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Abstract

Recent implicit neural rendering methods have demon-

strated that it is possible to learn accurate view synthesis for

complex scenes by predicting their volumetric density and

color supervised solely by a set of RGB images. However,

existing methods are restricted to learning efficient repre-

sentations of static scenes that encode all scene objects into

a single neural network, and they lack the ability to repre-

sent dynamic scenes and decompose scenes into individual

objects. In this work, we present the first neural render-

ing method that represents multi-object dynamic scenes as

scene graphs. We propose a learned scene graph repre-

sentation, which encodes object transformations and radi-

ance, allowing us to efficiently render novel arrangements

and views of the scene. To this end, we learn implicitly en-

coded scenes, combined with a jointly learned latent repre-

sentation to describe similar objects with a single implicit

function. We assess the proposed method on synthetic and

real automotive data, validating that our approach learns

dynamic scenes – only by observing a video of this scene

– and allows for rendering novel photo-realistic views of

novel scene compositions with unseen sets of objects at un-

seen poses.

1. Introduction

View synthesis and scene reconstruction from a set of

captured images are fundamental problems in computer

graphics and computer vision. Classical methods rely on

sequential reconstructions and rendering pipelines that first

recover a compact scene representation, such as a point-

cloud or textured meshes using multi-view stereo [1, 12, 28,

29], which is then used to render novel views using efficient

direct or global illumination rendering methods. These

sequential pipelines also can recover hierarchical scene

representations [13], representing dynamic scenes [8, 25],

and efficiently rendering novel views [4]. However, tradi-

tional pipelines struggle to capture highly view-dependent

features at discontinuities, or illumination-dependent re-

flectance of scene objects.

Recently, these challenges have been tackled by neural

rendering methods. The most successful methods [22, 16]

depart from explicit scene representations such as meshes

and estimated BRDF models, and instead learn fully im-

plicit representations that embed three dimensional scenes

in functions, supervised by a sparse set of images during

the training. Specifically, implicit scene representation like

Neural Radiance Fields (NeRF) by Mildenhall et al. [22]

encode scene representations within the weights of a neural

network that map 3D locations and viewing directions to a

neural radiance field. The novel renderings from this repre-

sentation improve on previous methods of discretized voxel

grids [31].

Besides their advantages, recent learned methods encode

the entire scene into a single, static network that does not al-

low for hierarchical representations or dynamic scenes that

are supported by traditional pipelines. Thus, existing neural

rendering approaches assume that the training images stem

from an underlying scene that does not change between

view samples. More recent approaches, such as NeRF-W

[19], attempt to improve on this shortcoming by learning to

ignore dynamic objects that cause occlusions in the static

scene. However, this approach still relies on a underlying

static scene to learn the representation.

In this work, we present the first method that is able to

learn a representation for complex, dynamic, multi-object

scenes. Our method decomposes a scene into its static and

dynamic parts and learns their representations structured as

a scene graph, with transformations defined by tracking in-

formation and supervised by the RGB frames of a video.

The proposed approach allows us to synthesize novel views

of a scene, or render views for completely unseen arrange-

ments of dynamic objects. Furthermore, we show that the

method can also be used for 3D object detection via inverse

rendering.

Using automotive data sets, our experiments confirm that

our method is capable of representing scenes with highly

dynamic objects. We assess the method by generating un-

seen views of novel scene compositions with unseen sets of

objects at unseen poses.
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Specifically, we make the following contributions:

• We propose a novel neural rendering method that de-

composes dynamic, multi-object scenes into a learned

scene graph with decoupled object transformations and

scene representations.

• We learn object representations for each scene graph

node directly from a set of video frames and corre-

sponding tracking data. We encode instances of a class

of objects using a shared sparse volumetric representa-

tion.

• We validate the method on simulated and experimen-

tal data by rendering novel unseen views and unseen

dynamic scene arrangements of the represented scene.

• We demonstrate that the proposed method facilitates

3D object detection via inverse rendering.

