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Abstract

Localizing persons and recognizing their actions from

videos is a challenging task towards high-level video under-

standing. Recent advances have been achieved by modeling

direct pairwise relations between entities. In this paper, we

take one step further, not only model direct relations between

pairs but also take into account indirect higher-order rela-

tions established upon multiple elements. We propose to

explicitly model the Actor-Context-Actor Relation, which

is the relation between two actors based on their interac-

tions with the context. To this end, we design an Actor-

Context-Actor Relation Network (ACAR-Net) which builds

upon a novel High-order Relation Reasoning Operator and

an Actor-Context Feature Bank to enable indirect relation

reasoning for spatio-temporal action localization. Experi-

ments on AVA and UCF101-24 datasets show the advantages

of modeling actor-context-actor relations, and visualization

of attention maps further verifies that our model is capable of

finding relevant higher-order relations to support action de-

tection. Notably, our method ranks first in the AVA-Kinetics

action localization task of ActivityNet Challenge 2020, out-

performing other entries by a significant margin (+6.71

mAP). The code is available online.1

1. Introduction

Spatio-temporal action localization, which requires lo-

calizing persons and recognizing their actions from videos,

is an important task that has drawn increasing attention in

recent years [15, 12, 8, 46, 35, 58, 52, 54, 41, 29, 55, 17, 20].

Unlike object detection which can be accomplished solely

by observing visual appearances, activity recognition usually

demands for reasoning about the actors’ interactions with the

surrounding context, including environments, other people

and objects. Take Fig. 1 as an example. To recognize the

action “ride” of the person in the red bounding box, we need

∗Equal contribution
1https://github.com/Siyu-C/ACAR-Net
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Figure 1. We contrast our Actor-Context-Actor relation modeling

with existing relation reasoning approaches for action localization.

Reasoning relations between pairs of entities may not always be

sufficient for correctly predicting the action labels of all individuals.

Our method not only reasons relations between actors, but also

models connections between different actor-context relations. As

an illustration, the relation between the blue actor and the steering

wheel (drive) serves as a crucial clue for recognizing the action

being performed by the red actor (ride).

to observe that he is inside a car, and there is a driver next

to him. Therefore, most recent progress in spatio-temporal

action detection has been driven by the success of relation

modeling. These approaches focus on modeling relation-

ships in terms of pairwise interactions between entities.

However, it is not always the case that relations between

elements can be formulated in terms of pairs; often, higher-

order relations provide crucial clues for accurate action de-

tection. In Fig. 1, it is difficult to infer the action of the

red actor given only its relation with the blue actor, or only

with the scene context (steering wheel). Instead, in order to

identify that the red actor performs the action “ride”, one has

to reason over the interaction between the blue actor and the

context (drive). In other words, it is necessary to capture the
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implicit second-order relation between the two actors based

on their respective first-order relations with the context.

There were previous works that employ Graph Neural

Networks (GNNs) to implicitly model higher-order inter-

actions between actors and contextual objects [45, 58, 38,

57, 10]. However, in these approaches, an extra pre-trained

object detector is required, and only located objects are used

as context. Since bounding-box annotations of objects in

spatio-temporal action localization datasets are generally

not provided, the pre-trained object detector is limited to

its original object categories and may easily miss various

objects in the scenes. In addition, the higher-order relations

in these methods are limited to be inferred solely from con-

textual objects, which might miss important environmental

or background cues for action classification.

To tackle the above issues, we propose an Actor-Context-

Actor Relation Network (ACAR-Net) which focuses on mod-

eling second-order relations in the form of Actor-Context-

Actor relation. It deduces indirect relations between multiple

actors and the context for action localization. The ACAR-

Net takes both actor and context features as inputs. We

define actor features as the features pooled from the actor

regions of interest, while for context features, we directly

use spatio-temporal grid feature maps from our backbone

network. The context that we adopt does not rely on any

extra object detector with predefined categories, thus making

our overall design much simpler and flexible. Moreover, grid

feature maps are capable of representing scene elements of

various levels (e.g. instance level and part level) and types

(e.g. background, objects and object parts), which is use-

ful for fine-grained action discrimination. The proposed

ACAR-Net first encodes first-order actor-context relations,

and then applies a High-Order Relation Reasoning Operator

to model interactions between the first-order relations. The

High-Order Relation Reasoning Operator is fully convolu-

tional and operates on first order relational features maps

without losing spatial layouts . For supporting actor-context-

actor relation reasoning between actors and context at differ-

ent time periods, we build an Actor-Context Feature Bank,

which contains actor-context relations from different time

steps across the whole video.

