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Abstract

In this paper, we provide a theoretical foundation for

pointwise map recovery from functional maps and highlight

its relation to a range of shape correspondence methods

based on spectral alignment. With this analysis in hand,

we develop a novel spectral registration technique: Fast

Sinkhorn Filters, which allows for the recovery of accu-

rate and bijective pointwise correspondences with a su-

perior time and memory complexity in comparison to ex-

isting approaches. Our method combines the simple and

concise representation of correspondence using functional

maps with the matrix scaling schemes from computational

optimal transport. By exploiting the sparse structure of the

kernel matrices involved in the transport map computation,

we provide an efficient trade-off between acceptable accu-

racy and complexity for the problem of dense shape corre-

spondence, while promoting bijectivity.1

1. Introduction

Non-rigid shape matching remains at the core of many

computer vision tasks including statistical shape analysis

[4], texture mapping [10], and deformation transfer, [41],

among others.

Among many existing approaches for this problem [43,

38], a prominent overall strategy is to exploit spectral quan-

tities, such as the eigenfunctions of the Laplace-Beltrami

operator, which are naturally invariant to isometric shape

deformations. Within this category, the functional map

framework, introduced in [28] proposes an efficient way to

represent and compute mappings and achieves the state-of-

the-art accuracy in difficult shape matching problems [23].

One of the advantages of this framework is that it al-

lows to formulate shape correspondence as a simple opti-

mization problem relating the basis functions on the two

shapes, from which a dense point-to-point correspondence

can be extracted. This framework has been successfully ap-

1Demo code: https://github.com/paigautam/CVPR21_
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Figure 1: We formally justify pointwise map recovery

from functional maps using the adjoint, and introduce Fast

Sinkhorn Filters: an efficient method promoting bijectivity

in this process. This yields better pointwise maps (color

transfer) with improvement in bijectivity (errors in red).

plied in both axiomatic [28, 16, 14, 32] and learning-based

[18, 35, 13, 8] settings. However, one of the recurring issues

of virtually all works in this domain, is defining and using

the exact relation between functional and pointwise maps.

This problem is especially relevant in the conversion step

from functional to point-to-point correspondences. This

conversion has been specifically treated in several works,

including [28, 33, 11, 34, 15, 45, 23] among others. De-

spite this significant effort, the precise rigorous relation be-

tween the two representations still remains ill-defined. In

this paper, we provide a rigorous theoretical justification

for pointwise conversion from a functional map, and dis-

cuss how it is related to the problem of aligning the spectral

embeddings of non-rigid shapes. We highlight that unlike a

functional map, which is not well-suited for pointwise con-

version, the adjoint operator can naturally be used for point-

to-point map extraction both theoretically in the smooth set-

ting, and in practice on discrete shapes.

With this foundation in hand, we propose a general

framework for iterative spectral alignment, and illustrate

that many previous shape matching methods are regular-

ized variants of our meta algorithm. Finally, we introduce

an effective regularized procedure using Sinkhorn’s algo-

rithm to compute accurate near-bijective pointwise corre-

spondences that can scale to densely-sampled shapes. We

find that existing approaches do not allow the recovery of

an accurate, smooth and bijective point-to-point correspon-

dence with acceptable time and memory complexity. Such

methods are either too inaccurate (e.g., nearest-neighbor),
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or too time and memory consuming (e.g., linear-assignment

solvers) thereby making them infeasible for practical appli-

cations.

We use our analysis of spectral alignment to construct

a sparse kernel assignment matrix which is then efficiently

processed using matrix scaling to output an entropic regu-

larized transport plan. Finally by extracting the maximum

likelihood estimate of this plan, we demonstrate that our ap-

proach, termed Fast Sinkorn Filters, produces accurate re-

sults often at a fraction of the cost of existing methods in

both direct and iterative pointwise conversion applications.

2. Related Work

Shape matching is a very well-studied area of computer

vision and computer graphics and its full overview is be-

yond the scope of our paper. Below we review the work

most closely related to ours and focus primarily on the func-

tional maps framework. We refer the interested readers to

recent surveys including [43, 42, 3, 38] for an in-depth treat-

ment of other shape matching approaches.

Functional Maps Our work focuses primarily on the

functional map framework, which was introduced in [28]

for solving near-isometric shape correspondence problems,

and extended in many follow-up works, including [16, 1,

17, 32, 11, 6] among others (see also [29] for a general

overview). The key idea in these techniques is to estimate

linear transformations between spaces of real-valued func-

tions, represented in a reduced functional basis. This linear

structure implies that functional maps can be conveniently

encoded as small matrices and optimized for using standard

linear algebraic techniques.