2. Related Work

Recently, the combination of deep learning approaches

and traditional rendering methods from computer graph-

ics have enabled researchers to synthesize photo-realistic

views for static scenes, using RGB images and correspond-

ing poses of sparse views as input. We review related work

in the areas of neural rendering, implicit scene representa-

tions, scene graphs, and latent object descriptors.

Implicit Scene Representations and Neural Rendering A

rapidly growing body of work has explored neural render-

ing methods [38] for static scenes. Existing methods typi-

cally employ a learned scene representation and a differen-

tiable renderer. Departing from traditional representations

in computer graphics, which explicitly model every surface

in a scene graph hierarchy, neural scene representations im-

plicitly represent scene features as outputs of a neural net-

work. Such scene representations can be learned by super-

vision using images, videos, point clouds, or a combination

of those. Existing methods have proposed to learn features

on discrete geometric primitives, such as points [2, 27],

multi-planes [10, 17, 21, 35, 46], meshes [6, 39] higher-

order primitives like voxel grids [16, 31, 44], or implicitly

represent features [15, 20, 24, 26, 43, 22] using functions

F : R
3 ! R

n that map a point in the continuous 3D

space to a n-dimensional feature space. While traditional

and explicit scene representations are interpretable and al-

low for decomposition into individual objects, they do not

scale with scene complexity. Implicit representations model

scenes as functions, typically encoding the scene using a

multilayer perceptron (MLP). This gives up interpretability,

but allows for a continuous view interpolation [22]. The

proposed method closes this gap by introducing a hierarchi-

cal scene-graph model with object-level implicit represen-

tations.

Differentiable rendering functions have made it possible

to learn scene representations [16, 24, 22, 32] from a set of

images. Given a camera’s extrinsic and intrinsic parame-

ters, existing methods rely on differentiable ray casting or

ray marching through the scene volume to infer the features

for sampled points along a ray. Varying the extrinsic param-

eters of the camera at test time makes novel view synthesis

for a given static scene possible. Niemeyer et al. [24] used

such an approach for learning an implicit representation for

object shapes and textures. Departing from surface repre-

sentations, Mescheder et al. [20] and Mildenhall et al. [22]

output a color value conditioned on a ray’s direction, allow-

ing them to achieve high-quality, view-dependent effects.

Our work builds on this approach to model dynamic scene

objects, and we review NeRF’s concept in the Supplemental

Material. All methods described above rely on static scenes

with consistent mappings from a 3D point to a 2D observa-

tion. The proposed method lifts this assumption and tackles

dynamic scenes by introducing a learned scene graph repre-

sentation.

Scene Graph Representations Scene graphs are traditional

hierarchical representations of scenes. Introduced almost

30 years ago [42, 34, 33, 9], they model a scene as a di-

rected graph which represents objects as leaf nodes. These

leaf nodes are grouped hierarchically in the directed graph,

with transformations, such as translation, rotation and scal-

ing, applied to the sub-graph along each edge, with each

transformation defined in the local frame of its parent node.

The global transformation for each leaf node can be ef-

ficiently calculated by stacking transformations from the

global scene frame to the leaf node, and allows for reuse

of objects and groups that are common to multiple child

nodes. Since the 1990s, scene graphs have been adopted in

rendering and modeling pipelines, including Open Inven-

tor [42], Java 3D [34], and VRML [3]. Different geometry

leaf-node representations have been proposed in the past,

including individual geometry primitives, lists or volumet-

ric shapes [23]. Aside from the geometric description, a leaf

node can also represent individual properties of their parent

nodes such as materials and lighting. In this work, we re-

visit scene graphs as a powerful hierarchical representation

which we combine with learned implicit leaf nodes.

Latent Class Encoding In order to better learn distribu-

tions of shapes, a number of existing works [20, 24, 26]

propose to learn shape descriptors that generalize implicit

scene representations across similar objects. By adding a

latent vector z to the input 3D query point, similar objects

can be modeled using the same network. Adding general-

ization across a class of objects can also be seen in other

recent work that either use an explicit encoder network to

predict a latent code from an image [20, 24], or use a latent

code to predict network weights directly [32]. Instead of
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(a) Isometric View of a Neural Scene Graph. (b) Ego-vehicle View of a Neural Scene Graph.

