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Abstract

In recent years, Face Image Quality Assessment (FIQA)

has become an indispensable part of the face recognition

system to guarantee the stability and reliability of recogni-

tion performance in an unconstrained scenario. For this

purpose, the FIQA method should consider both the in-

trinsic property and the recognizability of the face image.

Most previous works aim to estimate the sample-wise em-

bedding uncertainty or pair-wise similarity as the quality

score, which only considers the partial information from the

intra-class. However, these methods ignore the valuable in-

formation from the inter-class, which is for estimating the

recognizability of face image. In this work, we argue that a

high-quality face image should be similar to its intra-class

samples and dissimilar to its inter-class samples. Thus, we

propose a novel unsupervised FIQA method that incorpo-

rates Similarity Distribution Distance for Face Image Qual-

ity Assessment (SDD-FIQA). Our method generates qual-

ity pseudo-labels by calculating the Wasserstein Distance

(WD) between the intra-class and inter-class similarity dis-

tributions. With these quality pseudo-labels, we are capa-

ble of training a regression network for quality prediction.

Extensive experiments on benchmark datasets demonstrate

that the proposed SDD-FIQA surpasses the state-of-the-arts

by an impressive margin. Meanwhile, our method shows

good generalization across different recognition systems.

1. Introduction

Face recognition is one of the well-researched areas of

biometrics [8, 11, 4]. Under controlled conditions, the
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Figure 1: Our method simultaneously considers similari-

ties of the target sample (red point) with intra-class samples

(green points), and with inter-class samples (yellow points).

The distribution distance between Pos-Sim and Neg-Sim is

calculated as the quality pseudo-label, which is more ami-

cable to recognition performance. The visualized results are

shown on the right.

recognition system can usually achieve satisfactory perfor-

mance. However, in some real-world applications, recog-

nition systems need to work under unconstrained environ-

ments (e.g. surveillance camera and outdoor scenes), lead-

ing to significant degradation of recognition accuracy and

unstable recognition performance. Many researchers make

progress in improving recognition accuracy under varying

conditions [4, 12], but sometimes the performance is still af-

fected by the unpredictable environmental factors including

pose, illumination, occlusion, and so on. To keep the perfor-

mance of face recognition system stable and reliable, Face

Image Quality Assessment (FIQA) has been developed to

support the recognition system to pick out high-quality im-

ages or drop low-quality ones for stable recognition perfor-

mance [7, 1].

Existing FIQA methods can be roughly categorized into

two types: analytics-based [7, 22, 27] and learning-based

[1, 10, 23, 25, 29]. Analytics-based FIQA defines quality

metrics by Human Visual System (HVS) and evaluates face
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Figure 2: The framework of SDD-FIQA. Step 1: The training data traverses the face recognition model, then its Pos-Sim

and Neg-Sim are collected. Step 2: The Wasserstein distance between the Pos-Sim and Neg-Sim is calculated as the quality

pseudo-label. Step 3: The quality regression network is trained under the constrain of Huber loss for FIQA.

image quality with handcrafted features, such as asymme-

tries of facial area [7], illumination intensity [22], and ver-

tical edge density [27]. However, these approaches have to

manually extract features for different quality degradations,

and it is unrealistic to annotate all possible degradations.

Thus, more researchers take effort into the learning-based

approach, which aims to generate quality scores directly

from the recognition model without human effort. The most

critical part of these approaches is to establish the mapping

function between image quality and recognition model. Ag-

garwal et al. [1] proposed a multi-dimensional scaling ap-

proach to map space characterization features to genuine

quality scores. Hernandez-Ortega et al. [10] calculate the

Euclidean distance of intra-class recognition embeddings as

the quality score. Shi et al. [23] and Terhorst et al. [25] pro-

posed to predict the variations of recognition embeddings

as face image quality. Very recently, Xie et al. [29] pro-

posed PCNet to evaluate face image quality via dynamically

mining positive mated-pairs. Despite these learning-based

methods make progress in FIQA, the performances are still

unsatisfactory. Since they only consider the partial intra-

class similarity or feature uncertainty from the recognition

model and ignore the important information of inter-class

similarity, which is the key factor for the recognizability of

face image.

In this paper, we propose a novel learning-based method

called SDD-FIQA. Regarding FIQA as a recognizability es-

timation problem, we first reveal the intrinsic relationship

between the recognition performance and face image qual-

ity. Specifically, for the target sample, we employ a recog-

nition model to collect its intra-class similarity distribution

(Pos-Sim) and inter-class similarity distribution (Neg-Sim).

