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Figure 1: Qualitative Results of STIC Method: (best viewed while zoomed-in): We show qualitative results on the ImageNet

[5], CIFAR 10 [18] and LSUN [34] datasets. (1) ImageNet: we show results of cheeseburger, chicken and mushroom classes.

(2) CIFAR 10: the STIC synthesises photo-realistic images of cat, automobile, frog, truck, dog and deer classes (top-bottom

rows). Variation of style (illumination, background) and content (pose, shape) can be seen for each of the classes. (3) LSUN:

We show visible geometric regularities in house shape, dome-like structures, and other outdoor entities (sky, illumination).

All images are generated by using ⌧ = 10 passes. The STIC methodology description is in Sec. 3.

Abstract

We show the generative capability of an image classifier

network by synthesizing high-resolution, photo-realistic,

and diverse images at scale. The overall methodology,

called Synthesize-It-Classifier (STIC), does not require an

explicit generator network to estimate the density of the

data distribution and sample images from that, but instead

uses the classifier’s knowledge of the boundary to perform

gradient ascent w.r.t. class logits and then synthesizes im-

ages using the Gram Matrix Metropolis Adjusted Langevin

Algorithm (GRMALA) by drawing on a blank canvas. Dur-

ing training, the classifier iteratively uses these synthesized

images as fake samples and re-estimates the class bound-

ary in a recurrent fashion to improve both the classifica-

tion accuracy and quality of synthetic images. The STIC

shows that mixing of the hard fake samples (i.e. those syn-

thesized by the one-hot class conditioning), and the soft fake

samples (which are synthesized as a convex combination of

classes, i.e. a mixup of classes [36]) improves class inter-

polation. We demonstrate an Attentive-STIC network that

shows iterative drawing of synthesized images on the Im-

ageNet dataset that has thousands of classes. In addition,

we introduce the synthesis using a class conditional score

classifier (Score-STIC) instead of a normal image classifier

and show improved results on several real world datasets,

i.e. ImageNet, LSUN and CIFAR 10.

1. Introduction

Discriminative classifiers p(y|x) and generative mod-

els p(x) are conventionally considered as domains com-

plementary to each other, yet the distinction between them

is blurring. A generative model p(x) [26] appears as a

data generation process that captures the underlying den-

sity of a data distribution, whereas the discriminative clas-

sifier learns complex feature representations of images with

a view to learn the class boundaries for subsequent clas-

sification. There is a recent growth of interest in Machine

Learning (ML) and Computer Vision (CV) [15, 20, 7] to use

a discriminative classifier and then synthesize novel sam-

ples from its understanding of class boundary information.

To elaborate, in the model of [7], the classifier p(y|x) log-
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Figure 2: The STIC Methodology: Our main objective is to learn a class conditional model by emphasizing the fact that

p(x|y) / p(y|x), Eq 1, and synthesise photo-realistic images from a discriminative classifier. Our proposed STIC serves dual

objectives: (1) learning smooth class boundaries with Vicinal Risk Minimization; and (2) learning tighter class boundaries

using recurrent self-analysis class boundary re-estimation. At time (⌧ + 1), the classifier p(y|x) is adjusting the parameters

(✓τ+1) using real images, mixup images; and in addition to that, synthesized images from real classes and synthesized images

from mixup classes from previous iteration ⌧ (marked as Fake Sample) are provided to the classifier. Please note that mixup

classes are not actually classes but the mixup of logits of two or more classes. The samples are, at time (⌧), synthesized from

classifier’s knowledge of the class boundary by gradient ascending w.r.t class logits, zτ , using our proposed Gram Matrix

Regularized Metropolis Adjusted Langevin Algorithm sampler (GRMALA), see red dashed arrow. The STIC discriminative

classifier is trained for ⌧ 2 {1, 2, · · · ,T} number of iterations.

its are used to estimate the joint density of the image-label

p(x, y), and the marginal of the image distribution, p(x);
note the random variables, x: image, and y: class label.

Meanwhile in [15, 20] the classifier logits are used to pro-

duce synthesized samples using an MCMC-like sampling

mechanism. The classifier, on the other hand, tries to dis-

tinguish these synthesized samples and the real images to

re-estimate class boundaries. We remark that synthesizing

novel samples from a discriminative classifier hinges on an

important factor: how well the discriminative classifier has

learned the class boundaries?