In addition to the convenience of the representation it-

self, it has been observed by several works in this do-

main that many natural properties on the underlying point-

wise correspondences can be expressed as objectives on

functional maps [16, 36, 32, 6]. For example, orthonor-

mal functional map matrices correspond to locally volume

preserving maps [28, 16, 36], near isometries must re-

sult in functional maps that commute with the Laplacian

[28, 46, 32, 20, 19], while conformal maps must preserve

certain functional inner products [36, 6, 47].

These results typically assume that the functional map

is induced as the pull-back of some underlying point-to-

point correspondence. However, the space of linear func-

tional transformations is strictly larger, which means that

additional regularization is required. In [27, 26] the rela-

tion between pointwise and functional maps was studied

and the authors proposed an optimization term [27] aimed

to promote only functional maps arising from point-to-point

ones. That work still used the default conversion scheme

from [28], however.

Functional Map Conversion More closely related to

ours are works that directly consider the question of point-

to-point correspondence recovery from functional maps.

This step is instrumental in all functional maps-based cor-

respondence methods. As we highlight below, the original

method [28] suggested a recovery technique based on con-

sidering images of indicator functions at points and then an

efficient method based on iterative closest point in the spec-

tral domain. Unfortunately, no justification or analysis was

provided for whether this procedure has any analogue in the

smooth setting.

Several follow-up works noted that the conversion step

can have a fundamental limiting effect on the accuracy of

the recovered maps [33, 11, 34, 15, 45, 23]. This has led

to algorithms that incorporate smoothness using Coherent

Point Drift in the spectral domain [33], penalizing spurious

high-frequencies during conversion [10] and using higher-

order objectives such as maximizing kernel density [44, 45],

among others. Nevertheless, despite this significant effort

the fundamental question of the relation between functional

and pointwise maps in the smooth setting (i.e., indepen-

dently of the shape discretization) remains open. This is

unfortunate, as for example, discrete differential geometry

operators [24] such as the Laplacian are discretized pre-

cisely using principles from the smooth manifolds, which

contributes to their robustness to domain changes.

Interestingly, recent learning-based methods have also

highlighted the importance of both robust discretization-

insensitive conversion [18, 8, 35, 13] and of enforcing cor-

rect losses during training using either functional [35] or

point-to-point correspondences [18, 12, 13]. In the latter

category, conversion between functional and point-to-point

maps is done as a non-learned layer in the network and thus

must be correctly and consistently defined. The role of the

adjoint was considered very recently in a learning context

[22] although that work did not address standard functional

map conversion nor draw links to existing methods.

We also note that several works have studied the impor-

tance of iterative conversion between pointwise and func-

tional (or, more broadly, probabilistic) correspondences

[23, 31, 44, 45]. As the conversion step is performed re-

peatedly within these approaches, it strongly contributes to

the overall final accuracy [23].

Due to the ubiquitous nature of the conversion between

functional and point-to-point correspondences, our analy-

sis has direct implications in all of these scenarios. As

we demonstrate below, the conversion that we consider and

the resulting spectral alignment methods, while based on

the same underlying principles as in some previous works

[28, 10, 15], is theoretically better justified, more robust and

results in practical improvement especially in challenging

cases of shapes with different discretizations. Specifically,

we remark that earlier approaches for pointwise conversion
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like [28, 15] lack a formal discussion of delta functions and

the importance of combining them with adjoint operators

as we show in Theorem 1. Hence the pointwise conver-

sion schemes in these methods are purely heuristic and ul-

timately rely on the same recovery approach as [28]. Addi-

tionally, we provide a proof of optimal spectral alignment

which is essential to justify the application of regularised

optimal transport in order to enable a fast, accurate and bi-

jective pointwise conversion.

Optimal Transport We also note briefly that optimal

transport is another widely-used relaxation for matching

problems [40, 21, 45, 9]. Our use of Sinkhorn algorithm is

directly inspired by advances in this area [7, 39]. Moreover,

as we demonstrate below, existing techniques that use the

formalism of optimal transport for solving assignment prob-

lems including the Product Manifold Filter with the heat

kernels [21, 45] fall within the general spectral alignment

formalism that we study. However, in contrast to these ex-

isting methods which often rely on large dense matrices like

geodesic distances or heat kernels, our formulation of the

regularized transport problem is more efficient, as it only in-

volves sparse matrix manimulation. Our use of Sinkhorn’s

algorithm is thus both robust and provides good results even

for non-rigid 3D shapes with non-uniform sampling.

3. Regularized Spectral Alignment

In this section, we provide a formalism for pointwise

map conversion from functional maps, and discuss how this

is related to the problem of aligning the spectral embedding

of shapes. We then propose a general framework for iter-

ative spectral alignment, and illustrate that many previous

shape matching refinement methods are regularized variants

of our meta algorithm.