Then the Wasserstein Distance (WD) between these two

distributions is calculated as the quality pseudo-label. Fi-

nally, a quality regression network is trained under the con-

straint of Huber loss. Our method can accurately predict

the face image quality score in a label-free manner. The

main idea of SDD-FIQA is shown in Fig. 1, and the major

contributions of this paper are as follows.

• We are the first to consider both the intra-class and

inter-class recognition similarity distributions for the

FIQA problem.

• We propose a new framework of estimating face image

quality, which is label-free and closely linked with the

recognition performance.

• We are the first to evaluate the FIQA method by em-

ploying different recognition models for generaliza-

tion evaluation, which is more consistent with the real-

world applications.

• The proposed SDD-FIQA outperforms the state-of-

the-arts by a large margin in terms of accuracy and

generalization on benchmark datasets.

2. Related Work

2.1. Analytics-based FIQA

Analytics-based FIQA approaches focus on analytically

evaluating face image characteristics (such as pose, oc-

clusion, and illumination) and define the quality metrics

by HVS. For example, Gao et al. [7] proposed a facial

symmetry-based method. They measure the facial asym-

metries caused by non-frontal lighting and improper facial
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pose. This method can quantize the impact of pose and il-

lumination while failing to generalize to other quality fac-

tors. Sellahewa and Jassim [22] proposed an adaptive ap-

proach. They estimate the illumination quality by compar-

ing the pixel-wise similarity between the reference image

and the distorted one. However, such a method is sensitive

to the background and can only deal with the illumination

influence on image quality. Wasnik et al. [27] evaluate the

pose variation of face images based on vertical edge den-

sity and train a random forest model to predict the quality

score. Their method requires a reference image, and the

performance is not satisfactory under unconstrained condi-

tions. Best-Rowden and Jain designed two FIQA methods

with complete or partial human annotations [2]. However,

human quality annotation is too labor-intensive and expen-

sive to be applicable in practice.

2.2. Learning-based FIQA

Learning-based FIQA approaches aim to excavate the re-

lationship between face image quality and recognition per-

formance. Aggarwal et al. [1] were the first to propose the

learning-based method. In their method, a space charac-

terization features mapping model is constructed to predict

the accuracy of recognition via multi-dimensional scaling.

Wong et al. [28] proposed an efficient patch-based method

to obtain a similarity probabilistic model for FIQA. Chen et

al. [3] introduced a rank learning-based method. They use a

ranking loss computed on multiple face images of an iden-

tity to train a network. Kim et al. [15] take advantage of

two factors, including visual quality and mismatch degree

between training and testing images to predict face image

quality. However, these methods can only work well with

face images under controlled conditions.

With the deep learning population, face representation

using Deep Convolution Neural Network (DCNN) em-

bedding has obtained impressive progress [21, 26, 12].

Researchers hope to directly estimate face image quality

by DCNN embedding of face recognition. For example,

Shi and Jain [23] proposed the Probabilistic Face Embed-

ding (PFE) method. Their method estimates the variance

of element-wise embedding features and then applies the

variance to FIQA. Hernandez-Ortega et al. [10] designed

FaceQnet-V0. It calculates the Euclidean distance between

the target face image and the best selection within intra-

class as quality annotation. Furthermore, they developed

FaceQnet-V1 [9] by adding three available face recognition

systems to calculate Euclidean distance for quality annota-

tion. Terhorst et al. [25] proposed an unsupervised estima-

tion of face image quality called SER-FIQ. They compute

the mean Euclidean distance of the multiple embedding fea-

tures from a recognition model with different dropout pat-

terns as the quality score. Xie et al. [29] introduced the

Predictive Confidence Network (PCNet). They apply pair-
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Figure 3: Illustration of the relationship between SDD and

FIQ. The better FIQ, the larger distance between the Pos-

Sim (colored in green) and Neg-Sim (colored in yellow).

wise regression loss to train a DCNN for FIQA from intra-

class similarity. Although these methods improve the ver-

satility of FIQA by estimating the sample-wise uncertainty

or computing pair-wise similarity, the relationship between

the intra-class and inter-class similarities has never been ex-

plored, which is extremely important for the recognizability

of face image.

