264 (99.8%) — —

Back (Rank 7)
ADMM -1.3495 -4.8123 -5.2560 -5.2133

Ours -1.3536 (0.93%) -4.8129 (0.14%) -5.2863 (6.74%) -5.2471 (7.49%)

Heart (Rank 7)
ADMM -1.3166 -4.1767 -5.0829 -5.0182

Ours -1.3338 (3.88%) -4.1783 (0.36%) -5.1153 (7.19%) -5.0426 (5.46%)

Paper (Rank 7)
ADMM -1.3298 -5.3847 -5.8484 -5.8509

Ours -1.3839 (11.71%) -5.3910 (1.44%) -5.8964 (10.46%) -5.9023 (11.17%)

Mi. Since (‖Bi‖
2 + ‖Ci‖

2)/2 is non-negative it is clear that

selecting zi as large as possible gives a vector z that maxi-

mizes the right hand side of (18) for all possible (B,C). At

iteration t we therefore use

r
(t)
h (γ(B,C)) ≈

n
∑

i=1

w
(t)
i

‖Bi‖2 + ‖Ci‖2
2

(19)

where w
(t)
i = 2(zi−ηi) and z ∈ ∂g(η) with zi = Mi when

ηi = 0. Figure 2d shows rh(
b2

2 ) and the quadratic approxi-

mations obtained from the subgradients plotted in 2b. Note

that, in contrast to 2b, where we would have to use several

subgradients to approximate the functions behaviour around

x = 0, in 2d it is enough with the one that corresponds to

the largest permissible value of z.

2.4. Overview of Algorithm

In this section we give a rough overview of the al-

gorithm we propose (a detailed description is given in

the supplementary material). Our algorithm is based on

the Variable Projection (VarPro) approach which has been

shown to be highly efficient for computer vision problems

[18, 21, 19, 17]. Our approximation

r
(t)
h (γ(B,C)) + ‖A(BC)T − b‖2, (20)

is bi-quadratic meaning that given B we can solve for C in

closed form (and vice versa). The optimal C∗(B) as a func-

tion of the unknown B can now be inserted back into (20) to

give an objective in B alone. VarPro essentially optimizes

this new objective locally using a damped Gauss-Newton

approach. This is the core routine of our algorithm which

consists of the following four main steps:

1. Given (B(t), C(t)) compute the maximal subgradient

z ∈ ∂g(γ(B(t), C(t))), using the algorithm proposed

in [40].

2. Compute the approximation r
(t)
h (γ(B,C)), as in (19).

3. Run one iteration of VarPro on (20) to obtain

(B(t+1), C(t+1)).

4. Optional: Compute the SVD X(t+1) = UΣV T , where

X(t+1) = B(t+1)(C(t+1))T , and set

B(t+1) := U
√
Σ

C(t+1) := V
√
Σ

(21)

The two first steps give the approximation which is used

in VarPro in the third step. The fourth step is optional

and is added to help avoid local minima that may occur

when ai = 0. In this case the regularizer is typically con-

stant above a certain threshold, as in Figure 2a, and in such

cases one may get stuck in suboptimal factorizations. Em-

pirically, we have found that when ai 6= 0 the SVD step can

be omitted.

3. Main Theoretical Result

In this section we give the main technical result that

makes our algorithmic approach possible.

Theorem 1. If the sequences (ai)
n
i=1 and (bi)

n
i=1 are non-

negative and non-decreasing then

rh(σ(X)) = min
X=BCT

rh(γ(B,C)) . (22)

The proof builds on the results of [22] which establishes

a similar result but with the function rh(σ(x)) replaced by

weighted nuclear norm penalties v
Tσ(X), where the ele-

ments of v are non-negative and increasing.

3.1. Theoretical Background

Before we proceed to the proof we recall some of the

theory from [22]. Here the optimization problem on the

right hand side of (22) was studied by writing X =

3901



Figure 3: Qualitative results for the Cathedral, Door, and

École datasets. In green we show the input image mea-

surements, and in red the reprojected image points. (Left):

ADMM, and (Right): Our method.