3.1. Background and Operators in Smooth settings

Functional maps Suppose we are given two smooth sur-

faces X ,Y and a pointwise map TXY that maps a point in

X to a point in Y . As introduced in [28], the functional

map associated with the given pointwise map TXY is de-

fined via pullback (denoted as TF
YX ): for any real-valued

function f : Y → R, its image g = TF
YX (f) is a real-valued

function on X so that g(x) = f
(

TXY(x)
)

for any x ∈ X .

Note the change in direction between TXY and TF
YX .

Although a functional map can be used directly to trans-

port real-valued functions, in most cases, we are also in-

terested in how to recover the pointwise map TXY from a

functional map TF
YX . In the original work [28] (Remark 4.1

in Section 4), the method that is alluded to is to use TF
YX to

map indicator functions, i.e. functions that equal 1 at some

point and zero elsewhere. Unfortunately, this has a major

problem in L2 (the space of square integrable functions),

since such pointwise indicators are equivalent to the zero

function. This means that in an orthonormal basis, such as

the LB eigenfunctions, such functions will be represented

as vectors of zeros. As a result, we cannot apply such a

method in practice directly.

A more principled approach can be obtained by using the

functional map adjoint as we discuss below.

Adjoint Operator Given a functional map TF
YX , the ad-

joint functional map operator TA
XY is a linear operator that

maps real-valued functions on X to those on Y , and is de-

fined implicitly [15], so that ∀ f : Y → R, g : X → R:

〈 TA
XY(g), f 〉Y = 〈 g, TF

YX (f) 〉X (1)

Here we denote with 〈 , 〉X and 〈 , 〉Y the L2 inner prod-

uct for functions respectively on shape X and Y . The ad-

joint always exists and is unique by the Riesz representation

theorem (see also Theorem 3.1 in [15]). Note that the ad-

joint operator of functional maps has been considered, e.g.,

in [15] although its role in pointwise map recovery was not

explicitly addressed in that work.

Note that the adjoint operator TA
XY , unlike the functional

map, maps the functions in the same direction as the point

wise map TXY . Besides the consistent direction, the adjoint

operator has another nice property that it always maps Dirac

deltas to Dirac deltas as shown in Theorem 1 below.

Importantly, Dirac deltas are not functions but are in-

stead special cases of distributions, which are continu-

ous linear functionals over the space of smooth square-

integrable functions (also known as test functions). Thus,

for a distribution d, given any smooth test function h, d(h)
is a real-value. One can construct a distribution df from

a square-integrable function f via integration: df (h) =
∫

f(x)h(x)dµ(x). For the special case of the Dirac deltas,

i.e., d = δx, we have δx(h) = h(x) for any test function h.

Then by definition, we write 〈 δx, h 〉 = h(x).

Theorem 1. Let TA
XY be the adjoint operator associated

with a point-to-point mapping TXY as in Eq. (1). Then

TA
XYδx = δTXY(x) for all x ∈ X .

Proof. Using Eq. (1) for any f : Y → R, we get:

〈 TA
XYδx, f 〉Y = 〈 δx, T

F
YX f 〉X = 〈 δx, f ◦ TXY 〉X = f

(

TXY(x)
)

Therefore, TA
XYδx equals some distribution d such that

〈 d, f 〉Y = f
(

TXY(x)
)

for any function f on Y . By unique-

ness of distributions this means that: TA
XYδx = δTXY(x).

To summarize, given a pointwise map TXY , we can ob-

tain a functional map TF
YX . We can then define the adjoint

functional map TA
XY . To recover TXY , we first define a

Dirac delta function δx for each point x on X and map it

using TA
XY . Its image TA

XYδx gives the Dirac delta function

defined at the corresponding point TXY(x) ∈ Y as required.
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3.2. Operators and Deltas in Discrete Settings

The discussion above holds in the smooth setting. Our

goal now is to demonstrate that the same results hold in the

discrete setting and moreover leads to practical algorithms

for pointwise map recovery.

We assume that each shape is represented as a trian-

gle mesh. A smooth function f is discretized as a vector

f that is defined at each of the vertices. We also assume

to be given a symmetric mass matrix A so that the func-

tional inner product 〈 f, g 〉 is discretized as fTAg (see

[24]). As is commonly done in geometry processing [37],

we will sometimes assume that A is a diagonal matrix of

area-weights. While this assumption not strictly required, it

simplifies some of the calculations below.

Any pointwise map TXY from a triangle mesh X to a tri-

angle mesh Y can be written as a binary matrix ΠYX of size

nX × nY (number of vertices on shapes X ,Y respectively)

so that ΠYX (x, y) equals to 1 if TXY(x) = y and equals

to 0 otherwise. We can see that, ΠYX ∈ R
nX×nY is a dis-

crete functional map in the full basis that transfers discrete

function f ∈ R
nY from Y to a function g on X via matrix

multiplication, i.e., g = ΠXY f ∈ R
nX .