We note that all the discriminative classifiers in [7, 15,

20, 22] used for synthesizing novel samples are trained with

Empirical Risk Minimization (ERM) [31]. Yet, from the lit-

erature [4, 36], it is evident that a discriminative classifier

trained with ERM does not provide a smoother estimate of

uncertainty near to the class boundary regions [4]. Hence,

we ask ourselves the question: does training with ERM have

any consequence on the synthesizing capabilities of these

discriminative classifiers? We note that the transitions at

class interpolation and sample quality towards class bound-

aries of these discriminative classifiers are neither smooth

nor photo-realistic. In this work, we primarily seek to ad-

dress this problem, viz., to build a discriminative classifier

that will serve dual objectives: (1) the interpolated samples

from one class to another must be photo-realistic; and (2)

the classifier must learn tighter class boundaries so as to

generate photo-realistic samples.

To address the first objective, we train the discrimina-

tive classifier with Vicinal Risk Minimization (VRM) [36].

We leverage more virtual mixup image-label samples [36]

in addition to the real image-label samples and train the

classifier. We then synthesize novel samples. Our novel

sample synthesis method is, by design, similar to the Style

Transfer work [6], i.e. starting with an initial image x0

which is updated with gradient ascent using our proposed

novel Gram Matrix Regularized Metropolis Adjusted Lan-

gavin Algorithm (GRMALA) sampler. To the best of our

knowledge, this is the first discriminative classifier trained

with VRM and subsequently synthesized using a novel GR-

MALA sampler. We will discuss this in detail in Sec 3.

Training a discriminative classifier with VRM alone, is

however, a necessary condition for learning the smoother

estimation of uncertainty among classes, but not a suffi-

cient condition that provides tighter class boundaries. Cog-

nitive studies [1, 3] have shown evidence where subjects

(i.e. human) start with a weak cognitive decision model

of an environment or the world, and recurrently refine

through mistakes and self-analysis gained from the envi-

ronment to develop much stronger cognitive decision mod-

els. In a similar spirit, we present our recurrent discrimina-

tive network trained with VRM, that we call Synthesize-it-
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Classifier (STIC). The STIC recurrently eliminates the re-

gions which are outside of the class boundaries and forces

the sampler to search within class boundaries. The STIC

methodology trains the classifier with real images of differ-

ent classes and then synthesizes samples conditioned on a

class as well as the mixup samples w.r.t. the class logits.

At the next pass, the STIC inputs these synthesized sam-

ples as fake samples to the already trained discriminative

classifier of the previous pass, thus allowing the classifier

to re-estimate class boundaries using real images, the syn-

thesized mixup images and the synthesized samples (we call

this self-analysis). Similar to [15, 20], we are, in a way, ask-

ing the classifier to quantify its own generated samples with

respect to the class boundaries. The STIC does the recurrent

self-analysis for ⌧ 2 {1, 2, · · · , T} number of passes.

From our empirical observations, we note that if the

image space is large (typically > 227 ⇥ 227), the GR-

MALA sampler exhibits a slow update. We hence show an

attentive-STIC where the discriminative classifier operates

on the feature space instead of raw pixel space, thus exhibit-

ing fast update. Additionally, we also propose a novel class

conditional score matching based discriminative classifier

that matches the derivative of the model’s density with the

derivative of the data density [29]. We will discuss each of

these components elaborately in Sec 3.

Our contributions can be summarized as follows:

• Novel recurrent self analytic STIC trained with VRM

and show synthesized images using Gram matrix Reg-

ularized MALA (GRMALA) sampler w.r.t class logit

• We show Attentive-STIC model to address the slow

mixing problem of MALA-approx. We also propose a

novel class conditional score function based discrimi-

native classifier (we call it the Score-STIC method)

• We show results on several real world datasets, such as

ImageNet, LSUN and CIFAR 10

2. Related Work

Generative Discriminative Learning: The generative

classifier methodology was first evident in the seminal paper

“self-supervised boosting” [32], that learns a sequence of

weak classifiers using the real data and self-generated nega-

tive samples. The use of negative samples while learning in

an unsupervised manner is also seen in [12]. Similar to that,

the methods in [15, 20] use the Convolutional Neural Net-

work (CNN) based discriminative classifier’s logits and pro-

duces synthesized samples using an MCMC-like sampling

mechanism. The classifier tries to distinguish these syn-

thesized samples and the real images to learn class bound-

aries. Similar to those lines of work, the method [21] shows

that learning class boundaries from real and synthesized im-

ages is equivalent to optimizing the Wasserstein distance

between real image and synthesized image density. Re-

cently, the work [7] shows learning of a joint distribution

and a marginal distribution from the knowledge of the class

logits of a discriminative classifier.