BVHTCT and varying V and H such that V HT = I . It

was shown that the an equivalent formulation is

min
γ,M∈S

rh(γ)

s.t. γ = Mσ,
(23)

where

S =

{

1

2
(V T ⊙ V T +HT ⊙HT ) | V HT = I

}

. (24)

The set S is difficult to handle since it is non-convex, but

it turns out that it is contained in the set of doubly super-

stochastic matrices SW [3] which is convex. Moreover, the

extreme points of SW are the permutation matrices which

are also contained in S . Therefore optimization of a linear

function (weighted nuclear norm) vTγ over S is equivalent

to optimization over the convex relaxation SW . Moreover,

their results show that if the elements vi of v are (strictly)

increasing the unique global minimizer is M = I .

3.2. Proof of Theorem 1

Our proof relies on the observation that local approxi-

mations of rh(γ) are equivalent to weighted nuclear norms

with with coefficients vi = 2(zi − γi), where 2z ∈ ∂g(γ).
We will show that these elements are increasing and invoke

the results of [22]. For this purpose we need some knowl-

edge about the subgradients z at γ. Note that since γ(B,C)
has non-negative elements we can assume the same for z.

Furthermore, because of the permutation invariance of rh,

we also assume that γ and z are non-increasing.

Let si = ai + max{γi,
√
bi}. The results of [40] show

that if 2z ∈ ∂g(γ). Then z∗i fulfills

z∗i =











si si ∈ [zi+1, zi−1]

zi−1 si ≥ zi−1

zi+1 si ≤ zi+1

(25)

for all i where γi 6= 0. Note also that the values of these

element are the same for all z with 2z ∈ ∂g(γ). For any i
where γi = 0, the element zi can take any value in [0, si]
as long as the elements of z are non-increasing. In our case

we will use the vector z that has the largest possible ele-

ments and these fulfill (25) for all i. We will now present a

fundamental property related to these sequences. A detailed

proof is available in the supplementary material.

Lemma 1. If z∗ = argmax2z∈∂g(γ) v
T
z, where vi > 0

for all i = 1, ..., n then the sequence (z∗i − γi)
n
i=1 is non-

decreasing.

We now come to the main result.

Proof of Theorem 1. We consider the relaxation of problem

(23), namely

min
γ,M∈SW

rh(γ)

s.t. γ = Mσ.
(26)

We will show that minimization of rh(γ) over the set SW is

achieved when γ = σ. Since σ = Iσ and I ∈ S this will

also be the solution to the original problem.

For simplicity we will first consider the function

r̃h(γ) = rh(γ) + 〈2w,γ〉, where w = (ǫ, 2ǫ, 3ǫ, ...) for

ǫ > 0. The directional derivatives of this function are given

by

(r̃h)
′
d(γ) = g′d(γ)− 〈2γ,d〉+ 〈2w,d〉

= max
2z∈∂g(γ)

〈2(z− γ +w),d〉. (27)

As previously noted, g is convex, which guarantees the ex-

istence of the directional derivative. Now consider a point

γ∗ = Mσ, where in M ∈ SW . Since rh is invariant to

permutations we may assume that the elements of γ∗ are

non-increasing. We let 2z∗ ∈ ∂g(γ∗) with the maximal el-

ements as in Lemma 1. This makes the sequence z∗i − γ∗
i

non-decreasing. Therefore the sequence z∗i − γ∗
i + wi will

be strictly increasing. The results of [22] now show that the

(unique) minimum of

minη,M∈SW
〈z∗ − γ∗ +w,η〉, (28)

s.t. η = Mσ, (29)

is given by η = Iσ. By selecting d = σ − γ∗ we see that

there is a direction such that

〈z∗−γ∗+w,d〉 = 〈z∗−γ∗+w,σ〉−〈z∗−γ∗+w,γ∗〉 < 0.
(30)

3902



Figure 4: Qualitative results on the (left to right) Articulated, Balloon, Paper, Stretch, and Tearing datasets of the NRSfM

Challenge. In red we show the provided ground-truth structure for one of the frames of the sequences. In blue we show the

obtained 3D structure for the same frame using ADMM (top) and the proposed method (bottom).