3. The Proposed SDD-FIQA

The framework of the proposed SDD-FIQA is shown

in Fig. 2. Assume X , Y , and F denote the face im-

age set, identity label set, and the recognition embed-

ding set, respectively. We compose a triplet dataset D =
{(x1, y1, f(x1)), (x2, y2, f(x2)), ..., (xn, yn, f(xn))} ⊂ X
× Y × F . Let two samples xi, xj from the same iden-

tity form a positive pair, two samples from different iden-

tities form a negative pair. For each training sample xi,

we denote SP
xi

=


sPxi
= 〈f(xi), f(xj)〉 | yi = yj



and

SN
xi

=


sNxi
= 〈f (xi) , f (xj)〉 | yi ∕= yj



as the similar-

ity set of positive and negative pairs respectively, where

〈f(xi), f(xj)〉 denotes the cosine similarity between f(xi)
and f(xj).

3.1. Generation of Quality Pseudo-labels

In this section, we describe the relationship between the

face image quality and the recognition performance. We

prove that such relationship can be deduced from the Er-

ror Versus Reject Curve (EVRC), which is a widely used

metric in FIQA [2, 9, 25]. Specifically, assume that SP
X =

{SP
xi
}ni=1 and SN

X = {SN
xi
}ni=1 are the sets of all Pos-Sims

and Neg-Sims, respectively. SP
X|<ξ

denotes the subset of

SP
X with similarity less than a threshold ξ. SN

X|>ξ
denotes

the subset of SN
X with similarity greater than the threshold

ξ, where ξ ∈ [−1, 1]. Then, False Match Rate (FMR) and

False No-Match Rate (FNMR) can be respectively defined

as

fmr = Rfm(X , ξ) =
|SN

X|>ξ
|

|SN
X |

(1)
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and

fnmr = Rfnm(X , ξ) =
|SP

X|<ξ
|

|SP
X |

, (2)

where | · | denotes the set cardinality. Assume XSub
|σ is the

subset of X with σ percentage highest quality face samples.

EVRC aims to measure the relationship between σ and the

FNMR of XSub
|σ at a fixed FMR. Note that since the FMR

is required to be fixed, the threshold ξ has to keep chang-

ing with respect to XSub
|σ . According to the EVRC metric,

we find that the image quality can be described by the gra-

dient of the FNMR decrement. In other words, if a sam-

ple xi is dropped from the face dataset, the more sharply

FNMR decreases, the lower quality of xi has. Inspired by

this, we propose to compute the FNMR difference as the

quality pseudo-label of xi (denoted as Qxi
) by

Qxi
= Rfnm(X , ξX )−Rfnm(XSub

|−xi
, ξXSub

|−xi

), (3)

where XSub
|−xi

is the subset of X excluding xi, ξX and ξXSub
|−xi

denote the thresholds for X and XSub
|−xi

, respectively. We

can see that for the given X , Qxi
is only determined by xi

and the threshold ξ. Since the FMR is fixed, the threshold ξ

can be calculated as ξ = R−1
fm(X , fmr), where R−1

fm(·) de-

notes the inverse function of Rfm(·). Objectively speaking,

the actual quality of xi is independent of the FMR. How-

ever, by Eq. (3), we can obtain only one empirical quality

score under a fixed FMR. From a statistical point of view,

we should take the expectation of Qxi
on the FMR to ap-

proach the actual quality score. Meanwhile, we can regard

the FMR as a random variable uniformly distributed over

[0, 1]. Therefore, Qxi
can be reformulated as

Qxi
=

 1

0

[Rfnm(X , R−1
fm(X , fmr))

−Rfnm(XSub
|−xi

, R−1
fm(XSub

|−xi
, fmr))]d(fmr).

(4)

By substituting Eq. (2) into Eq. (4), we obtain

Qxi
=

 1

0





|SP

X|<R
−1

fm
(X ,fmr)

|

|SP
X |



 d(fmr)−

 1

0





|SP

XSub
|−xi

|<R
−1

fm
(XSub

|−xi
,fmr)

|

|SP
XSub

|−xi

|



 d(fmr).