Style Transfer: There is a plethora of works that perform

style transfer to meet various alternate objectives, such as:

a generative adversarial learning approach to disentangle

style and content of an image [16]; while [17] propose to

capture the particularity in style, and the capturing style and

content of an image. The style disentanglement is shown for

single image super resolution in [37]. However, in this work

we will use the Gram Matrix based style transfer proposed

in [6]. The seminal work of [6] computes a Gram Matrix,

GL 2 R
NL×NL using the following: the Lth layer of a Con-

volutional Neural Network (CNN) has distinct NL feature

maps each of size ML ⇥ML. The matrix FL 2 R
NL×ML ,

stores the activations FL
i,j of the ith filter at position j of

layer L. Then, the method computes feature correlation us-

ing: GL
i,j =

P

k F
L
i,kF

L
j,k, where any Fm

n,o conveys the acti-

vation of the nth filter at position o in layer m.

Metropolis-adjusted Langevin algorithm (MALA):

The Metropolis-Hastings (MH) [23] uses the transition

operator, viz. xt+1 = xt + N (0, ✏21), ↵ = p(xt+1)/p(xt),
and if ↵ < 1 reject the sample xt+1 with probability

(1 � ↵) and set xt+1 = xt else keep xt+1. In prac-

tice, the MH is very slow to produce samples from

any computable distribution pdata(x). As a remedy,

[27, 28] have proposed an approximation method called

Metropolis-adjusted Langevin algorithm, or the MALA.

Starting with an initial x0 typically sampled from a Gaus-

sian distribution N (0, I), the MALA uses the transition

operator, viz. xt+1 = xt +
1
2σr log p(xt) + N (0,�2),

↵ = f(xt+1, xt, p(xt+1), p(xt)), and if ↵ < 1 reject xt+1

else keep xt+1, and samples from the distribution p(x).
The method [25] uses the stochastic gradient Langevin

dynamics (SGDL) to get rid of the rejection steps of

MALA and proposed the MALA-approx method. In

addition to that, the method [25] uses different step sizes

✏1 and ✏2 in: xt+1 = xt + ✏1r log p(xt) + N (0, ✏22)
and exhibits more control over variability. In this

work, we will propose a novel Gram Matrix Regular-

ized MALA and the sampler takes the form: xt+1 =
xt + ✏1r log p(xt) +

P

(GL(xt) � AL(xt))
2 +N (0, ✏22),

where ✏1 and ✏2 are scaling factors.

Vicinal Risk Minimization (VRM) using Mixup: The

Empirical Risk Minimization (ERM) [31] learns a function

f 2 F that determines the non-linear relation of the im-

age samples xi|
N
i=1 and the corresponding classes yi|

N
i=1

sampled from a data distribution pdata(x, y) by optimizing

the empirical risk, R(f) = 1
N

PN

i=1 l(f(xi), yi). The loss

function l(·) can be any standard loss function. Learning

the function f by minimizing ERM leads the function f
to memorize the training samples instead of a good gen-
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eralization even under the purview of strong regularizer

[4]. To mitigate this, [4] proposed an alternate risk min-

imization technique known as Vicinal Risk Minimization

(VRM), i.e. Rvicinity(f) =
1

N+M

PN+M

k=1 l(f(x̂k), ŷk). In

VRM, we augment additional image-label pairs (x̃i, ỹi)|
M
i=1

using simple geometric transformations (such as crop, ro-

tation, mirror) of real image-label pairs (xi, yi)|
N
i=1. We

get the set of image-labels (x̂k, ŷk)|
N+M
k=1 comprising aug-

mented image-label and the real image-label pairs. The

Mixup [36] extends this idea by augmenting virtual image-

target samples, xmixup
k = �xi + (1 � �)xj and ymixup

k =
�yi + (1 � �)yj , where � ⇠ Beta(↵,↵) is sampled from

Beta distribution, for ↵ 2 (0,1), also xi, xj , and yi, yj are

real image-labels. Mixup shows results by combining real

image-label samples of different classes instead of hand-

crafted data augmentation of images. The VRM of Mixup

can be defined as, Rmixup(f) =
1

N+K

PN+K

l=1 l(f(xl), yl).

We get the set of image-labels (xl, yl)|
N+K
l=1 from the real

image-label pairs and mixup image-label pairs, and will use

these in this work.

3. The STIC Methodology

In this work, we wish to learn the parameter of a class

conditional distribution of image x and the corresponding

class label y (we fix y to be from a particular class yc), i.e.:

p(x|y = yc) (1)

with a view to generating photo-realistic novel samples.