We conduct extensive experiments on the challenging

Atomic Visual Actions (AVA) dataset [15, 22] as well as

the UCF101-24 dataset [34] for spatio-temporal action lo-

calization. Our proposed ACAR-Net leads to significant im-

provements on recognizing human-object and human-human

interactions. Qualitative visualization shows that our method

learns to attend contextual regions that are relevant to the

action of interest.

Our contributions are summarized as the three-fold:

• We propose to model actor-context-actor relations for

spatio-temporal action localization. Such relations are

mostly ignored by previous methods but crucial for

achieving accurate action localization.

• We propose a novel Actor-Context-Actor Relation Net-

work for improving spatio-temporal action localization

by explicitly reasoning about higher-order relations be-

tween actors and the context.

• We achieve state-of-the-art performances with signifi-

cant margins on the AVA and UCF101-24 datasets. At

the time of submission, our method ranks first on the

ActivityNet leaderboard [7].

2. Related Work

Action Recognition. Research works on action recognition

generally fall into three categories: action classification,

temporal localization and spatio-temporal localization. Early

works mainly focus on classifying a short video clip into

an action class. 3D-CNN [40, 1, 8], two-stream network

[33, 43, 9] and 2D-CNN [56, 6, 24] are the three dominant

network architectures adopted for this task. While progress

has been made for short trimmed video classification, the

main research stream also moves forward to understand long

untrimmed videos, which requires not only to recognize the

category of each action instance but also to locate its start and

end times. A handful of works [32, 53, 3, 60] consider this

problem as a detection problem in 1D temporal dimension

by extending object detection frameworks.

Spatio-Temporal Action Localization. Recently, the prob-

lem of spatio-temporal action localization has drawn consid-

erable attention from the research community, and datasets

(such as AVA [15, 22]) with atomic actions of all actors in

the video being continuously annotated are introduced. It

defines the action detection problem into a finer level, since

the action instances need to be localized in both space and

time. Typical approaches used by early works apply R-CNN

detectors on 3D-CNN features [15, 11, 54, 50, 23]. Wu et al.

[47] show that actor features obtained by running 3D-CNN

backbone on top of the cropped and resized actor region

from the original video preserve better spatial details than

RoI-pooled actor features. Nevertheless, it has the limitation

that computational costs and inference time almost increase

linearly with the number of actors. Several more recent

works have exploited graph-structured networks to leverage

contextual information [35, 12, 58, 38, 41, 39].

Relational Reasoning for Video Understanding. Rela-

tional reasoning has been studied in the domain of video

understanding [44, 45, 61, 36, 58, 35, 46, 19, 27, 38]. This

is natural because recognizing the action of an actor depends

on its relationships with other actors and objects. Zhou et al.

[61] extend Relation Network [31] for modeling relations

between video frames over time. Non-local Networks [44]

leverage self-attention mechanisms to capture long range de-

pendencies between different entities. Wang et al. [45] show
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that representing videos with Space-time Region Graph im-

proves action classification accuracy. In the context of spatio-

temporal localization, there are many traditional approaches

that are dedicated to capturing spatio-temporal relationships

in videos [59, 28, 37, 18]. For deep neural networks based

methods, Sun et al. [35] propose Actor-Centric Relation

Network that learns to aggregate actor and scene features.

Girdhar et al. [12] re-purpose the Transformer network [42]

for encoding pairwise relationships between every two actor

proposals. Concurrently, Wu et al. [46] use long-term feature

banks (LFB) to provide temporal supportive information up

to 60s for computing long range interaction between actors.