Figure 1: (a) Three dimensional and (b) projected view of the same scene graph Si. The nodes are visualized as boxes with their local

cartesian coordinate axis. Edges with transformations and scaling between the parent and child coordinate frames are visualized by arrows

with their transformation T
w

o and scaling matrix So respectively. The corresponding latent codes are denoted by lo and the representation

nodes for the unit-scaled bounding boxes by Fθ . No transformation is assigned to the background, which is already aligned with W.

using an encoder network, Park et al. [26] propose to op-

timize latent descriptors for each object directly following

Tan et al. [36]. From a probabilistic view, the resulting la-

tent code for each object follows the posterior pθ(zi|Xi),
given the object shape Xi. In this work, we rely on this

probabilistic formulation to reason over dynamic objects of

the same class, allowing us to untangle global illumination

effects conditioned on object position and type.

Before presenting the proposed method for dynamic

scenes, we refer the reader to the Supplemental Material for

a review of NeRF by Mildenhall et al. [22] as a successful

implicit representation for static scenes.

3. Neural Scene Graphs

In this section we introduce the neural scene graph,

which allows us to model scenes hierarchically. The scene

graph S , illustrated in Fig. 1, is composed of a camera, a

static node and a set of dynamic nodes which represent the

dynamic components of the scene, including the object ap-

pearance, shape, and class.

Graph Definition We define a scene uniquely using a di-

rected acyclic graph, S , given by

S = hW, C, F, L,Ei, (1)

where C is a leaf node representing the camera and its in-

trinsics K 2 R
3×3, F = Fθbckg

[ {Fθc
}Nclass

c=1 are leaf

nodes representing both static and dynamic representation

models. The nodes L = {lo}
Nobj

o=1 are leaf nodes that assign

latent object codes to each shape representation leaf node.

The E are edges that either represent affine transformations

from u to v or property assignments, that is

E = {eu,v 2 {[ ],Mu
v}}, (2)

with Mu
v =



R t

0 1

�

,R 2 R
3×3, t 2 R

3. (3)

For a given scene graph, poses and locations for all ob-

jects can be extracted. For all edges originating from the

root node W , we assign transformations between the global

world space and the local object or camera space with TW

v .

Representation models are shared and defined in a unit-

scaled frame. To represent different scales of the same ob-

ject type, we compute the non-uniform scaling So, which is

assigned at edge eo,f between an object node and its shared

representation model F .

To retrieve an object’s local transformation and position

po = [x, z, y]o, we traverse from the root node W , applying

transformations until the desired object node Fθo
is reached,

eventually ending in the frame of reference, see Eq. 9.

Representation Models For the model representation

nodes, F , that either model the background or dynamic ob-

jects, we follow Mildenhall et al. [22] and represent scene

objects as augmented implicit neural radiance fields. In the

following, we describe two augmented models for neural

radiance fields which are illustrated in Fig. 2 representing

scenes as shown in Fig. 1.

3.1. Background Node

Our scene graphs include a single background represen-

tation node, shown in the top of Fig. 2, that approximates all

static scene parts. Departing from prior work, we represent

static radiance on sparse planes instead of a volume. The

static background node function Fθbckg
: (x,d) ! (c,σ)

maps a point x to its density on sparse depth planes and,

combined with a viewing direction, to an emitted color on

the planes. Thus, the background representation is implic-

itly stored in the weights ✓bckg . We use a set of map-

ping functions, Fourier encodings [37], to aid learning high-

frequency functions in the MLP model. We map the posi-

tional and directional inputs with �(x) and �(d) to higher-

frequency feature vectors and pass those as inputs to the

background model, resulting in the following two stages of

the representation network:

[�(x),y(x)] = Fθbckg,1
(�x(x)) (4)

c(x) = Fθbckg,2
(�d(d),y(x)). (5)
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Background Model

Dynamic Model

Figure 2: Architectures of representation networks for static and

dynamic models. Inputs to the network are point x and ray direc-

tion d , and for objects o we include a latent code lo and the pose

p
o
, outputting σ from the first stage, and c from the second stage.