We expand the class conditional model in Eq 1 using the

Bayes rule, i.e.: p(x|y) = p(x)p(y|x)/p(y) / p(x)p(y|x).
We however cannot directly write a sampler by utilizing the

“product of experts” [13], as we do not have a generator

network p(x) in our setup. Since the random variable y is

categorical, we instead can write a modified version, i.e:

p(x|y) = p(x)p(y|x)/p(y) / p(y|x) (2)

such that, estimating the density directly has a relation to

how well synthesized samples are classified by the discrim-

inative classifier network.

Following the Style Transfer work [6] and the sampling

with Langevin algorithm work in [25, 27], we propose a

Gram Matrix Regularized MALA approx (GRMALA) sam-

pler and propose the following update rule for xt+1:

xt + ✏1r log p(y|xt) + ✏2
X

(GL �AL)2 +N (0, ✏23)

(3)

and, similar to MALA-approx proposed in [25], we use

different step sizes, i.e. ✏1, ✏2, and ✏3 for three terms af-

ter xt in Eq 3. Here, ✏1 and ✏2 control the sample qual-

ity and ✏3 controls the diversity by moving around the

search space. Note that we get the Gram Matrix GL from

the xt and we get Gram Marix AL from a real image x
(for more details on Gram Matrix please refer to [6], or

Sec 2 Style Transfer section). In order to generate photo-

realistic synthsized images, our discriminative classifier,

hence, must serve two objectives: (1) Learning Smooth

Class Boundaries using VRM such that the interpolated

samples from one class to another must be photo-realistic;

and (2) Learning of Tighter Class Boundaries using Recur-

rent Self-analysis Class Boundary Re-estimation such that

the classifier must learn tighter class boundaries so as to

generate photo-realistic samples.

Learning Smooth Class Boundaries using VRM: Sim-

ilar to [36], we augment mixup image-label pairs along

with real image-label pairs. We have K number of mixup

augmented image-label pairs (xmixup
k , ymixup

k )|Kk=1, those

we get after, xmixup
k = �xi + (1 � �)xj and ymixup

k =
�yi + (1 � �)yj , where � ⇠ Beta(↵,↵), for ↵ 2 (0,1),
also xi, xj , and yi, yj are real image-label pairs. For

brevity, let us assume that the mixup image-label pairs

are coming from a mixup distribution (xmixup
k , ymixup

k ) ⇠
pmixup(x

mixup, ymixup) and we have our real image-label

distribution (xi, yi) ⇠ pdata(x, y). Our objective function

to optimize Eq 2 is the following:

L(✓) = �

i=1,··· ,N
X

(xi,yi)∼pdata

log pθ(yi = yc|xi)

�

k=1,··· ,K
X

(xmixup

k
,y

mixup

k
)∼pmixup

log pθ(yk = ymixup|x
mixup
k )

(4)

where we note here that yk = ymixup is not a true class but

represents the mixing of true class logits.

Learning of Tighter Class Boundaries using Recurrent

Self-analysis Class Boundary Re-estimation: Learning

smooth class boundaries using VRM is a necessary condi-

tion for smooth image synthesis but not a sufficient con-

dition for learning tighter class boundaries with a view to

synthesize photo-realistic images. We hence introduce a re-

current self-analysis class boundary re-estimation method-

ology that eliminates the regions which are outside of the

class boundaries and force the sampler to focus within the

class boundaries. To achieve this objective, we now de-

scribe a recurrent training procedure that spans around ⌧ 2

{1, 2, · · · ,T} number of passes. At pass ⌧ , we synthesize

novel samples from a trained classifier pτ (·) by GRMALA

based update with respect to the class logits. At the next

pass, ⌧ + 1, the STIC takes images from dataset and mixup

images as real images. On the other hand, synthesized im-

ages of real classes and synthesized images of mixup classes

from the classifier at pass ⌧ are taken as fake samples (note

that such synthesized samples are taken from the trained
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classifier at previous pass ⌧ , see Fig 2 fake images). Thus

allowing the classifier to re-estimate class boundaries using

the real images, the synthesized mixup images and the syn-

thesized samples. We call this a recurrent self-analysis. The

recurrent class boundary re-estimation is, in a way, asking

the classifier to quantify its own generated samples with re-

spect to the class boundaries. We sample and re-train the

classifier for ⌧ 2 {1, 2, · · · ,T} times, thus enabling the

classifier to re-estimate its class boundaries at each time

step. For the (⌧ + 1)th time step, the objective function

of the classifier hence then becomes:

L(✓τ+1) = �

i=1,··· ,N
X

(xi,yi)∼pdata

log pθτ+1(yi = yc|xi)

�

k=1,··· ,K
X

(xmixup

k
,y

mixup

k
)∼pmixup

log pθτ+1(yk = ymixup|x
mixup
k )