Zhang et al. [58] propose to explicity model interactions be-

tween actors and objects. However, their approach focuses

on modeling actor-object and actor-actor relations separately.

When deducing the action of a person, the interactions of

other persons with contextual objects are ignored. In other

words, they do not explicitly model the actor-context-actor

relations. In contrast, our method emphasizes modeling

those higher-order relations. Perhaps the most similar work

to ours is [38], which aggregates multiple types of inter-

actions with stacked units akin to Transformer Networks

[42]. Nonetheless, while this approach also supports actor-

context-actor interactions, it treats object detection results

as context, which requires extra pre-trained object detec-

tors with fixed object categories and ignores other important

types of contexts (such as background, objects not in the

predefined categories, and specific parts of some objects).

3. Method

In this section, we provide detailed descriptions of our

proposed Actor-Context-Actor Relation Network (ACAR-

Net). Our ACAR-Net aims at effectively modeling and utiliz-

ing higher-order relations built upon the basic actor-actor and

actor-context relations for achieving more accurate action

localization.

3.1. Overall Framework

We first introduce our overall framework for action lo-

calization, where the proposed actor-context-actor relation

(ACAR) modeling is the key module. The framework is

designed to detect all persons in an input video clip (∼2s in

our experiments) and estimate their action labels. As shown

in Fig. 2, following state-of-the-art methods [46, 8, 49], the

framework is built based on an off-the-shelf person detector

(e.g. Faster R-CNN [30]) and a video backbone network (e.g.

I3D [2]). Person and context features are then processed by

the proposed ACAR module with a long-term Actor-Context

Feature Bank for final action prediction.

In details, the person (actor) detector operates on the cen-

ter frame (i.e. key frame) of the input clip and obtains N
detected actors. The detected boxes are duplicated to neigh-

boring frames of the key frame in the clip. In the meantime,

the backbone network extracts a spatio-temporal feature vol-

ume from the input video clip. We perform average pooling

along the temporal dimension to save follow-up computa-

tional cost, which results in a feature map X ∈ R
C×H×W ,

and C,H,W are channel, height and width respectively. We

apply RoIAlign [16] (7× 7 spatial output) followed by spa-

tial max pooling to the N actor features, producing a series

of N actor features, A1, A2, . . . , AN ∈ R
C , each of which

describes the spatio-temporal appearance and motion of one

Region of Interest (RoI).

The proposed Actor-Context-Actor Relation (ACAR)

module is illustrated on the right side of Fig. 2. This mod-

ule takes the aforementioned video feature map X and RoI

features {Ai}Ni=1
as inputs, and outputs the final action pre-

dictions after relation reasoning. The ACAR module has two

main operations. (1) It first encodes first-order actor-context

relations between actors and spatial locations of the spatio-

temporal context. Based on the actor-context relations, we

further integrate a High-order Relation Reasoning Opera-

tor (HR2O) for modeling the interactions between pairs of

first-order relations, which are indirect relations mostly ig-

nored by previous methods. (2) Our reasoning operation

is extended with an Actor-Context Feature Bank (ACFB).

The bank contains actor-context relations at different time

stamps, and can provide more complete spatio-temporal con-

text than the existing long-term feature bank [46] which only

consists of features of actors. We will elaborate the two parts

in the following sections. Notably, our high-order relation

reasoning only requires action labels as supervision.

3.2. Actor­Context­Actor Relation Modeling

First-order actor-context relation encoding. We adopt the

Actor-Centric Relation Network (ACRN) [35] as a module

for encoding the first-order actor-context relations by com-

bining RoI features A1, . . . , AN with the context feature X .

More specifically, it replicates and concatenates each actor

feature Ai ∈ R
C to all H ×W spatial locations of the con-

text feature X ∈ R
C×H×W to form a series of concatenated

feature map {F̃ i}Ni=1
∈ R

2C×H×W . Actor-context relation

features for each actor i can then be encoded by applying

convolutions to this concatenated feature map F̃ i.