Discrete Dirac deltas Recall the definition of Dirac deltas

in the smooth setting: < δx, h >= h(x) must hold for

any test function h. Discretizing this equation on a trian-

gle mesh we get: δTxAh = h(x) for any function h. Let

ex denote the indicator at x: i.e., a vector that equals to 1

in the position corresponding to x and zeros elsewhere. We

then get δTxAh = eTxh. Since this must hold for all h and

since A is symmetric, we get: Aδx = ex, or equivalently

δx = A−1ex. If we assume A to be diagonal, we obtain that

δx is a vector such that: δx(y) equals to 1/A(x) if y = x
and equals to 0 otherwise. Remark that δx is not the same as

the indicator (also known as the hat) function on the mesh.

Instead, we must factor the area of the corresponding point.

Intuitively this is because the Delta function is “responsi-

ble” for the entire region around a given point.

Discrete Adjoint Operators in Full Basis As defined in

the smooth setting, the adjoint operator can be derived from

the functional map via 〈 TA
XY(g), f 〉Y = 〈 g, TF

YX (f) 〉X .

Similarly, the discrete adjoint operator in the full basis,

ΓXY ∈ R
nY×nX is a matrix that maps discrete functions

from X to Y , i.e., 〈 ΓXYg, f 〉Y = 〈 g,ΠYX f 〉X .

Denoting the area matrices of shapes X , Y as AX ,AY ,

we have: fTAYΓXYg = fTΠT
YXAXg, which must hold

for all pairs of f ,g. Therefore, we have:

ΓXY = A−1
Y ΠT

YXAX (2)

If AX ,AY are diagonal matrices, this leads to:

ΓXY(y, x) =

{

AX (x)/AY(y) if TXY(x) = y

0 otherwise
(3)

Remark that Theorem 1 also holds in the discrete setting.

Specifically, for any discrete Dirac delta δx = A−1
X ex on

X , we have ΓXYδx = A−1
Y ΠT

YXAXA−1
X ex = A−1

Y ΠT
YXex =

A−1
Y eTXY(x) = δTXY(x) as required.

Discrete Adjoint Operators in a Reduced Basis Given

the constructions above, it is easy to translate them to the

setting, where functions are represented through their coef-

ficients in some possibly reduced basis, such as the eigen-

functions of the Laplace-Beltrami operator.

Suppose we are given a basis on triangle meshes X ,Y
that we store as columns of matrices ΦX ,ΦY respec-

tively. We assume that these bases are orthonormal with

respect to the corresponding mass matrices AX ,AY , i.e.,

ΦT
XAXΦX = Id and ΦT

YAYΦY = Id. Note that the ba-

sis matrice have size: ΦX ∈ R
nX×kX and ΦY ∈ R

nY×kY ,

where kX ≤ nX , kY ≤ nY . In practice, the number of ba-

sis elements k is in range of [ 50 , 200 ], while the number

of vertices n can be tens of thousands.

In the reduced basis, a functional map simply “trans-

lates” the coefficients of functions expressed in the given

basis. Specifically, following [29] we have that a func-

tional map in the reduced is simply given as: CYX =
Φ†

XΠYXΦY . Note that CYX ∈ R
kX×kY is a functional

map in the reduced basis mapping coefficients of functions

from Y to X . Applying the same idea to the adjoint opera-

tor, we obtain the adjoint operator in the reduced basis, i.e.,

DXY = Φ†
YΓXYΦX . Plugging in Eq. (2), we have

DXY= Φ−1
Y ΓXYΦX = Φ†

YA
−1
Y ΠT

YXAXΦX

= ΦT
YΠ

T
YX

(

Φ†
X

)T
= CT

YX

(4)

Here we used the fact that Φ†
S = ΦT

SAS (S = X ,Y) since

the basis is assumed to be orthonormal. This calculation

shows that D in the reduced basis is simply the transpose of

the functional map C in the opposite direction.

We note that Theorem 1 also holds approximately in

the discrete setting with the reduced basis. Recall that

the discrete Dirac delta on shape X in the full basis is

δx = A−1
X ex. We can compute its corresponding coef-

ficient vector dx w.r.t. the reduced basis ΦX , i.e., dx =
Φ†

XA−1
X ex = ΦT

XAXA−1
X ex = ΦT

Xex We then have:

DXYdx=
(

Φ†
YA

−1
Y ΠT

YXAXΦX

)

ΦT
Xex

= ΦT
YAYA

−1
Y ΠT

YXAXΦXΦT
Xex = ΦT

YΠ
T
YXAXΦXΦT

Xex

≈ ΦT
YΠ

T
YXex = ΦT

YeTXY(x) = dTXY(x)

Here, the approximation error comes from the functional

basis truncation. Since ΦT
(

AΦΦT − Id
)

= 0 holds, ex can

be considered as an approximation for AXΦXΦT
Xex. We

therefore have DXYdx ≈ dTXY(x).