�

i=1,··· ,N
X

(xi,yi)∼pθτ

log pθτ+1(yi = �1|xi)

�

k=1,··· ,K
X

(xmixup

k
,y

mixup

k
)∼pθτ

log pθτ+1(yk = �1|xmixup
k )

(5)

Theoretically, the softmax of the classifier pτ+1
θ

(y|x) is
exp(pτ+1

θ
(x)[y])

P
y
0 exp(pτ+1

θ
(x)[y0 ])

. Thus, we can approximate p(x, y) as

pτ+1
θ

(x, y) = exp(pτ
θ
(x)[y])/Z(✓), where pτ

θ
(·) is from

the previous time step ⌧ . Marginalizing y from pτ+1
θ

(x, y),
i.e. pτ+1

θ
(x) =

P

y p
τ+1
θ

(x, y) =
P

y exp(p
τ

θ
(x)[y])/Z(✓)

provides the estimation of p(x). However, p(x) is dropped

from Eq 2 as there is no explicit network and learning is

incorporated through GRMALA and pτ
θ
(·).

4. Experiments and Results
We perform a detailed suite of experiments and ablation

studies, across standard benchmark datasets; notably : Ima-

geNet [5], Cifar 10 [18] and LSUN [34].

Baseline and SOTA methods: By design, our method is

a hybrid network that can simultaneously perform classifi-

cation and synthesis. From the class conditional generative

network end, we observe that the BigGAN [2], PnP [25],

SNGAN [24] methods are state-of-the-art (SOTA) for class

conditional image generation. In terms of the generative

discriminative learning, the works of JEM [7], INN [15],

WINN [22], EBM [33] are closer to our work. However, our

proposed STIC, to a large extent, differs from these methods

as follows: (1) the crucial difference is that our discrimina-

tive classifier is trained with VRM, and (2) we use a novel

Gram Matrix MALA sampler. We consider BigGAN-deep

(res 256, channel 96, parms 158.3, shared, orthogonal reg,

skip-z) [2], cascade classifier network model from [15, 22]

methods, and other methods as described in their paper. For

classifiers, we consider ResNet [10], MobileNet [14], and

GoogleLenet (GLent) [30] as the SOTA methods to com-

pare our method against. We consider INN [20] as our base-

line for synthesizing method, as we note that such earlier ef-

fort uses a discriminative classifier to synthesize novel sam-

ples from its understanding of class boundary information.

These synthesized samples and real images are then utilized

by INN method for class boundary re-estimation. For dis-

criminative classifier, we use GoogleLeNet as our baseline

method. Here, a batch size of 50 is considered for all SOTA

methods unless specified otherwise.

Network Setup and Hyperparameter Choices of STIC:

Similar to the previous work [7], we use a Wide Resid-

ual Network [35], WideResNet-28-10, without batch-

normalization to make STIC output deterministic functions

of the input. The Adam optimizer, 5k iteration for each pass

⌧ 2 {1, 2, · · · , 10} totaling 50k iterations, the Langevin dy-

namics chains are evolved after 15 epochs (after one pass)

and with probability 0.5 we re-initialize the chains with uni-

form random noise. We have two notions for time, a pass

⌧ and iteration: we start training, at pass ⌧ = 1. At pass

⌧ = 1, the classifier trained with real images and virtual

mixup images. At that time, we consider blank images

(pixel intensities are set to 255) as fake images (i.e. yi = �1
in Eqn 4). One pass continues for 5k iterations and then

we synthesize fake images from the classifier pθ1(y|x). We

then move to the next pass ⌧ = 2 that lasts for another 5k
iterations. We have a total number of 10 passes, i.e. 50k
iterations, for STIC training.

Qualitative Results: Sample labeled image generations

of the proposed STIC method are summarized in Fig 1 and

more images are in Suppl. mat. Note that STIC generates

images with improved quality in multiple cases across the

datasets. In LSUN, proper geometric shapes are observed

for house and sky of synthesized images by STIC. In Ima-

geNet and in Cifar 10 synthesized images, we observe that

style and content information are captured by STIC.

Diversity Analysis: At pass ⌧ , we synthesize class con-

ditioned sample pθτ (x|y = yc1) of class yc1 (see black

arrows in Fig 3(a)). Similar to marginal density estima-

tion proposed in [7], we use a small neighborhood around

pθτ (x|y = yc1) as other starting samples to understand the

capability of the model to generate diverse samples. It is

evident that samples which are in near vicinity show similar

object appearance (observe same face structures of black ar-

row samples in Fig 3(a)), similar background (observe sim-

ilar facial structure and background in red arrow samples in

3(a)). In contrast, samples which are far apart, for exam-

ple, see red arrow and purple arrow samples in 3(a), show

different appearance of the same dog class.