High-order relation reasoning. We now discuss how to

compute high-order relations between two actors based on

their first-order interactions with the context. Let F i
x,y record

the first-order features between the actor Ai and the scene

context X at the spatial location (x, y). We propose to

model the relationship between first-order actor-context re-

lations, which are high-order relations encoding more infor-

mative scene semantics. However, since there are a large

number of actor-context relation features, F i
x,y ∈ R

C×1×1,

i ∈ {1, . . . , N}, x ∈ [1, H], y ∈ [1,W ], the number of their

possible pairwise combinations is generally overwhelming.

We therefore design a High-order Relation Reasoning Oper-
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Figure 2. Action Detection Framework. Videos are processed with a Backbone Network to produce spatio-temporal context features. For

each actor proposal (person bounding box), we extract actor features from the context features by RoIAlign. Given the actor and context

features, the ACAR-Net computes second-order relation between every two actors based on their interaction with the context.

ator (HR2O) that aims at learning the high-order relations

between pairs of actor-context relations at the same spatial

location (x, y), i.e., F i
x,y and F j

x,y . In this way, the proposed

relational reasoning operator limits the relation learning to

second-order actor-context-actor relations, i.e. two actors i
and j can be associated via the same spatial context, denoted

as i ↔ (x, y) ↔ j, to help the estimation of their actions.

Our proposed HR2O takes as input a set of first-order

actor-context relation feature maps {F i}Ni=1
. The operator

outputs {Hi}Ni=1
= HR2O({F i}Ni=1

) that encode second-

order actor-context-actor relations for all actors. The op-

erator is modeled as stacking several modified non-local

blocks [44]. For each non-local block, convolutions are used

to convert the input first-order actor-context relation feature

maps F i into query Qi , key Ki and value V i embeddings

of the same spatial size as F i. All feature maps are of dimen-

sion d = 512 in our implementation. It is worth noting that

the use of convolutions is not only useful for aggregating

local information but also makes the operator position and

order-sensitive. The attention vectors are computed sepa-

rately at every spatial location, and the Actor-Context-Actor

Relation feature Hi is given by the linear combination of

all value features {V j}Nj=1
according to their correspond-

ing attention weights Atti,j . The overall process can be

summarized by the following equations,

Qi,Ki, V i = conv2D(F i)

Attix,y = softmaxj

(

〈

Qi
x,y,K

j
x,y

〉

√
d

)

,

H̃i
x,y =

∑

j

Atti,jx,yV
j
x,y.

(1)

Following [46], we also add layer normalization and dropout

to our modified non-local block,

Hi = Dropout(Conv2D(ReLU(norm(H̃i)))),

F ′i = F i +Hi,
(2)

where Hi and the input actor-context features F i are fused

via residual addition to obtain the actor-context-actor feature

F ′i, which can be further processed by the following non-

local block again.

We also exploit another instantiation, which directly ob-

tains second-order actor-context-actor interaction features

from actor features {Ai}Ni=1
and the context feature X by

a Relation Network [31]. More specifically, we obtain the

relation feature between actors Ai, Aj and context Vx,y as

Hi,j
x,y = fθ([A

i, Aj , Vx,y]), (3)

where [·, ·, ·] denotes concatenation along the channel dimen-

sion and fθ(·) is a stack of two convolutional layers. The

high-order relation of an actor i is calculated as the average

of all relation features related to that actor,

Hi =
1

N

∑

j

Hi,j
x,y. (4)

It is also fused with the input features to obtain actor-context-

actor features via residual addition, i.e. F ′i = F i+Hi. This

method is computationally expensive when the number of

actors N is large, since the number of feature triplets is

proportional to N2.

Action classifier. After the actor-context-actor feature maps

{F ′i}Ni=1
are obtained for all actors, a final action classifier

is introduced as a single fully-connected layer with a non-

linearity function to output the confidence scores of each

actor belonging to different action classes.