(5)

According to our definition, it holds that SP
XSub

|−xi

= SP
X−SP

xi

and SN
XSub

|−xi

= SN
X − SN

xi
. For a given dataset X , both SP

X

and SN
X keep unchanged with different sample xi. There-

fore, the computation of Eq. (5) is uniquely determined by

SP
xi

and SN
xi

. Then Eq. (5) can be simplified to

Qxi
= F(SP

xi
,SN

xi
), (6)

where F(·) is the mapping function from SP
xi

and SN
xi

to

Qxi
. In the following, we discover that the FIQA can be

well described by the SDD. Such discover can also be ex-

plained intuitively. For example, a high-quality face image

is always easy to be recognized. That means it is close to

the intra-class samples and far from inter-class samples. In

other words, the distance between the Pos-Sim and the Neg-

Sim is large. Inversely, the low-quality face image produces

a small SDD, as shown in Fig. 3. Based on the above analy-

sis, we propose to take advantage of the Wasserstein metric

to measure the SDD as Qxi
, which is expressed by

Qxi
= WD(SP

xi
SN

xi
)

= inf
γ∈Π(SP

xi
,SN

xi
)
E(sPxi

,sNxi
)∼γ



sPxi
− sNxi







, (7)

where WD(·) denotes Wasserstein distance, Π(SP
xi
, SN

xi
)

denotes the set of all joint distribution γ(sxi
, syi

) whose

marginals are respectively SP
xi

and SN
xi

.

According to the international biometric quality standard

ISO/IEC 29794-1:2016 [14], the face quality pseudo-label

should be regularized in the range [0,100] in which 100 and

0 indicate the highest and lowest quality pseudo-labels, re-

spectively. Hence, Qxi
is obtained by

Qxi
= δ[WD(SP

xi
SN

xi
)], (8)

where

δ[lxi
] = 100×

lxi
−min(L)

max(L)−min(L)
, lxi

∈ L, (9)

where lxi
= WD(SP

xi
SN

xi
), and L = {lxi

|i = 1, 2, ..., n}.

3.2. Acceleration of Label Generation

For a face dataset of size n, if the pair-wise similarity

is taken into consideration overall dataset, the time com-

plexity of Qxi
is O(n2). This is high computation when

encountering a large-scale dataset. To reduce the computa-

tional complexity, we randomly select m positive pairs and

m negative pairs, where m is set to be even and m ≪ n.

Then Qxi
is computed K times, and Eq. (8) can be trans-

formed to

Q̃xi
=

K

k=1 δ[WD(SPm

xk
i

SNm

xk
i

)]

K
, (10)

where SPm

xk
i

and SNm

xk
i

are the sampled similarities of posi-

tive and negative pairs within m pairs, respectively. Note

that for each sample, since m and K are set to be constant,

the computational complexity of Eq. (10) is O(2m × K),
where 2m×K is at least one order lower than n. Therefore,

the generation of quality annotation overall dataset achieves

O(2m × K × n) = O(n) time complexity. Suppose that

δ[WD(SP
xk
i

SN
xk
i

)] is a noiseless estimation of Qxi
and a
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noise variable k is induced in each sampling. Then Eq.

(10) can be rewritten as

Q̃xi
= δ[WD(SP

xi
SN

xi
)] =

K

k=1(δ[WD(SPm
xi

SNm
xi

)] + k)

K
.

(11)

Note that k can be regarded as the difference between

δ[WD(SP
xi
SN

xi
)] and δ[WD(SPm

xk
i

SNm

xk
i

)]. According to

the probability theory [18], we have lim
k→∞

K

i=1 i = 0.

Hence, Eq. (10) is an unbiased estimation of Eq. (8).

3.3. Quality Regression Network

With our generated quality pseudo-labels, we can train

an individual FIQA model, which no longer resorts to the

recognition system to output quality score. To match the

predictions of the quality regression network with the recog-

nition system, knowledge-transfer is applied during train-

ing. Specifically, we first remove the embedding and clas-

sification layers from a pre-trained face recognition model.

Then we employ a dropout operator with 0.5 probability to

avoid overfitting during training, and add a fully connected

layer in order to output the quality score for FIQA. Finally,

we use the Huber loss function [13] to train the quality re-

gression network, which is given by

Lζ(xi, Q̃xi
;π) =







1
2






Q̃xi

− φπ (xi)






2
, if






Q̃xi

− φπ (xi)





≤ ζ

ζ





Q̃xi

− φπ (xi)






2
− 1

2ζ
2, otherwise

(12)

where ζ is the location parameter, π and φπ(·) denote the

network parameters and the regression output, respectively.

Compared with existing FIQA methods, our method

considers both Pos-Sim and Neg-Sim overall dataset, which

is more amicable to recognition performance. Moreover,

our approach is unsupervised without any human annota-

tion.