Latent Space Interpolation: Two points p(x|y = yc1) and
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Figure 3: (a) Diversity Analysis: we synthesize samples from one class and samples from the neighborhood around those

samples to get other starting samples on ImageNet class dog. We note, samples which are in near vicinity show similar object

appearance (observe same face structures of black arrow samples). In contrast, samples which are far apart (see red arrow

and purple arrow samples) show different appearance of the same dog class. (b) Evolution Over Time: we show class dog

synthesized samples of ImageNet at different iterations, i.e. {10k, 20k, · · · , 50k} (horizontal axis: no. of iterations, vertical

axis: training loss). Images are blurry initially but become clearer over time, showing that the proposed method is learning

tighter class boundaries over the time steps.

Figure 4: (a) Image Interpolation (ours) first four columns show image interpolation result of our method. We notice

smooth transition from one class c1 to another class c2. (b) Interpolation of Result of INN (baseline): We note that the class

interpolation from one class to other is not smooth, i.e. in-between images are not human interpretable.

Figure 5: Generalizability of STIC Method: (A) We

show the precision-recall comparison of STIC, SNGAN,

BigGAN, PnP and WINN at different initializations. A

high precision-recall for STIC justifying our claim. (B)

Precision-recall at different k-NN using the features of a

ResNet50 classifier.

p(x|y = yc2) are sampled from two distinct classes c1
and c2 at pass ⌧ = 10, and linearly interpolated between

p(x|y = yc1) and p(x|y = yc2) to obtain novel samples.

The synthesized images of ImageNet are shown in Fig 4(a).

Synthesized images from one class to another are smooth

and human interpretable, as opposed to the interpolation

provided by the baseline INN [15] in Fig 4(b), i.e. in-

between images are not human interpretable. This supports

our claim that STIC provides smooth synthesised samples.

Evolution over Time Steps: In Fig 3(b), we show the qualita-

tive results of class dog of ImageNet at different iterations,

i.e. {10k, 20k, · · · , 50k}. Please note that, in STIC setup,

5k iteration stands for one pass of ⌧ 2 {1, 2, · · · , 10}. The

generated images are blurry initially but become clearer

over time, showing that the proposed method is learning

tighter class boundaries over the time steps.

Quantitative Evaluation: We used multiple quantitative

metrics to study the proposed method on generated image

quality, diversity and image-label correspondence: (i) MIS

(", higher is better) [9]; (ii) FID (#, lower is better) [11];

(iii) ClsR(", higher is better), i.e. Top-5 classification accu-

racy (in %) of a ResNet-50 classifier trained on real labeled

images and tested on generated images; and (iv) ClsG(",

higher is better), i.e. Top-5 classification accuracy (in %)

of a ResNet-50 classifier trained on generated/synthesized

labeled images and tested on real images. The results are

shown in Table 1. We observe a distinct performance gain

for STIC over the state-of-the-art models. The low FID

score and high ClsG-based classification accuracy scores

imply diverse image-label generation. In particular, the im-

proved classification performance, as shown through ClsT
and ClsG, demonstrate the utility of the synthesized labeled

images for downstream classification tasks.

Classification Accuracy improvement with STIC: In Table 2,

we show that STIC improves not only the generation qual-

ity (as shown in Fig 1 but also the classification accuracy.

We tried to show through ClsG that, training four classifiers

ResNet, WideResNet, MobileNet, GoogleLeNet (shown
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Methods LSUN CIFAR10 ImageNet

MIS FID ClsR ClsG MIS FID ClsR ClsG MIS FID ClsR ClsG
(") (#) (") (") (") (#) (") (") (") (#) (") (")

INN 14.91 45.62 26 10 0.93 118.92 29 20 1.92 189.05 52 30

WINN 17.43 38.03 41 28 21.94 51.81 48 36 21.13 58.72 48 38

PnP 32.03 15.07 62 58 31.37 17.93 54 53 33.18 14.71 61 54

JEM 28.92 40.42 60 39 38.4 47.60 57 39 32.32 40.41 53 32

EBM 31.83 19.73 62 50 31.63 17.02 58 50 32.81 30.90 63 52

BigGAN 113.13 8.67 88 87 100.31 7.92 89 81 99.31 8.51 85 80

SNGAN 52.37 17.43 61 59 53.01 20.3 83 78 65.72 12.62 67 61

STIC 93.61 13.32 96 92 97.91 12.81 91 90 98.62 15.01 95 93

STIC-ERM 30 35.92 72 62 20 48.17 61 60 27.19 38.27 65 63

Attentive-STIC 99.61 9.01 97 95 100.56 11.71 93 90 100.19 10.38 96 93

Score-STIC 112.61 8.82 98 96 108.62 9.99 97 92 104.91 8.83 97 95

Table 1: Quantitative Results of Various Real-world Image Datasets: We report: (i) MIS (", higher is better); (ii) FID (#,

lower is better); (iii) ClsR(", higher is better); and (iv) ClsG(", higher is better). We mark winning entries in bold. The STIC

and its variants are underlined. The N/A stands for not applicable.