3.3. Actor­Context Feature Bank

In order to support actor-context-actor relation reasoning

between actors and context at different time periods in a long

video, we propose an Actor-Context Feature Bank (ACFB),

in which we store contextual information from both past

and future. This is inspired by the Long-term Feature Bank

(LFB) proposed in [46]. Yet instead of providing relational

467



High-Order Relation 
Reasoning Operator

ACAR-Net*

Actor-Context 
Features Action Classifier

Clip t-1 Clip t Clip t+1

ACAR-Net*

Actor-Context Feature Bank 

Figure 3. Illustration of ACAR-Net equipped with Actor-Context

Feature Bank, where ACAR-Net* refers to the first-order relation

extraction part of our proposed module.

features for long-term higher-order reasoning, the previous

LFB only stores actor features for facilitating first-order

actor-actor interaction recognition.

As is illustrated in Fig. 3, clips are evenly sampled (every

1 second) from an input video, and the clips (∼2s) could

overlap with each other. We first train a separate ACAR-

Net without any feature bank following the descriptions in

Section 3.2. First-order actor-context relation features F i of

each actor in all clips of the entire video would be extracted

by the separately pre-trained ACAR-Net and archived as

the feature bank. To avoid confusion, we re-denote these

acquired first-order features in the bank as Li.

To train a new ACAR-Net with the support of the long-

term actor-context feature bank to conduct high-order rela-

tion reasoning at some current time step t, we retrieve all

M archived actor-context relation features {Li}Mi=1
from

the frames within a time window [t − w, t + w]. Actor-

context-actor interactions between short-term features (en-

coding first-order interactions at current time t) and long-

term ones from the archived bank can be computed as

{Hi}Ni=1
= HR2O({F i}Ni=1

, {Lj}Mj=1
). Note that, the

HR2O is the same as before, but the self-attention mech-

anism is replaced with the attention between current and

long-term actor-context relations, where query features Q
are still computed from short-term features {F i}Ni=1

, but

key and value features, K and V , are calculated with the

long-term archived features {Li}Mj=1
, i.e.,

Qi = conv2D(F i),

Kj , V j = conv2D(Lj).
(5)

Consequently, for any actor i at current time t, our ACAR-

Net is now capable of reasoning about its higher-relations

with actors and context over a much longer time span, and

thus better captures what is happening in the temporal con-

text for achieving more accurate action localization.

4. Experiments on AVA

AVA [15] is a video dataset for spatio-temporally local-

izing atomic visual actions. For AVA, box annotations and

their corresponding action labels are provided on key frames

of 430 15-minute videos with a temporal stride of 1 second.

We use version 2.2 of AVA dataset by default. In addition

to the current AVA dataset, Kinetics-700 [1] videos with

AVA [15] style annotations are also introduced. The new

AVA-Kinetics dataset [22] contains over 238k unique videos

and more than 624k annotated frames. However, only a

single frame is annotated for each video from Kinetics-700.

Following the guidelines of the benchmarks, we only evalu-

ate 60 action classes with mean Average Precision (mAP) as

the metric, using a frame-level IoU threshold of 0.5.

4.1. Implementation Details

Person Detector. For person detection on key frames,

we use the human detection boxes from [46], which are

generated by a Faster R-CNN [30] with a ResNeXt-101-

FPN [51, 25] backbone. The model is pre-trained with De-

tectron [13] on ImageNet [5] as well as the COCO human

keypoint images [26], and fine-tuned on the AVA dataset.

Backbone Network. We use SlowFast networks [8] as the

backbone in our localization framework and increase the

spatial resolution of res5 by 2×. We conduct ablation exper-

iments using a SlowFast R-50 8× 8 instantiation (without

non-local blocks). The inputs are 64-frame clips, where we

sample T = 8 frames with a temporal stride τ = 8 for the

slow pathway, and αT (α = 4) frames for the fast pathway.

The backbone is pre-trained on the Kinetics-400 dataset2.

Training and inference. In AVA, actions are grouped into 3

major categories: poses (e.g. stand, walk), human-object and

human-human interactions. Given that poses are mutually

exclusive and interactions are not, we use softmax for poses

and sigmoid for interactions before binary cross-entropy loss

for training. We train all models end-to-end (except for the

feature bank part) using synchronous SGD with a batch size

of 32 clips. We train for 35k iterations with a base learning

rate of 0.064, which is then decreased by a factor of 10 at

iterations 33k and 34k. We perform linear warm-up [14]

during the first 6k iterations. We use a weight decay of 10−7

and Nesterov momentum of 0.9. We use both ground-truth

boxes and predicted human boxes from [46] for training. For

inference, we scale the shorter side of input frames to 256

pixels and use detected person boxes with scores greater than

0.85 for final action classification.