In summary, in this section, we justified that the adjoint

operators in the discrete setting, both in the full basis or
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Figure 2: Top: a pair of near-isometric deformed spheres.

Bottom: a pair of non-isometric deformed spheres. We com-

pare the pointwise map recover error between using the ad-

joint operators (Eq. (5) and (6)) and using the functional

maps as suggested in [28].

reduced basis, lead to the same result as highlighted in The-

orem 1. Specifically, the discrete adjoint operators always

map the discrete Dirac deltas (coefficients) to Dirac deltas

(coefficients). Note that the same claim does not hold for

the functional map itself, both because the map direction is

reversed and because area elements might be different.

3.3. Pointwise Map Conversion

Overview Recall that in the smooth setting, we can al-

ways convert a given pointwise map into a functional map

and then use Eq. (1) to obtain the adjoint operator; we can

then recover the original pointwise map from an adjoint op-

erator as shown in Theorem 1 without any additional as-

sumptions on the map (e.g., isometric or local volume pre-

serving maps). This one-to-one relationship between point-

wise maps and the adjoint functional map also holds exactly

in the discrete setting in both the full and reduced basis, up

to basis truncation errors in the latter.

This suggests the following pipeline for computing

pointwise correspondences: first we can use existing meth-

ods [28, 31, 30] to compute a functional map CYX through

optimization using some descriptors. Then the adjoint op-

erator can be obtained by setting DXY = CT
YX . Finally, we

can extract a pointwise map TXY from DXY by using DXY

to map the coefficients of the Dirac deltas.

Map conversion We now discuss in detail how to ex-

tract a pointwise map TXY from an adjoint functional map

DXY . Recall that we have DXYdx ≈ dTXY(x), which can

Algorithm 1: Iterative Meta Algorithm (IMA)

Input : A pair of shapes X ,Y with basis ΦX ,ΦY

Output: Pointwise map TXY and adjoint map DXY

Initialization : An initial guess of DXY

while Not converged do

(1) Extract map TXY from DXY (e.g. Eq. (5))

(2) Convert the extracted TXY to DXY (Eq. (4))

end

be equivalently written as DXYΦ
T
Xex ≈ ΦT

YeTXY(x). There-

fore, we have TXY(x) = NNsearch
(

ΦY , e
T
xΦXDT

XY

)

, where

NNsearch
(

P,q
)

returns the closest point (nearest neigh-

bor) in P for the query point q, where points in P are stored

in rows. We then iterate through all the points x in shape X
and obtain the pointwise map:

TXY = NNsearch
(

ΦY ,ΦXDT
XY

)

(5)

We can similarly extract a pointwise map TYX in the

opposite direction from DXY via:

TYX = NNsearch
(

ΦXDT
XY ,ΦY

)

(6)

We emphasize that this is different from the pointwise map
conversion proposed in [28] and used in follow-up works

including [15], where the functional map matrix CYX is

used directly to transport Delta functions. As remarked

above, this procedure, unfortunately has no justification in

the smooth setting.

Synthetic example Fig. 2 shows two pairs of deformed

spheres with different underlying mesh structure, and we

compare the map conversion error between using the ad-

joint operators and the functional maps when transferring

Delta functions. Remark that for a pair of shapes that are

near-isometric (top of Fig. 2), implying that local areas are

preserved by the underlying map, using functional maps to

recover the pointwise correspondence is comparable (while

nevertheless being slightly worse) to the results of using

the adjoint operators. However, when two shapes are far

from isometry (bottom of Fig. 2), using the adjoint opera-

tors achieves significantly better results than using the func-

tional maps, which may not even converge with increasing

basis size (bottom right).

3.4. Spectral Embedding Alignment

The discussion above focuses on the functional map

representation and the conversion step between functional

maps and point-to-point ones. Another, very fruitful, per-

spective on the same procedure can be obtained by consid-

ering the spectral embeddings of the two shapes and align-

ments between them.

Given a shape X with the reduced basis ΦX we call its

spectral embedding the point cloud obtained by construct-

ing a point for each row of ΦX , using each columns as coor-

dinates. From Section 3.1, this is the same as constructing
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Figure 3: Fast Sinkhorn Filters: Illustrating spectral embedding alignment using regularized optimal transport. Our pipeline

inputs a set of aligned basis functions and outputs a pointwise correspondence between the shapes.

a point cloud where the coordinates of each point represent

the coefficients of its delta function in the reduced basis.