3.2. Dynamic Nodes

For dynamic scene objects, we consider each individual

rigid part of a scene that changes its pose through the dura-

tion of the capture. A single, connected object is denoted as

a dynamic object o. Each object is represented by a neural

radiance field in the local space of its node and position po.

Objects with a similar appearance are combined in a class c
and share weights ✓c of the representation function Fθc

. A

learned, latent encoding vector lo distinguishes the neural

radiance fields of individual objects, representing a class of

objects with

[c(xo),�(xo)] = Fθc
(lo,po,xo,do). (6)

Latent Class Encoding Training an individual representa-

tion for each object in a dynamic scene can easily lead to

a large number of models and training effort. Instead, we

aim to minimize the number of models that represent all ob-

jects in a scene. We reason about shared object features and

untangle global illumination effects from individual object

radiance fields. Similar to Park et al. [26], we introduce a

latent vector l encoding an object’s representation. Adding

lo to the input of a volumetric scene function Fθc
can be

thought as a mapping from the representation function of

class c to the radiance field of object o as in

Fθc
(lo,x,d) = Fθo

(x,d). (7)

Conditioning on the latent code makes it possible to use

shared weights ✓c between all objects of class c. Global

illumination effects only visible for some objects during

training are shared across all objects of the same class. We

modify the input to the mapping function, conditioning the

volume density on the global 3D location x of the sampled

point and a latent vector lo, resulting in the following new

first stage

[y(x),�(x)] = Fθc,1
(�x(x), lo). (8)

Object Coordinate Frame The global location po of a

dynamic object changes between frames, thus its radiance

field moves as well. We introduce local three-dimensional

cartesian coordinate frames Fo, fixed and aligned with an

object’s pose. The transformation of a point in the the global

frame FW to Fo is given by

xo = SoT
w
o x with xo 2 [1,�1], (9)

scaling with the inverse length of the bounding box size

so = [Lo, Ho,Wo] with So = diag(1/so). Scaling allows

us to learn size-independent similarities in ✓c.

Object Representation The continuous volumetric scene

functions Fθc
from Eq. 7 are modeled with a MLP architec-

ture presented in the bottom of Fig. 2. This model maps a

latent vector lo, point x 2 [�1, 1] and a viewing direction d

in the local frame of o to its corresponding volumetric den-

sity σ and directional emitted color c. The appearance of

a dynamic object depends on its interaction with the scene

and global illumination which is dependent on object loca-

tion po. To consider location dependent effects, we add po

in the global frame as another input. We note that an ob-

ject’s volumetric density � should not change based on on

its pose in the scene, so to ensure volumetric consistency

the pose is only considered for the emitted color and not the

density. We add the pose to the inputs y(t) and d of the

second stage:

c(x, lo,po) = Fθc,2
(�d(d),y(x, lo),po). (10)

Concatenating po with the viewing direction d preserves the

view-consistent behavior from the original architecture and

adds consistency across poses for the volumetric density.

We again apply a Fourier feature mapping to all low dimen-

sional inputs xo, do, po. This results in the following volu-

metric scene function for an object class c

Fθc
: (xo,do,po, lo) ! (c,σ); 8xo 2 [�1, 1]. (11)

4. Neural Scene Graph Rendering

The proposed neural scene graph describes a dynamic

scene and a camera using a hierarchical structure. In this

section, we show how this scene description can be used to

render images of the scene, illustrated in Fig. 3, and how the

representation networks at the leaf nodes are learned given

a training set of images.

4.1. Rendering Pipeline

Images of the learned scene are rendered using a ray cast-

ing approach. The rays are generated through the camera

defined in scene S at node C, its intrinsics K, and the cam-

era transformation TW

c . We model the camera C with a
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Figure 3: Overview of the Rendering Pipeline. (a) Scene graph model of the scene (b) A sampled ray and the sampling points along the

ray inside the background (black) and an object (blue) node (c) Mapping of each point to a color and density value with the corresponding

representation function F (d) Volume rendering integration over all sampling points along a ray from its origin to the far plane intersection.

pinhole camera model, tracing a set of rays r = o + td
through each pixel on the film of size H ⇥W . We sample

points at all graph nodes a ray intersects with. At each point

where a representation model is hit, a color and volumetric

density are computed, and we calculate the pixel color by

applying volumetric integration along the ray.