4. Experiments

4.1. Experimental Setup

Datasets. The refined MS-Celeb-1M (MS1M) [4] is uti-

lized as the training data of the recognition model and qual-

ity regression model. Besides, CASIA-WebFace (CASIA)

[5] is adopted to train the recognition model for evaluating

the generalization of our method. During testing, LFW [11],

Adience [6], UTKFace [32], and IJB-C [16] are employed

as test datasets. Note that IJB-C is one of the most chal-

lenging public benchmarks and contains large variations in

pose, expression, illumination, blurriness, and occlusion.

Face recognition models. Different face recognition

models are employed, containing ResNet50 trained on

MS1M (ResNet50-MS1M), ResNet101 trained on MS1M

Table 1: AOC results on same recognition model setting.

LFW FMR=1e−2 FMR=1e−3 FMR=1e−4 Avg

A
n

a
ly

ti
cs

B
a

se
d BRISQUE [17] 0.0321 0.0953 0.2579 0.1284

BLIINDS-II [19] 0.1755 0.0923 0.2270 0.1649

PQR [30] 0.1921 0.2952 0.3519 0.2797

L
ea

rn
in

g

B
a

se
d

FaceQnet-V0 [10] 0.4535 0.4955 0.5399 0.4963

FaceQnet-V1 [9] 0.4417 0.5471 0.6167 0.5352

PFE [23] 0.4814 0.5057 0.5895 0.5255

SER-FIQ [25] 0.5669 0.6675 0.7469 0.6604

PCNet [29] 0.6975 0.7275 0.7197 0.7149

SDD-FIQA (Our) 0.8284 0.7993 0.8170 0.8149

Adience FMR=1e−2 FMR=1e−3 FMR=1e−4 Avg

A
n

a
ly

ti
cs

B
a

se
d BRISQUE [17] 0.2686 0.2056 0.2353 0.2365

BLIINDS-II [19] 0.1723 0.1634 0.1565 0.1640

PQR [30] 0.2454 0.2102 0.1962 0.2173

L
ea

rn
in

g

B
a

se
d

FaceQnet-V0 [10] 0.4756 0.5021 0.4735 0.4837

FaceQnet-V1 [9] 0.3809 0.4613 0.4350 0.4257

PFE [23] 0.5490 0.6046 0.5556 0.5698

SER-FIQ [25] 0.5009 0.5539 0.4384 0.4977

PCNet [29] 0.5224 0.5597 0.5255 0.5359

SDD-FIQA (Our) 0.5962 0.6307 0.5719 0.5996

IJB-C FMR=1e−2 FMR=1e−3 FMR=1e−4 Avg

A
n

a
ly

ti
cs

B
a

se
d BRISQUE [17] 0.2943 0.3292 0.4216 0.3484

BLIINDS-II [19] 0.3641 0.3656 0.3806 0.3701

PQR [30] 0.4991 0.4979 0.5230 0.5067

L
ea

rn
in

g

B
a

se
d

FaceQnet-V0 [10] 0.6149 0.6047 0.6330 0.6175

FaceQnet-V1 [9] 0.6343 0.6332 0.6552 0.6409

PFE [23] 0.6899 0.6964 0.7306 0.7056

SER-FIQ [25] 0.6115 0.5976 0.6135 0.6075

PCNet [29] 0.7053 0.7055 0.7363 0.7157

SDD-FIQA (Our) 0.7209 0.7239 0.7539 0.7329

(ResNet101-MS1M), and ResNet101 trained on CASIA

(ResNet101-CASIA). All recognition models are learned

by ArcFace with 512-dimensional embedding features [4].

Implementation details. Our network is built on the Py-

Torch framework and on a machine equipped with eight

NVIDIA Tesla P40 GPUs. Face images are all aligned,

scaled, and cropped to 112 × 112 pixels by MTCNN [31].

During the training stage, all networks are learned with

Adam optimizer with weight decay 5e−4. The initial learn-

ing rate is 1e−3 and drops by a factor of 5e−2 every 5

epochs. We set m = 24 and K = 12 in Eq. (10) and the

parameter ζ is set to 1 in Eq. (12).

Evaluation protocols. As done in [2, 10, 9, 25, 20], we

use EVRC to evaluate the performance of FIQA methods .

Moreover, we introduce Area Over Curve (AOC) to quan-

tify the EVRC results, which is defined by

AOC = 1−

 b

a

g(ϕ)dϕ, (13)

where g(ϕ) denotes the FNMR at ϕ, ϕ = 1− σ is the ratio

of unconsidered images, a and b denote lower and upper

bounds and are set to be 0 and 0.95 in our experiments,

respectively.