Optimal linear alignment Recall from the discussion

above we have DXYdx ≈ dTXY(x). Since dx represents

the coefficients of δx in the reduced basis of shape X , and

DXYdx represents the coefficients of the image in the re-

duced basis, this means that the operator DXY aligns the

spectral embeddings of the shape X and Y . This can also

be written as follows: DXYΦ
T
X ≈ (ΠYXΦY)

T .

Interestingly, the adjoint operator can also be deduced as

the optimal linear transformation that aligns the spectral

embeddings, given a point-to-point map. I.e.,

DXY = argminX
∥

∥XΦT
X −

(

ΠYXΦY

)T∥
∥ (7)

which can be easily demonstrated via:

X∗ = argminX
∥

∥XΦT
X −

(

ΠYXΦY

)T∥
∥

= argminX
∥

∥ΦXXT −ΠYXΦY

∥

∥

=
(

Φ†
XΠYXΦY

)T
= CT

YX = DXY

(8)

Intuitively this means that the adjoint is the optimal lin-

ear operator that aligns two spectral embeddings given a

pointwise map. Again, we stress that the same interpreta-

tion does not hold for the functional map itself, due to the

reasons mentioned above.

Iterative meta algorithm (IMA) As remarked above the

spectral embedding ΦX of a shape X can be interpreted as

a point cloud in kX dimensional space. Further, the ad-

joint functional map DXY is the optimal linear transforma-

tion that aligns the spectral embeddings of X and Y given a

point-to-point map.

Since a priori we do not have access to either the point-

to-point map or the functional map (or its adjoint), this sug-

gests the following iterative procedure: we first estimate an

initial functional (or adjoint) map; we then iteratively ex-

tract a pointwise map TXY from the adjoint map DXY , and,

again, compute the adjoint map DXY from the obtained

pointwise map TXY . We call this scheme an Iterative Meta

Algorithm (summarized in Algorithm 1).

Regularized spectral alignment In practice, this sim-

ple procedure does not work well though the convergence

is guaranteed for the following reasons: (1) The dimen-

sionality of the spectral embedding is typically quite high.

This means that there could be many local minima in the

alignment energy. (2) This procedure provides no guaran-

tees on what kind of map (pointwise or functional) recov-

ered. For example in the full basis (i.e., when the num-

ber of basis functions equals the number of points) there

is a linear transformation for any point-to-point map that

aligns the spectral embeddings perfectly. Thus, this proce-

dure will terminate in a single iteration. For these reasons,

some additional information must be injected into this ba-

sic method. For example, some existing methods such as

ICP [28], PMF [45], ZoomOut [23] can be cast as variants

of IMA with additional regularization.

Specifically, ICP [28] promotes orthonormal functional

maps by projecting the singular values of the functional map

to 1 at each iteration, which correspond to locally area-

preserving correspondences. PMF [45] introduces bijectiv-

ity as a hard constraint for pointwise map conversion which

turns the procedure to an assignment problem and is solved

using the auction algorithm. At the same time, effectively

by varying the time parameter of the kernel matrices in-

volved, the size of basis used for spectral embedding is

progressively increased between iterations. ZoomOut [23]

promotes orthonormal functional maps for each principal

submatrix via increasing the size of basis for the spectral

embedding progressively between iterations. See appendix

for pseudo-code of the mentioned algorithms.
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Algorithm 2: Fast Sinkhorn Filtering

Input : ΦX ,ΦY ,DXY , Parameters λ, k0, N0

Output: Pointwise maps ΠXY and ΠYX

Step1: Populate Sparse Kernel Assignment Matrix

Kλ ∈ R
nX×nY as follows:

1. Align the spectral basis functions:

FX = ΦXD
T

YX ∈ R
nX×k and FY = ΦY ∈ R

nY×k

2. For each row in FX , find the k0 nearest neighbors in

FY and let: dij =
∥

∥FX (i, :)−FY(j, :)
∥

∥ be the aligned

spectral distance between the ith point in shape X to

the jth point in shape Y . Set Kλ
ij = e−λ d2

ij

Step2: Estimate Regularized Transport Plan PXY

Set a = 1
nY

1nY
, b = 1

nX
1nX

, Initialize:u0 = a

for k = 1, 2, ...N0 do

vk ← a/
(

Kλ
T

uk

)

#elementwise division

uk ← b/(Kλvk)

end

PXY = Diag(uN0
) Kλ Diag(vN0

)

Step3: Extract vertex-to-vertex maps

ΠXY = argmax(PT
XY),ΠYX = argmax(PXY)

4. Fast Sinkhorn Filters

We propose to solve the spectral embedding alignment

as a linear assignment problem such that the pointwise map

Π is a doubly stochastic matrix with search spaceQ. There-

fore, we can formulate our problem as:

PXY = argminΠ∈Q

〈

d , Π
〉

F
(9)

where Q =
{

Π
∣

∣Π ∈ R
nX×nY

≥0 , Π1nY
= µX , ΠT

1nX
= µY

}

;

µX and µY are initial masses for X and Y predefined on

each vertex, and d ∈ R
×nX×nY is a matrix of the pairwise

euclidean distances between the aligned embeddings:

dij =
∥

∥ΦX (i, :)DT
XY − ΦY(j, :)

∥

∥ (10)

To solve the above problem efficiently, we use the well-

known Sinkhorn algorithm that comes from optimal trans-

port theory, which is a tool that allows the computation of

distances between functions in a common domain. Specifi-

cally, given two probability distributions in a common met-

ric space, the optimal transport distance is the cumulative

effort required to shift the mass from each location of the

first distribution to some location in the second distribu-

tion such that the linear assignment cost is minimized. Im-

portantly, an adjustment to the linear assignment cost of

Eq. (11) allows for a much faster and computationally supe-

rior numerical solver called the Sinkhorn Algorithm. There-

fore, we want to solve:

PXY = argminΠ∈Q

〈

d , Π
〉

F
− λ H

(

Π
)

(11)

Table 1: Comparing different pointwise map conversion

methods. We measure different metrics on the recovered

maps from 200 pairs of FAUST regular (left) and 190 pairs

of FAUST remeshed (right).

Methods
Accuracy

(×10
−3)

Bijective

(×10
−3)

Coverage

(%)
Smoothness

Runtime

(s)

Auction 3.6 / 55 0 / 0 100 / 99 5.7 / 52.7 11.7 / 5.9

NN 9.5 / 42 8.2 / 27 75.8 / 47.8 4.8 / 6.5 0.5 / 0.2

CPD 7.6 / 32 10 / 25 82.6 / 71.1 4.7 / 6.8 13.3 / 6.5

Sinkhorn 4.9 / 33 1.7 / 7 93.6 / 79.7 5.5 / 11.1 2.1 / 1.4

where H
(

Π
)

= −
∑

i,j

πij log(πij). We can see that when λ =

0, this problem is equivalent to the original spectral align-

ment problem Eq. (9). As discussed in [39], with nonzero

λ, −H
(

Π
)

makes the energy Eq. (11) strictly convex, and

therefore a unique minimizer exists.

The input to a regularized transportation problem is a

nX -by-nY distance matrix. We first compute a kernel as-

signment matrix from the input pairwise distances:

Kλ =
[

kλij = e−
1

λ
d2

ij

]

i=1,2..nX , j=1,2..nY

(12)

where the distances dij are defined in Eq. (10). This ma-

trix is then iteratively subject to a matrix scaling procedure

leading to a regularized transport plan. See Figure 3.

Note that computing and storing a distance matrix of di-

mension nX × nY can be a very time and memory con-

suming task, especially when the resolution of the shapes is

very large. In addition, the value of the kernel in Eq. (12)

is significant only for distances that are quite small. Taking

advantage of this simple insight, we modify the kernel func-

tion of Eq. (12) and construct a sparse kernel assignment

matrix that is populated by the distance values for only a few

nearest neighbors for each point:Kλ =
[

kλij
]

i=1,2..nX , j∈N{i}
.

See Algorithm 2 for a detailed outline. Our construction

of the sparse kernel in Sinkhorn iterations leads to improved

accuracy and bijectivity without incurring a large runtime.

Therefore our solution is a competitive combination of fast,

accurate and bijective simultaneously which is in contrast

to prior pointwise registration methods as shown in Table 1.

5. Experiments and Evaluation

We evaluate the different pointwise conversion algo-

rithms: Nearest Neighbor, Auction [2], Coherent Point Drift

[25], and our Sinkhorn Filter on 200 pairs of FAUST [5] and

190 test pairs of the FAUST remeshed datasets [31]. The

auction algorithm [2] solves for a permutation matrix for

the linear assignment problem. The coherent point drift al-

gorithm is a point set registration technique that models the

correspondence as a probability density which is optimized

via expectation maximization [25, 33, 34]. All 4 registra-
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Table 2: Here we show a quantitative evaluation on 300 FAUST regular shape pairs (left) v.s. 190 FAUST remeshed pairs

and 153 SCAPE remeshed pairs (right). We compare our methods (ICP with Sinkhorn and ZoomOut with Sinkhorn) with

the baselines across different metrics.