ClsG(") INN WINN PnP JEM EBM BigGAN SNGAN STIC

LSUN
20/29

/10/18

23/31

/38/19

62/70

/80/73

60/70

/80/72

22/22

/19/17

41/40

/38/35

55/50

/51/38

58/50

/50/41

CIFAR10
10/08

/14/07

19/10

/05/09

50/46

/49/50

55/50

/49/49

16/19

/10/09

52/50

/53/51

58/60

/59/59

60/62

/58/59

ImageNet
05/02

/03/04

07/03

/02/03

38/30

/36/30

41/30

/37/30

20/18

/10/19

53/50

/69/71

51/56

/57/55

60/76

/75/70

ClsR(") INN WINN PnP JEM EBM BigGAN SNGAN STIC

LSUN
10/13

/11/12

18/18

/17/19

61/62

/68/63

53/59

/58/52

22/22

/19/17

41/40

/33/30

55/50

/50/38

62/59

/56/72

CIFAR10
06/06

/04/06

09/07

/04/09

45/43

/43/40

45/40

/43/43

10/11

/10/07

42/40

/43/49

46/56

/58/57

57/63

/74/73

ImageNet
05/02

/03/04

07/03

/02/03

38/30

/36/30

41/30

/37/30

20/18

/10/19

43/40

/39/31

43/39

/31/30

63/63

/83/80

Table 2: Classification Accuracy Improvement with

STIC: We report: (i) ClsR(", higher is better); and

(ii) ClsG(", higher is better). Each cell of the

table shows classifier accuracy of ResNet/ WideRes-

Net/MobileNet/GoogleLeNet/STIC

ResNet/WideResNet/MobileNet/GoogleLeNet in Fig 2)

purely using generated images of INN, WINN, PnP, JEM,

EBM, BigGAN and SNGAN reduces the classification ac-

curacies on CIFAR10, ImageNet and LSUN dataset. But,

STIC has shown an improved result. For ClsR, we trained

ResNet, WideResNet, MobileNet, GoogleLeNet on real im-

ages and tested on INN, WINN, PnP, JEM, EBM, BigGAN

and SNGAN generated images. This shows that the re-

current self-analysis obtains tighter class boundaries. For

example: ResNet/ WideResNet/MobileNet/GoogleLeNet

trained with real ImageNet images and tested on BigGAN

generated ImageNet images show classification accuracy

43/40/39/31, but STIC shows an accuracy: 63/63/83/80.

5. Discussion and Analysis

Discussion of Quantitative Results: From Table 1, we

note that INN, WINN do not perform well due to training

with ERM and learning from a weaker classifier. The PnP

performance drops due to the apparent complexity while

training the prior network. The STIC methodology supports

the primary claim of a deep generative model of benefit-

ing downstream tasks, such as classification. We hence see

that the classifier in STIC methodology learns a tighter de-

cision boundary (see improved ClsR and ClsG) and smooth

class interpolation to achieve this objective. However, the

FID calculates the distance between feature vectors of real

and generated images. We note that the classifier in STIC

methodology learns a tighter decision boundary may not

learn a good feature similarity of real and fake images,

hence a slight drop in FID score w.r.t BigGAN. For classi-

fier networks, we note a performance boost w.r.t SOTA clas-

sifier networks, thus showing the efficacy of our methodol-

ogy as a classifier.

Generalizability of STIC Model: To understand the gen-

eralizability of the STIC method we adopt the precision-

recall and k-nearest neighbor (KNN) analysis proposed in

[19]. Fig 5 (a) shows high precision and recall at differ-

ent initilizations, thus supporting our claim of diversity and

generalizability in Sec 4. Similarly, we show precision and

recall at different KNN using features of ResNet-50.

Ablation of Gram Matrices: In this work, we use the

style representation of deeper layers, ‘conv21’-‘conv28’ of

STIC model and got FID: 15.01 on ImageNet. To show the

effectiveness of style transfer from the deeper layers we do

style transfer from shallow layers ‘conv1’-‘conv20’ and that

gives FID: 28 on ImageNe, thus not capturing more style.