Furthermore, for any other choice z ∈ ∂g(γ∗) we have

〈z∗,σ〉 ≥ 〈z,σ〉 since the elements of σ are non-negative

and 〈z∗,γ∗〉 = 〈z,γ∗〉 since z∗i = zi when γi 6= 0. There-

fore

〈z∗ − γ∗ +w,d〉 ≥ 〈z− γ∗ +w,d〉, (31)

which shows that z∗ is the maximizer in (27).

We can thus conclude that, as long as γ∗ 6= σ, there is a

direction (feasible in SW ) with strictly negative directional

derivative. Hence σ is the minimizer of r̃h(γ) over SW .

Since I ∈ S it also optimizes r̃h(γ) over S for any ǫ > 0.

We now let ǫ → 0 to show that σ is a (not necessarily

unique) minimizer of (26). To see this we note that since

〈w,γ〉 > 0 for all feasible γ we have

rh(σ) < rh(σ) + 2〈w,σ〉 ≤ rh(γ) + 2〈w,γ〉. (32)

Taking the (pointwise) limit of the right hand side shows

that rh(σ) ≤ rh(γ).

4. Experiments

4.1. Matrix Recovery

In this section, the convergence and accuracy of the pro-

posed method, using bilinear formulation, are compared

to the ADMM approach [40]. For the data term, we use

the pseudo Object Space Error (pOSE) defined in Hong et

al. [21], which fuse the Object Space Error (OSE)

ℓOSE :=
∑

(i,j)∈Ω

‖Pi,1:2x̃j − (pT
i,3x̃j)mi,j‖22, (33)

and the error of an affine camera model

ℓAffine :=
∑

(i,j)∈Ω

‖Pi,1:2x̃j −mi,j‖22, (34)

where Pi,1:2 and pi,3 are, respectively, the first two and the

third rows of the camera matrix Pi, with i = 1, . . . , F . Fur-

thermore, x̃j is a 3D point in homogeneous coordinates,

with j = 1, . . . , P , and mi,j is the 2D observation of the

j:th point on the i:th camera. The set of observable data

is denoted Ω. The two terms are weighted by η ∈ [0, 1],
resulting in the loss

ℓpOSE := (1− η)ℓOSE + ηℓAffine. (35)

In Iglesias et al. [22], the possibility of extending this

framework to non-rigid structure from motion is de-

scribed by replacing Pix̃j by a linear combination of K

shape basis, i.e. ΠiŜj . These factors are structured as

Πi =
[

ci,1Ri . . . ci,KRi ti
]

∈ R
3×(3K+1) and Ŝj =

[

ST
1,j . . . ST

K,j 1
]T ∈ R

3K+1. The pOSE objective

can now be written in a more compact form as

ℓpOSE(X) = ‖A(X)− b‖2 , (36)

where X = ΠŜ, and Π and Ŝ are the vertical and horizontal

concatenations of Πi and Ŝj , respectively. For the ADMM

formulation we consider the optimization problem

min
X

Rh(X) + ℓpOSE(X), (37)

while, for our proposed method, we have the equivalent

problem

min
B,C

R̃h(B,C) + ℓpOSE(BCT ). (38)
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The datasets chosen for this experiment are Cathedral,

École, and Door [32] (rigid scenes), Back [35], Heart [37],

and Paper [42] (deformable objects). We use four dif-

ferent sets of sequences (ai) and (bi): (i) nuclear norm

(NN), with ai = aNN , and bi = 0, (ii) weighted nu-

clear norm (WNN), with ai = aWNN/(σi(X0) + δ), and

bi = 0, where δ > 0, (iii) linearly increasing (LI)

weights with ai = bi = 0, 0 ≥ i ≥ 4, and

ai = 10bi = aLI(i − 4), i ≥ 5, and (iv) singular value

(SV) based sequences ai = 2bi = aSV/(σi(X0) + δ). The

singular values σ(X0) are obtained from the solution X0 of

‖A(X)− b‖2 (with no regularization). We set k = 8 and

the parameters for the sequences are chosen such that the

methods converge to rank 4 and 7 solutions for the rigid and

deformable datasets, respectively. The values of the param-

eters used to define the sequences for each of the datasets

are shown in the supplementary material. For increased sta-

bility regarding parameter choice across datasets, we nor-

malize the measurement matrix M to have unit Frobenius

norm.