Multi-Plane Sampling To increase efficiency, we limit the

sampling at the static node to multiple planes, resembling a

2.5 dimensional representation. We define Ns planes, paral-

lel to the image plane of the initial camera pose Tw
c,0 equis-

paced between the near clip dn and far clip df distance. For

a ray, r, we calculate the intersections {ti}
Ns

i=1
with each

plane, instead of performing raymarching.

Ray-box Intersection For each ray, we predict color and

density at each dynamic node the ray intersects with. We

check each ray from the camera C for intersections with all

dynamic nodes Fθo
, by translating the ray to an object lo-

cal frame and applying an efficient AABB-ray intersection

test as proposed by Majercik et al. [18]. This computes all

m ray-box entrance and exit points (to,1, to,Nd
). For each

pair of entrance and exit points, we sample Nd equidistant

quadrature points

to,n =
n� 1

Nd � 1
(to,Nd

� to,1) + to,1, (12)

and we sample from the model at xo = r(to,n) and do

with n = [1, Nd]. A small number of equidistant points xo

are enough to represent dynamic objects accurately while

maintaining short rendering times.

Volumetric Rendering Each ray rj traced through the

scene is discretized at Nd sampling points at each of the mj

dynamic node intersections and at Ns planes, resulting in a

set of quadrature points {{ti}
Ns+mjNd

i=1
}j . The transmitted

color c(r(ti)) and volumetric density �(r(ti)) at each inter-

section point is predicted from the respective radiance fields

in the static background node Fθbckg
or dynamic node Fθc

.

All sampling points and model outputs (t,�, c) are ordered

along the ray r(t) as an ordered set

{{ti,�(xj,i), c(xj,i)}
Ns+mjNd

i=1
|ti−1 < ti}. (13)

The pixel color is predicted using the rendering integral ap-

proximated with numerical quadrature as

Ĉ(r) =

Ns+mjNd
X

i=1

Ti↵ici, where (14)

Ti = exp(�
i−1
X

k=1

�k�k) and ↵i = 1� exp(��i�i), (15)

where �i = ti+1�ti is the distance between adjacent points.

4.2. Joint Scene Graph Learning

For each dynamic scene, we optimize a set of represen-

tation networks at each node F . Our training set consists

of N tuples {(Ik,Sk)}
N
k=1

, the images Ik 2 R
H×W×3

of the scene. We sample rays for all camera nodes Ck
for all frames k at each pixel j. From given 3D tracking

data, we take the transformations Mu
v to form the reference

scene graph edges. Pixel values Ĉk,j are predicted for all

H⇥W ⇥N rays rk,j . We randomly sample a batch of rays

R from all frames and associate each ray with the respective

corresponding scene graphs Sk and ground truth pixel value

Ck,j . We define the loss, in Eq. 16, as the total squared error

between the predicted color Ĉ and the ground truth color C.

As in DeepSDF [26], we assume a zero-mean multivariate

Gaussian prior distribution over latent codes p(zo) with a

spherical covariance �2I . For these latent codes, we apply

a regularization to all object descriptors with weight �.

L =
X

r∈R

kĈ(r)� C(r)k22 +
1

�2
kzk22 (16)

At each step, the gradient at each trainable node in L and

F intersecting with the rays in R is computed and back-

propagated. The amount of nonzero gradients at a node in a

step depends on the number of intersection points, leading

to a varying amount of evaluation points across representa-

tion nodes. We balance this via ray sampling per batch.

We refer to the Supplemental Material for details on ray-

plane and ray-box intersections and sampling.

5. Experiments

In this section, we validate the proposed neural scene

graph method, by training neural scene graphs on existing

automotive datasets. We then modify the learned graphs

to synthesize unseen frames of novel object arrangements,

temporal variations and renderings from novel views. We

assess our approach with comparisons against state-of-the-

art implicit neural rendering methods. The optimization for

a scene takes about 36 hours or 400-500k iterations to con-

verge on a single NVIDIA TITAN Xp GPU.