Howvever, considering all layers ‘conv1’-‘conv28’ FID:30,

mixes learning of deeper style and shallow layer style, thus

leading to bad FID.

Running Time Complexity: Training our model was ⇠

3.2⇥ faster than training BigGAN and SNGAN. This is pri-

marily because of the time taken for stabilization of GANs

during training. Similarly, [25] optimizes two separate net-

works making their training time significantly larger. Also,

INN [15] and WINN [21] trains multiple classifiers in a se-

quence (> 25 number of classifiers in a sequence) for a

single image synthesis, making its overall synthesis costly.

Effect of STIC on Other SOTA Classifiers: We ask our-

selves whether a recurrent self-analysis method improves

the classification accuracy of any classifier? We answer this
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LSTM LSTM LSTM

Decoder (b) slow update 
(STIC)

(c) fast update 
(attentive-STIC)

(d) class cond. 
score classifier(a) attentive -STIC network

Figure 6: (a-c) attentive-STIC: STIC method can work in feature space. We show qualitative results of STIC and attentive-

STIC on LSUN church at 10k iteration and note improved results. (d) score-STIC: we show the qualitative results of

score-STIC only after 10k iterations. We show geometric details on these LSUN church samples.

Figure 7: Loss (vertical axis) vs. No. of Iterations (horizon-

tal axis) of discriminative classifier methods, STIC outper-

forms all.

in Fig 7. We show loss per iteration and STIC methodology

improves the training accuracy of any classifier.

Optimal Number of Passes: In Sec 4 we show results

for ⌧ = 10 number of passes. In this section, we study

the number of passes and their relation with FID and other

scores. We found that beyond ⌧ = 10 number of passes

the synthesized image quality the FID and MIS scores min-

imally improves. Improving FID and MIS scores could be

a possible future direction.

Attentive-STIC to Mitigate Slow Update of GRMALA:

We tried to resolve the slow mixing of MALA-approx by

trying GRMALA in the feture space instead of the pixel

space. We adopt an attention based feature encoder [8]

comprised of: (1) a reading network, R(·) that receives an

image x and decides to focus on a part of x using an atten-

tion mechanism (described later); (2) the R(·) then outputs

a vector vt (which is rasterized from the patch being at-

tended to); (3) an LSTM network receives vt and provides a

feature vector f . Similar to the DRAW [8] reading mecha-

nism: x̂t = x � ⇣(x̂t−1), vt = R(x, x̂t, vt−1); [ft, h
enc
t ] =

LSTM(vt, h
enc
t−1), here, ⇣(·) is a sigmoid function. The

classifier, p(y = yc|f), now operates on the extracted fea-

ture of an image x and synthesize feature vector. The syn-

thesize vector is passed to decoder network (see Fig 6) to

upsample the feature vector to get synthesized image. The

decoder is the DCGAN network. We show the qualitative

results on LSUN church classes after one pass ⌧ = 1 (i.e.

5k iterations), see network in Fig 6(b) for results. In ad-

dition to that, the quantitative results are shown in Table 1.

Score-STIC a Class Conditional Score Discriminative

Classifier: Based on our understanding from Eq 2, the

STIC method depends on discriminative classifier. To this

end, we propose a small modification on Wide ResNet ar-

chitecture (or modification to any classifier network in gen-

eral). The [29] method attempts to match the derivative

of the model’s marginal density with the derivative of the

marginal density of real data using a score of a probability

density p(x), i.e. rx log p(x). We extended this idea and

propose a novel class conditional score based Wide ResNet

that we refer score-STIC. The WideResNet-28-10 last layer

dimension is matched with input layer dimension (which

is a criteria for score network [29]) followed by softmax

classification. The following equation acts as a regularizer

to the Eq 2, i.e.: Epdata(x)

⇥

1
2 ||pθτ (x)||22 + tr(rxpθτ (x)) +

1
2 ||(yc, pθτ (y|x))||22

⇤

. We show results in Fig 6 and Table 1.

6. Conclusion

In this work, we emphasize on the relation p(x|y) /
p(y|x) and propose the STIC method to synthesize images
using Gram-matrix Regularized MALA (GRMALA) sam-
pler w.r.t class logit. Our classifier satisfies: (1) smooth in-
terpolation; and (2) tighter class boundaries so as to gener-
ate photo-realistic samples. To this end, we propose a novel
recurrent self-analytic STIC trained with VRM. We further
show an Attentive-STIC model to address the slow mixing
problem of GRMALA. In addition to that, we show a novel
class conditional score function based Wide ResNet classi-
fier and show improved generation on ImageNet, LSUN and
Cifar10.
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