4.2. Results & Analysis

The proposed SDD-FIQA method is compared with

eight state-of-the-arts covering analytics-based methods
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Figure 4: Face verification performance on the predicted face image quality scores. The EVRC shows the effectiveness of

rejecting low-quality face images in terms of FNMR at a threshold of 1e−3 FMR.

(e.g. BRISQUE [17], BLIINDS-II [19], and PQR [30])

and learning-based FIQA methods (e.g. FaceQnet-V0 [10],

FaceQnet-V1 [9]1, PFE [23]2, SER-FIQ (same model),

[25], and PCNet [29]). All the compared methods are repro-

duced following their paper settings or using their released

codes directly. In the following, we compare the proposed

SDD-FIQA with competitors under the same recognition

model setting and the cross recognition model setting to ver-

ify the FIQA performance and generalization. We carry out

comprehensive experiments to justify the superiority of our

SDD-FIQA in terms of the quality weighting improvement

of set-based face recognition verification [29], unbiasedness

of bias factors [24]. Finally, we also implement ablation

study to demonstrate the effectiveness of each key compo-

nents of our method.

1https://github.com/uam-biometrics/FaceQnet.
2https://github.com/seasonSH/Probabilistic-Face-Embeddings.

4.2.1 Same Recognition Model Performance

In this part, we follow [25] to evaluate the performance un-

der the same recognition model. ResNet50-MS1M is se-

lected to generate quality pseudo-labels and training qual-

ity regression network. As shown in Fig. 4, the FNMR of

SDD-FIQA sharply decreases with the increase of the ratio

of unconsidered images and outperforms all the compared

methods by a large margin. Moreover, we also report the

AOC results in Tab. 1. The results show that our SDD-

FIQA improves the best competitor by 13.9% for LFW,

5.2% for Adience, and 2.4% for IJB-C in terms of the aver-

age (Avg) performance.

4.2.2 Cross Recognition Model Performance

In real-world applications, the recognition models for train-

ing and testing may not be the same. To verify the

generalization of the proposed SDD-FIQA, we perform
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Table 2: The set-based verification TAR results on IJB-C.

The deployed recognition model is ResNet50-MS1M.

Weighting FMR=1e−2 FMR=1e−3 FMR=1e−4 Avg

Baseline 0.9715 0.9512 0.9191 0.9473

SER-FIQ [25] 0.9755 0.9559 0.9318 0.9544

PCNet [29] 0.9766 0.9602 0.9461 0.9610

SDD-FIQA (Our) 0.9773 0.9605 0.9473 0.9617
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Figure 5: The distributions of quality scores with different

bias factors. The first row is for age factor and the second

row is for race factor.

the cross recognition model experiment with two settings:

1) First employ ResNet50-MS1M for generating quality

pseudo-labels and training quality regression network, and

then adopt ResNet101-MS1M as the deployed recognition

model for testing; 2) First employ ResNet50-MS1M for

generating quality pseudo-labels and training quality re-

gression network, and then adopt ResNet101-CASIA as the

deployed recognition model for testing. To the best of our

knowledge, we are the first to evaluate the generalization of

FIQA methods.

The EVRC results are shown in Fig. 4 and the AOC re-

sults are reported in Tab. 3. Fig. 4 (b), (e) and (h) de-

monstrate the results on the first cross model setting and

Fig. 4 (c), (f) and (i) show the results on the second cross

model setting. We can see that SDD-FIQA performs bet-

ter than all the compared methods on LFW, Adience, and

IJB-C. Moreover, The gap is enlarged with the increase of

the ratio of unconsidered images. The results in Tab. 3

also show that SDD-FIQA achieves over 17.5% on LFW,

6.5% on Adience, and 2.7% on IJB-C higher accuracy than

the best competitor in terms of the Avg AOC performance.

Tab. 4 demonstrates that SDD-FIQA outperforms the best

competitor by 8.3% on LFW, 3.7% on Adience, and 1.1%

on IJB-C, respectively. The above results demonstrate that

the proposed SDD-FIQA has better generalization than its

counterparts.

Table 3: AOC results on cross recognition model setting.