We choose to train our method on the KITTI dataset [11],

and for experiments we use synthetic data from the Virtual

2860



(a) Reference (b) Learned Object Nodes (c) Learned Background

(d) View Reconstruction (e) Novel Scene (f) Densely Populated Novel Scene

Figure 4: Renderings of a neural scene graph learned from a dynamic KITTI [11] scene. The representations of all objects and the

background are trained on images from the scene in (a). The method naturally decomposes the representations into the background (c) and

multiple object representations (b). Using learned scene graphs we can render reconstructions of the same scene as in (d), or unseen novel

scene compositions with randomly sampled nodes and translations into the drivable space in (e) and (f).

KITTI 2 Dataset [5, 11], and for videos, we refer to our

project page. Although the proposed method is not limited

to automotive datasets, we use KITTI data as it has fueled

research in object detection, tracking and scene understand-

ing over the last decade. For each training scene, we opti-

mize a neural scene graph with nodes for each tracked ob-

ject and one for the static background. The transformation

matrices T and S at the scene graph edges are computed

from the tracking data. We use Ns = 6 planes and Nd = 7
object sampling points and a 256-dimensional latent vector

lo. The bounding box dimensions so are scaled to include

the shadows of the object. We motivate the selected param-

eters and our design choices for F θc
with an ablation study

in the supplemental material. We train the scene graph using

the Adam optimizer [14] with a linear learning rate decay.

5.1. Assessment

We present scene graph renderings for three scenes

trained on dynamic tracking sequences from KITTI [11],

captured using a stereo camera setup. Each sequence con-

sists of up to 90 time steps and images of size 1242 ⇥ 375,

each from two camera perspectives, and up to 12 unique,

dynamic objects from different classes.

Foreground Background Decompositions Without addi-

tional supervision, the structure of the proposed scene graph

naturally decomposes scenes into dynamic and static scene

components. In Fig. 4, we present renderings of isolated

nodes of a learned graph. Specifically, in Fig. 4 (c), we re-

move all dynamic nodes and render the image from a scene

subgraph only consisting of the camera and background

node. We observe that the rendered node only captures

the static scene components. Similarly, we render dynamic

parts in (b) from a subgraph excluding the static node. The

shadow of each object is part of its dynamic representation

and is visible in the rendering. Aside from decoupling the

background and all dynamic parts, the method accurately

reconstructs (d) the target image of the scene (a).

Original Pose 2.5� 5� 7.5� 10�

Figure 5: We synthesize multiple views of a learned scene graph

leaf node by rotating yaw. The specular reflection on the trunk

is maintained across rotations, demonstrating the ability of the

method to learn view-dependent lighting.

Original Pose 1 m shift 2 m shift

Figure 6: A learned vehicle leaf node is translated by 2 meters per-

pendicular to the movement observed during training. The model

changes the shadows and specular highlights on the vehicle con-

sistent with learned global scene illumination.

Scene Graph Manipulations A learned neural scene graph

can be manipulated at its edges and nodes. To demonstrate

the flexibility of the proposed scene representation, we

change the edge transformations of a learned node. Fig. 5

and 6 validate that these transformations preserve global

light transport components such as reflections and shadows.

The scene representation encodes global illumination

cues implicitly through image color, a function of an

object’s location and viewing direction. Rotating a learned

object node along its yaw axis in Fig. 5 validates that the

specularity on the car trunk moves in accordance to fixed

scene illumination, and retains a highlight with respect to

the viewing direction. In Fig. 6, an object is translated

away from its original position in the training set. In

contrast to simply copying pixels, the model learns to cor-

rectly translate specular highlights after moving the vehicle.

Novel Scene Graph Compositions and View Synthesis

In addition to pose manipulation and node removal from

a learned scene graph, our method allows for constructing

completely novel scene graphs, and novel view synthesis.