4.2. Ablation Study

We conduct ablation experiments to investigate the effect

of different components in our framework on AVA v2.2.

2The pre-trained SlowFast R-50 and SlowFast R-101+NL (in the follow-

ing section) are downloaded from SlowFast’s official repository.
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mAP

Baseline + STO [46] 26.10

Baseline + ACRN [35] 26.71

Baseline + AIA [38] 26.79

Baseline + HR2O 27.83

(a) Relation Modeling

mAP

Baseline 25.39

Baseline + HR2O 27.83

ACAR 28.84

(b) Component Analysis

mAP

Avg 26.97

RN 27.18

NL 27.83

(c) HR2O Design

mAP

Actor First 27.62

Context First 27.83

(d) Relation Order

mAP

HR2O-1L 27.63

HR2O-2L 27.83

HR2O-3L 27.25

(e) Relation Depth

mAP

HR2O 27.83

HR2O + LFB [46] 27.75

HR2O + ACFB 28.84

(f) Feature Bank

Table 1. Ablation study on AVA dataset. The “Baseline” of our framework only consists of the video backbone, actor detector and one-layer

action classifier. HR2O: High-order Relation Reasoning Operator. ACFB: Actor-Context Feature Bank.

The baseline of our framework only consists of the video

backbone (SlowFast R-50), the actor detector and the single-

layer action classifier (denoted as “Baseline” in Table 1).

Relation Modeling - Comparison. In order to show the

effectiveness of our actor-context-actor relation reasoning

module, we compare against several previous approaches

that leverage relation reasoning for action localization based

on our baseline. Here we focus on validating the effect of

relation modeling only, thus we disable long-term support

in this study. We adapt their reasoning modules such that

all methods use the same baseline as our ACAR-Net in

order to fairly compare only the impact of relation reasoning.

We evaluate ACRN that focuses on learning actor-context

relations; STO [46] (a degraded version of LFB) that only

captures actor interactions within the current short clip; AIA

(w/o memory) [38] that aggregates both actor-actor and actor-

object interactions. As listed in Table 1a, our proposed

actor-context-actor relation modeling (“Baseline + HR2O” in

Table 1a) significantly improves over the compared methods.

We observe that AIA with both actor and context relations

performs better than ACRN and STO which only model one

type of first-order relations, yet our method based on high-

order relation modeling outperforms all compared methods

by considerable margins.

We further break down the performances of different

relation reasoning modules into three major categories of the

AVA dataset, which are poses (e.g. stand, sit, walk), human-

object interactions (e.g. read, eat, drive) and human-human

interactions (e.g. talk, listen, hug). Fig. 4 compares the gains

of different approaches with respect to the baseline in terms

of mAP on these major categories. We can see that our HR2O

gives more performance boosts on two interaction categories

compared to the pose category, which is consistent with our

motivation to model indirect relations between actors and

context. Once equipped with ACFB, our framework can

further improve on the pose category as well.

Finally, we contrast our ACAR with existing relation rea-

soning approaches in AVA. We visualize attention maps from

different reasoning modules over an example key frame in

Fig. 5. Without needing object proposals, ACAR is capable

of localizing free-form context regions for indirectly estab-

lishing relations between two actors (the actor of interest

is listening to the supporting actor reading a report). In

comparison, the attention weights of STO as well as AIA

are distributed more diversely and do not have a clear focus

point. Note that we do not show the attention map of ACRN

since it assigns equal weights to all context regions.

Component Analysis. To validate our design, we first ablate

the impacts of different components of our ACAR as shown

in Table 1b. We can observe that both HR2O and ACFB lead

to significant performance gains over baseline.