In Table 1 we show the losses obtained by both meth-

ods, where the advantages of using our bilinear formulation

become clear. In Figure 3 we also show qualitative results

of the estimated reprojections on the Cathedral, Door, and

École datasets. A convergence plot for the Door dataset is

shown in Figure 5, and for the remaining datasets we refer to

the supplementary material. The results show the improve-

ment in accuracy that can be obtained by using the bilinear

formulation. The difference in terms of loss after conver-

gence, and how it affects the reprojection errors, is more

noticeable in the rigid datasets. However, in the next section

we show that even a small improvement in the reprojection

errors can lead to significantly better 3D reconstructions.
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Figure 5: Convergence history for the Door dataset.

4.2. Application to NonRigid SfM

We apply our method to the perspective datasets in the

Non-Rigid Structure from Motion Challenge [23]. Each

of the five datasets—Articulated, Balloon, Paper, Stretch

and Tearing—have six different sequences, consisting of

six different camera paths—circle, flyby, line, semi-circle,

tricky and zigzag. To deal with perspective projections,

we again use the pseudo Object Space Error ℓpOSE(X) de-

scribed in Section 4.1, where X is now parameterized as

Table 2: Average log-loss and reconstruction errors (mm)

on each dataset over the 6 camera paths relatively to the

provided ground-truth structure.

Artic. Balloon Paper Stretch Tearing

Log-loss
ADMM -2.221 -2.529 -2.338 -2.395 -1.471

Ours -2.415 -2.657 -2.560 -2.622 -2.053

Rec. error
ADMM 14.55 9.29 6.95 7.83 29.90

Ours 16.10 8.29 6.70 7.66 11.26

RU(CB♯) + t, with t being the vector of translations. Sim-

ilarly to Iglesias et al. [22], we assume that the rotations

are known, and that the image measurements are calibrated.

The rotation matrices are recovered from 2D observations

for the orthogonal camera model, while the intrinsic cam-

era matrix is estimated using the provided ground-truth 3D

structure for one of the frames of the sequences. The opti-

mization problem can be written as

min
X,t

Rh(X
♯) + ℓpOSE(RX + t), (39)

and with our bilinear formulation we solve

min
C,B♯,t

R̃h(C,B
♯) + ℓpOSE(RU(CB♯) + t). (40)

In our comparison, we employ the same initialization

heuristic for the weights wi on the singular values as in [24],

namely

wi =
ξ

σi(X
♯
0) + δ

, (41)

where δ > 0 is added to avoid division by zero, and

ξ > 0. The matrix X♯
0 = R+M , where R+ is the pseudo-

inverse of R, which is a common initialization scheme for

NRSfM [11, 39, 24].

We use η = 0.05 and K = 3, while for the sequences,

we choose ai = wi and bi = wi/2, where wi is defined in

(41) with ξ = 5× 10−3 and δ = 10−8. We refine the solu-

tion obtained with ADMM formulation (after convergence)

by performing 100 iterations of our method. The results

are summarized in Table 2, with the average log-losses and

3D reconstruction errors, respectively, over the 6 different

sequences of each dataset. In Figure 4 we show qualita-

tive results for one the sequences of each dataset, as well

as examples of the convergence plots of the two methods.

Our method was always able to achieve a better loss than

the ADMM solution, and in 4 out of the 5 datasets that im-

provement in loss led to a more accurate 3D reconstruction.

5. Conclusions

In this paper we have provided a bilinear optimization

framework compatible with a wide range of penalty func-

tions. Furthermore, we have shown that the proposed regu-

larizer is equivalent with the linear counterpart, making the

transition from a splitting scheme based methodology to our

differentiable bilinear framework easier.
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