Fig. 7 shows view synthesis results for novel scene graphs

that were generated using randomly sampled objects and

transformations. We constrain samples to the joint set of all

road trajectories that were observed, which we define as the
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Figure 7: Novel scene graph renderings. Rendered objects are learned from a subsequence of a scene from the KITTI data set [11]. The

novel scene graphs are sampled from nodes and edges in the data set as well as new transformations sampled on the road lanes, not allowing

for collisions between objects. Occlusion from the background and other objects can be observed in several frames.

Original Pose

1m forward

2m forward

Figure 8: Unseen view synthesis results. Here we move the ego

camera by approximately 2 m into the scene with all other nodes of

the scene graph fixed. The method accurately handles occlusions

from traffic lights and signs, highlighting the capabilities of the

proposed scene graph for novel view synthesis.

driveable space. Note that these translations and arrange-

ments have not been observed during training.

Similar to prior neural rendering methods, the proposed

method allows for novel view synthesis after learning the

scene representation. Fig. 8 shows novel views for ego-

vehicle motion into the scene, where the ego-vehicle is driv-

ing ⇡ 2 m forward. We refer to the Supplemental Material

for additional view synthesis results.

Scene Graphs from Noisy Tracker Outputs Neural scene

graphs can be learned from manual annotations or the out-

puts of tracking methods. While temporally filtered hu-

man labels exhibit low labeling noise [11], manual an-

notation can be prohibitively costly and time-consuming.

We show that neural scene graphs learned from the output

of existing tracking methods offer a representation qual-

ity comparable to the ones trained from manual annota-

tions. Specifically, we compare renderings from scene

graphs learned from KITTI [11] annotations and the follow-

ing two tracking methods: we combine PointRCNN [30],

a lidar point cloud object detection method, with the 3D

tracker AB3DMOT [41], and we evaluate on labels from

a camera-only tracker CenterTrack [47], i.e., resulting in a

method solely relying on unannotated video frames. Fig. 9

KITTI PointRCNN + CenterTrack
GT-Tracking AB3DMOT

Figure 9: Comparison of renderings learned from tracking labels

and tracking data obtained from off-the-shelf trackers, see text.

shows qualitative results that indicate comparable neural

scene graph quality when using different trackers. The

monocular camera-only approach unsurprisingly degrades

for objects at long distances, where the detection and track-

ing stack can no longer provide accurate depth information.

5.2. Quantitative Validation

We quantitatively validate our method with compar-

isons against Scene Representation Networks (SRNs) [32],

NeRF [22], and a modified variant of NeRF on novel scene

and reconstruction tasks. For comparison on the method

complexity, we refer to the Supplemental Material.

Specifically, we learn neural scene graphs on video se-

quences of the KITTI data and assess the quality of recon-

struction of seen frames using the learned graph, and novel

scene compositions. SRNs and NeRF were designed for

static scenes and are state-of-the-art approaches for implicit

scene representations. To improve the capabilities of NeRF

for dynamic scenes, we add a time parameter to the model

inputs and denote this approach “NeRF + time”. The time

parameter is positionally encoded and concatenated with

�x(x). We train both NeRF-based methods with the same

configuration. Tab. 1 reports results which validate that

complex dynamic scenes cannot be learned only by adding

a time parameter to existing implicit methods.

Reconstruction Quality In Tab. 1, we evaluate all methods

for scenes from KITTI and present quantitative results with

the PSNR, SSIM[40], LPIPS [45] metrics. To also assess

the consistency of the reconstruction for adjacent frames,

we evaluate the renderings with two temporal metrics tOF

and tLP [7]. The proposed method outperforms all baseline

methods on all metrics. As shown in the top row of Fig. 10,

vanilla SRN and NeRF implicit rendering fail to accurately

reconstruct dynamic scenes. Optimizing SRNs leads to a

single static representation for all frames. For NeRF, even

small changes in the camera pose lead to a slightly differ-

ent viewing direction for spatial points at all frames, and, as
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Figure 10: Qualitative results on reconstruction and novel scene arrangements of a scene from the KITTI dataset [11] for SRN [32], NeRF

[22], a modified NeRF with a time parameter, and our neural scene graphs. Reconstruction here refers to the reproduction of a frame seen

during training, and novel scene arrangements render a scene not seen in the training set. SRN learns to average all frames in the training

set. NeRF and the modified variant struggle to learn dynamic parts of the scene adequately. Our neural scene graph method achieves

high-quality view synthesis results regardless of these dynamics, allowing for high-quality dynamic scene reconstruction and novel scenes.