HR2O Design. We test different instantiations of the High-

order Relation Reasoning Operator on top of our baseline in

Table 1c. Our modified non-local (denoted as “NL”) mecha-

nism works better than simply designing HR2O as an average

function (denoted as “Avg”), i.e. Hi = 1

N

∑

i F
i,. In addi-

tion, the instantiation with relation network (RN) described

in Section 3.2 also works alright. Nonetheless, the modified

non-local attention is computationally more efficient than

RN with feature triplets and has better performance.

Relation Ordering. There are two possible orders for rea-

soning actor-context-actor relations: 1) aggregating actor-

actor relations first, or 2) encoding actor-context relations

first. Note that our ACAR-Net adopts the latter one. We

implement the former order by performing self-attention be-

tween actor features with the modified non-local attention

before incorporating context features in our baseline. The

results in Table 1d validate that context information should

be aggregated earlier for better relation reasoning.

HR2O Depth. In Table 1e, we observe that stacking two

modified non-local blocks in HR2O has higher mAP than

the one-layer version, yet adding one more non-local block

produces worse performance, possibly due to overfitting. We

therefore adopt two non-local blocks as the default setting.

Actor-Context Feature Bank. In this set of experiments,

we validate the effectiveness of the proposed ACFB. We set

the “window size” 2w+ 1 to 21s due to memory limitations,

and longer temporal support is expected to perform better

[46]. As presented in Table 1f, adding long-term support

with ACFB significantly improves the baseline (HR2O’s

27.83 → HR2O + ACFB’s 28.84). We also test replacing

the ACFB in our framework with the long-term feature bank

(LFB) [46] (denoted as “HR2O + LFB”). However, LFB even

fails to match the baseline performance. This drop might

be because LFB encodes only “zeroth-order” actor features,

which cannot provide enough relational information from

neighboring frames for assisting interaction recognition.
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Figure 4. Gains of mAP on three major categories of the AVA

dataset with respect to Baseline. Our ACAR consistently out-

performs other relation reasoning methods, and achieves larger

performance gains on the two interaction categories.

model inputs val mAP

ACRN, S3D [35] V+F 17.4

Zhang et al. [58], I3D V 22.2

Action TX, I3D [12] V 25.0

LFB, R-50+NL [46] V 25.8

LFB, R-101+NL [46] V 27.4

SlowFast, R-50, 8× 8 [8] V 24.8

SlowFast, R-101, 8× 8 [8] V 26.3

Ours, R-50, 8× 8 V 28.3

Ours, R-101, 8× 8 V 30.0

Table 2. Comparison with state-of-the-arts on AVA v2.1. All

models are pre-trained on Kinetics-400. V and F refer to visual

frames and optical flow respectively.

model pre-train val mAP

SlowFast, R-101+NL [8] Kinetics-600 29.0

AIA, R-101+NL [38] Kinetics-700 32.3

Ours, R-101+NL Kinetics-600 31.4

Ours, R-101 Kinetics-700 33.3

Table 3. Comparison with state-of-the-arts on AVA 2.2. We do

not conduct testing with multiple scales and flips. All models use

T × τ = 8× 8.

model val mAP test mAP

AIA++, ensemble [48] - 32.91

MSF, ensemble [62] - 31.88

SlowFast, R-101, 8× 8 (our impl.) 32.98 -

Ours, R-101, 8× 8 35.84 -

Ours++, R-101, 8× 8 36.36 -

Ours++, ensemble 40.49 39.62

Table 4. AVA-Kinetics results. “++” refers to inference with 3

scales and horizontal flips. Models submitted to the test server are

trained on both training and validation sets.

4.3. Comparison with State­of­the­arts on AVA

We compare our ACAR-Net with state-of-the-art meth-

ods on the validation set of both AVA v2.1 (Table 2) and

v2.2 (Table 3). Note that we also provide results with more

advanced video backbones, i.e. two SlowFast R-101 instan-

tiations (with / without NL). On AVA v2.1, our framework

achieves 30.0 mAP and outperforms all prior results with pre-

trained Kinetics-400 backbone. On AVA v2.2, our ACAR-

Video Keyframe     ACAR (actor-context-actor)

STO (actor-actor)   AIA (actor-actor, actor-object)
Figure 5. Comparison of attention maps from different ap-

proaches of relation modeling for action detection. Our method

is able to attend the contextual region (some document) that relates

the actor of interest marked in red (performing “listen to”) and the

supporting actors in the green box (performing “read”), while other

methods fail to achieve similar effects.