The deployed recognition model is ResNet101-MS1M.
LFW FMR=1e−2 FMR=1e−3 FMR=1e−4 Avg

A
n

a
ly

ti
cs

B
a

se
d BRISQUE [17] 0.0700 0.1200 0.1779 0.1227

BLIINDS-II [19] 0.2035 0.2004 0.2056 0.2032

PQR [30] 0.3508 0.2657 0.2995 0.3053

L
ea

rn
in

g

B
a

se
d

FaceQnet-V0 [10] 0.5277 0.5757 0.5707 0.5580

FaceQnet-V1 [9] 0.5002 0.5158 0.5901 0.5354

PFE [23] 0.5402 0.5587 0.5828 0.5606

SER-FIQ [25] 0.6027 0.6401 0.7011 0.6480

PCNet [29] 0.6774 0.6915 0.6681 0.6790

SDD-FIQA (Our) 0.8181 0.7881 0.7874 0.7979

Adience FMR=1e−2 FMR=1e−3 FMR=1e−4 Avg

A
n

a
ly

ti
cs

B
a

se
d BRISQUE [17] 0.2773 0.2097 0.2412 0.2428

BLIINDS-II [19] 0.1425 0.1416 0.2660 0.1834

PQR [30] 0.2697 0.2322 0.2601 0.2540

L
ea

rn
in

g

B
a

se
d

FaceQnet-V0 [10] 0.4380 0.4874 0.4837 0.4697

FaceQnet-V1 [9] 0.3475 0.4196 0.4721 0.4131

PFE [23] 0.5130 0.6168 0.5909 0.5736

SER-FIQ [25] 0.4763 0.5163 0.4768 0.4898

PCNet [29] 0.4959 0.5694 0.5630 0.5428

SDD-FIQA (Our) 0.5563 0.6415 0.6365 0.6114

IJB-C FMR=1e−2 FMR=1e−3 FMR=1e−4 Avg

A
n

a
ly

ti
cs

B
a

se
d BRISQUE [17] 0.2745 0.3461 0.4003 0.3403

BLIINDS-II [19] 0.3819 0.3915 0.4074 0.3936

PQR [30] 0.5124 0.5110 0.5485 0.5240

L
ea

rn
in

g

B
a

se
d

FaceQnet-V0 [10] 0.6240 0.6022 0.6445 0.6236

FaceQnet-V1 [9] 0.6399 0.6376 0.6455 0.6410

PFE [23] 0.6790 0.6910 0.7239 0.6980

SER-FIQ [25] 0.6134 0.6044 0.6473 0.6217

PCNet [29] 0.7016 0.7031 0.7280 0.7109

SDD-FIQA (Our) 0.7160 0.7243 0.7500 0.7301

4.2.3 Set-based Verification with Quality Weighting

We perform the set-based verification on IJB-C dataset to

verify the face quality impact in terms of the recognition

performance. Specifically, as described in [29], similari-

ties are collected by set-to-set mapping, in which each set

consists of a variable number of images or video frames

from different sources. Then the set descriptor is calcu-

lated as a weighted average of individual faces by f(x) =
1
n

n

i=1 φπ(xi) · f(xi), where x denotes the identity corre-

sponding to xi. We evaluate the True Accept Rate (TAR)

scores under different FMR thresholds following [29]. The

set-based verification results are reported in Tab. 2. The

results show that the quality weight of our method is more

beneficial to verification performance.

4.2.4 Investigation of Bias Factors

As done in [24], we also implement an experiment to in-

vestigate whether there is a significant correlation between

the quality score and the bias factors such as age and race.

The investigation results on the UTKFace dataset are shown

in Fig. 5. It is known that the greater the distance between

the different bias factor distributions is, the stronger correla-

tion between the predicted quality scores and the face image

bias factors. We can find that the quality scores predicted by

our SDD-FIQA have a smaller bias than the SER-FIQ and
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Figure 7: Empirical studies on the parametric sensitivity of

SDD-FIQA. (a) is for number of similarity pairs m. (b) is

fo calculation times K.

PCNet methods in terms of the age and race factors. This

investigation further proves that our SDD-FIQA is more re-

liable and robust than the stat-of-the-arts.

4.2.5 Ablation Study

Parametric sensitivity. To confirm the parametric sensi-

tivity of SDD-FIQA, we evaluate the AOC results with dif-

ferent hyper-parameters on the three benchmark datasets,

which is shown in Fig. 7. To be specific, we fix K = 1 and

vary m from 6 to 54 to select a proper value of m in the first

experiment. Then we fix m = 24 and vary K from 2 to 40

to determine the suitable value of K in the second experi-

ment. All experiments are performed on ResNet101-MSIM

as the deployed recognition model under FMR=1e−2. We

can notice that with the increases of K and m, the AOC

stably increases and converges until 24 for the number of

similarity pairs and 12 for calculation times. Thus in our

experiments, m and K are set to 24 and 12, respectively.