Measurements

/

Methods

Geometric Metrics Functional Metrics Average

Runtime

(s)

Accuracy

(×10
−3)

Bijectivity

(×10
−3)

Coverage Smoothness Orthogonality
Laplacian

Commutativity

ZoomOut

Energy

Chamfer

Distance

Ini 67.3 / 46.5 80.1 / 30.2 41.3 / 49.5 9.54 / 6.88 11.9 / 2.49 353 / 767 11.8 / 6.58 5.29 / 3.85 - / -

ICP 76.0 / 30.4 75.0 / 10.2 76.8 / 76.4 8.09 / 5.11 1.38 / 1.07 224 / 493 4.21 / 3.46 2.89 / 2.56 10.2 / 5.32

ICP (sink) 68.6 / 29.5 4.38 / 8.07 90.1 / 87.3 13.0 / 5.89 1.42 / 1.21 255 / 448 4.69 / 3.38 2.92 / 2.42 30.4 / 15.8

Deblur 61.9 / 44.4 75.0 / 22.4 39.9 / 43.7 7.62 / 4.80 11.2 / 2.63 361 / 805 12.1 / 6.79 4.64 / 3.31 10.9 / 10.4

RHM 41.9 / 32.0 22.7 / 15.1 78.3 / 76.5 4.28 / 3.40 4.00 / 1.91 273 / 647 6.01 / 4.51 3.91 / 2.89 41.4 / 47.4

PMF 26.4 / 86.4 1.99 / 37.7 100 / 100 24.0 / 34.9 1.11 / 2.44 164 / 576 4.02 / 7.97 2.72 / 4.09 737 / 312

BCICP 21.6 / 26.4 4.48 / 12.6 88.9 / 77.6 4.73 / 4.22 1.21 / 1.00 186 / 404 3.38 / 3.24 2.52 / 2.42 184 / 364

ZoomOut 15.8 / 22.7 13.6 / 6.47 88.0 / 82.1 3.49 / 3.46 1.32 / 0.99 153 / 405 3.18 / 2.95 1.89 / 2.16 9.60 / 6.49

ZoomOut (sink) 12.6 / 20.8 1.57 / 6.44 93.9 / 88.5 3.44 / 3.40 1.37 / 0.99 148 / 394 3.21 / 3.07 1.91 / 2.17 28.2 / 19.08

tion methods were initialized with the same pair of basis

that were aligned with the adjoint map in Eq. (5).

Table 1 highlights the performance of each of these al-

gorithms that are essential components to almost all cor-

respondence methods including prominent recent ones like

[9, 23, 45]. We measure the following metrics: accuracy,

bijectivity, smoothness, coverage and average runtime for

each conversion. Please refer to the supplementary for de-

tailed definitions of these metrics. Notice that the auc-

tion algorithm although superior in a very ideal setting of

equal sampling and identical connectivity, is not robust to

a change in the discretization of the surface. On the other

hand, even though the nearest neighbor has the smallest run-

time, it suffers from poor accuracy, bijectivity and cover-

age. The coherent point drift also suffers from a similar

drawback of poor bijectivity. In contrast, the Fast Sinkhorn

Filter shows an accurate and bijective output within a very

reasonable runtime and these properties are robust to the

remeshing of the underlying surface.

We further demonstrate the efficacy of our Sinkhorn fil-

ter by using it in conjunction with two prominent variants

of the iterative meta algorithm (Algorithm 1): ICP [28]

and ZoomOut[23]. We replace the nearest neighbor algo-

rithm in both methods with the Sinkhorn filter and compare

the Sinkhornized versions of ICP and Zoomout with pre-

vious competing refinement methods on the FAUST regu-

lar [5] and FAUST and SCAPE remeshed [31] datasets as

shown in Table 2 and visualized in Figure 4. We compare

extensively using the commonly used geometric and func-

tional metrics. Please see the detailed definitions in the ap-

pendix. The sinkhornized versions of ICP and ZoomOut are

both attributed with: better accuracy (20% improvement on

FAUST regular and 8% on remeshed datasets), and better

bijectivity in the maps w.r.t. the original ICP/ZoomOut.

6. Conclusion

In conclusion, in this paper we propose a theoretical

foundation to the problem of pointwise conversion of func-

Source ICP(NN) ICP(sink) ZM(NN) ZM(sink)

https:
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Spectral Chamfer Distance
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ZM-NN ZM-Sinkhorn
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E
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Figure 4: Sinkhornizing ICP and Zoomout: Comparison

between the original and sinkhornized ICP and Zoomout re-

finement algorithms. (top) Pointwise map errors visualized

on target shape. Replacing the nearest neighbor conver-

sion step inside ICP/Zoomout with our Fast Sinkhorn Filter

achieves improved accuracy and better spectral alignment.

tional maps and discuss its connection to regularized spec-

tral alignment. Based on this foundation we propose a novel

spectral registration technique using optimal transport for

spectral alignment, and demonstrate that it improves accu-

racy and bijectivity of correspondences both independently

as well as in conjunction with existing iterative meta algo-

rithms. One limitation of the Sinkhorn filter is the poor gen-

eralization to the challenging cases of partiality which we

would like to address in future work.
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