SRN [32] NeRF [22] NeRF + time Ours
Reconstruction

PSNR " 18.83 23.34 24.18 26.66
SSIM " 0.590 0.662 0.677 0.806
LPIPS # 0.456 0.415 0.425 0.186

tOF ⇥106 # 1.191 1.178 1.443 0.765
tLP ⇥100 # 2.965 3.464 0.897 0.246
Novel Composition

PSNR " 18.83 18.25 19.68 25.11
SSIM " 0.590 0.594 0.593 0.789
LPIPS # 0.456 0.442 0.473 0.204

Table 1: We report PSNR, SSIM, LPIPS, tOF and tLP results

on scenes from KITTI [11] for SRN [32], NeRF [22], a modified

NeRF for temporal scenes and our neural scene graph method. For

PSNR and SSIM, higher is better; for LPIPS, tOF and tLP lower

is better. Our method outperforms methods designed for static

scenes for reconstructing dynamic scenes and for novel composi-

tions in all image quality metrics.

such, the method suffers from severe ghosting. NeRF ad-

justed for temporal changes improves the quality, but still

suffers from blurry, uncertain predictions. Significant im-

provement in the temporal metrics show that our method,

which models each object individually, yields an improved

temporal consistency for the reconstructions.

Novel Scene Compositions To compare the quality of

novel scene compositions, we trained all methods on each

image sequence leaving out a single frame from each. In

Fig. 10 (bottom) we report results and Tab. 1 lists the corre-

sponding evaluations. Even though NeRF and time-aware

NeRF are able to recover changes in the scene when they

occur with changing viewing direction, both methods are

not able to reason about the scene dynamics. In contrast,

the proposed method is able to adequately synthesize shad-

ows and reflections without changing viewing direction.

6. 3D Object Detection as Inverse Rendering

The ability to decompose the scene into multiple objects

in scene graphs also allows for improved scene understand-

ing. In this section, we apply learned scene graphs to the

problem of 3D object detection, using the proposed method

as a forward model in a single shot learning approach.

We formulate 3D object detection as an image synthesis

problem over the space of learned scene graphs that best re-

constructs an observed image. Specifically, we sample an-

Figure 11: 3D Object detection with inverse neural scene graph

rendering. The detected 3D object bounding boxes on the input

images are the result of an optimization over the space of learned

scene graphs. These outputs correspond to the scene graph that

renders an image with a minimum distance to the observed image.

chor positions in a bird’s-eye view plane and optimize over

anchor box positions and latent object descriptors that mini-

mize the `1 image loss between the rendering and the input.

The resulting method is able to find the poses and dimen-

sions of objects as shown in Fig. 11. This approach high-

lights the potential of neural rendering pipelines as a for-

ward rendering model for computer vision tasks, a promis-

ing direction beyond view extrapolation and synthesis.

7. Conclusion

We present the first approach that tackles the challenge of

representing dynamic, multi-object scenes implicitly using

neural networks. Using video and tracking information, our

method learns a graph-structured, spatial representation of

multiple dynamic and static scene elements, automatically

decomposing the scene into multiple independent represen-

tation nodes. Comprehensive experiments on simulated and

real data achieve photo-realistic quality previously only at-

tainable on static scenes. Building on these contributions,

we also present the first method that tackles automotive ob-

ject detection using a neural rendering approach.

Due to the nature of implicit methods, the learned rep-

resentation quality of the proposed method is bounded by

the variation and amount of training data. In the future,

larger view extrapolations might be handled by scene priors

learned from large-scale video datasets. We believe that the

proposed approach opens up the field of neural rendering

for dynamic scenes, and, encouraged by our detection re-

sults, may potentially serve as a path towards unsupervised

training of computer vision models in the future.
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