Similarity distribution information comparison. To con-

firm the efficacy of utilizing both positive pairs and negative

pairs, we report the EVRC results obtained by three differ-

ent generation schemes of quality pseudo-labels: 1) only

using positive pairs similarity distribution information (Pos-

Only) by setting the SN
xi

to 1 in Eq. (8), 2) only using nega-

tive pairs similarity distribution information (Neg-Only) by

setting the SP
xi

to -1 in Eq. (8), and 3) using the similarity

Table 4: AOC results on cross recognition model setting.

The deployed recognition is ResNet101-CASIA.

LFW FMR=1e−2 FMR=1e−3 FMR=1e−4 Avg

A
n

a
ly

ti
cs

B
a

se
d BRISQUE [17] 0.0689 0.0976 0.1870 0.1178

BLIINDS-II [19] -0.0065 0.0557 0.2277 0.0923

PQR [30] 0.1771 0.0213 0.0849 0.0944

L
ea

rn
in

g

B
a

se
d

FaceQnet-V0 [10] 0.5454 0.4635 0.4649 0.4913

FaceQnet-V1 [9] 0.5938 0.5174 0.4842 0.5318

PFE [23] 0.6381 0.6500 0.6090 0.6324

SER-FIQ [25] 0.6212 0.5413 0.4962 0.5529

PCNet [29] 0.6629 0.6398 0.6079 0.6369

SDD-FIQA (Our) 0.7395 0.7001 0.6296 0.6898

Adience FMR=1e−2 FMR=1e−3 FMR=1e−4 Avg

A
n

a
ly

ti
cs

B
a

se
d BRISQUE [17] 0.1551 0.1398 0.1489 0.1479

BLIINDS-II [19] 0.1163 0.1037 0.1337 0.1179

PQR [30] 0.1559 0.1327 0.1140 0.1342

L
ea

rn
in

g

B
a

se
d

FaceQnet-V0 [10] 0.4244 0.3271 0.2840 0.3452

FaceQnet-V1 [9] 0.4283 0.3136 0.2524 0.3314

PFE [23] 0.5730 0.4392 0.3154 0.4425

SER-FIQ [25] 0.4529 0.3327 0.2826 0.3561

PCNet [29] 0.5178 0.3935 0.2962 0.4025

SDD-FIQA (Our) 0.5790 0.4535 0.3443 0.4589

IJB-C FMR=1e−2 FMR=1e−3 FMR=1e−4 Avg

A
n

a
ly

ti
cs

B
a

se
d BRISQUE [17] 0.4014 0.3680 0.3769 0.3821

BLIINDS-II [19] 0.3202 0.2276 0.2920 0.2799

PQR [30] 0.4747 0.4047 0.3304 0.4033

L
ea

rn
in

g

B
a

se
d

FaceQnet-V0 [10] 0.5469 0.4212 0.3803 0.4495

FaceQnet-V1 [9] 0.5411 0.4742 0.3983 0.4712

PFE [23] 0.6674 0.5512 0.4848 0.5678

SER-FIQ [25] 0.5453 0.4276 0.4190 0.4640

PCNet [29] 0.6537 0.5379 0.4619 0.5512

SDD-FIQA (Our) 0.6768 0.5628 0.4832 0.5743

distribution distance between the positive pairs and nega-

tive pairs (SDD-FIQA). By observing the curves in Fig. 6,

we can see that utilizing both intra-class and inter-class in-

formation can achieve the best result, and only using intra-

class information achieves a better result than only using

inter-class information. It is worth mentioning that Neg-

Only can also reduce FNMR, which proves the fact that the

inter-class information is also effective to FIQA.

5. Conclusion

This paper proposes a novel FIQA approach called SDD-

FIQA, which considers recognition Similarity Distribution

Distance (SDD) as face image quality annotation. The nov-

elties of our algorithm are three-fold: First, we are the

first to consider the FIQA as a recognizability estimation

problem. Second, we propose a new framework to map

the intra-class and inter-class similarity to quality pseudo-

labels via the Wasserstein metric, which is closely related

to the recognition performance. Third, an efficient imple-

mentation of SDD is developed to speed up the label gener-

ation and reduce the time complexity from O(n2) to O(n).
Compared with existing FIQA methods, the proposed SDD-

FIQA shows better accuracy and generalization.
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