Net reaches 33.3 mAP with only single-scale testing, es-

tablishing a new state-of-the-art. Note that our method sur-

passes AIA [38] with only 1/3 of temporal support. The

results indicate that with proper modeling of higher-order

relations, our approach extracts more informative cues from

the context.

We present our results on AVA-Kinetics in Table 4. Our

baseline is already highly competitive (∼33 mAP). Yet inte-

grating our ACAR modeling still leads to a significant gain

of +2.86 mAP. This demonstrates that performance enhance-

ment brought by high-order relation modeling can generalize

to this new dataset. With an ensemble of models, we achieve

39.62 mAP on the test set, ranking first in the AVA-Kinetics

task of ActivityNet Challenge 2020 and outperforming other

entries by a large margin (+6.71 mAP). More details on our

winning solution are provided in the technical report [4].

4.4. Qualitative Results

Our proposed ACAR operates fully convolutionally on

top of spatio-temporal features, and this allows us to visual-

ize the actor-context-actor relation maps {Atti,j} generated

by our High-order Relation Reasoning Operator. As shown

in Fig. 6, the first two columns include the key frame as

well as the corresponding relation map from the same clip,

and the last three columns show the relation map denoting

interactions with actors and context from a neighboring clip.

We can observe that the attended regions usually include

the actor of interest, supporting actors’ body parts (i.e. head,

hands and arm) and objects being in interaction with the

actors. Take the first example on the left as an example. The

green supporting actor Aj is taking a package from the red

actor of interest Ai. Such information is well encoded by

our ACAR-Net in the form of actor-context-actor relations:

packages, hands and arms of both actors are highlighted.
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Figure 6. Visualization of actor-context-actor attention maps on AVA. Actors of interest are marked in red and supporting actors in green.

Heat maps illustrate the context regions’ attention weights Att
i,j from actor-context-actor relation reasoning. We observe that our model has

learned to attend to useful relations between actors and context, and the context serves as the bridge for connecting actors.

5. Experiments on UCF101-24

UCF101-24 is a subset of UCF101 [34] that contains

spatio-temporal annotations for 3,207 videos on 24 action

classes. Following the evaluation settings of previous meth-

ods [20, 54]. We experiment on the first split and report

frame-mAP with an IoU threshold of 0.5.

Implementation Details. We also use SlowFast R-50 pre-

trained on Kinetics-400 as the video backbone, and adopt

the person detector from [21]. The temporal sampling for

the slow pathway is changed to 8× 4 and the fast pathway

takes as input 32 continuous frames.

For training, we train all the models end-to-end for 5.4k

iterations with a base learning rate of 0.002, which is then

decreased by a factor of 10 at iterations 4.9k and 5.1k. We

perform linear warm-up during the first quarter of the train-

ing schedule. We only use ground-truth boxes for training,

and use all boxes given by the detector for inference. Other

hyper-parameters are similar to the experiments on AVA.

Results. As shown in Table 5, ACAR surpasses the strong

baseline with a considerable margin, which again indicates

the importance of high-order relation reasoning.

6. Conclusion

Given the high complexity of realistic scenes encountered

in the spatio-temporal action localization task which involve

multiple actors and a large variety of contextual objects,

we observe the demand for a more sophisticated form of

model inputs mAP

T-CNN [17] V 67.3

ACT [20] V 69.5

STEP, I3D [54] V+F 75.0

I3D [15] V+F 76.3

Zhang et al. [58], I3D V 77.9

S3D-G [52] V+F 78.8

AIA, R-50 [38] V 78.8

SlowFast R-50, 8× 4 (ours) V 82.4

Ours w/o ACFB, R50, 8× 4 V 84.3

Table 5. Comparison with previous works on UCF101-24. We

evaluate frame-mAP on split 1. V and F refer to visual frames and

optical flow respectively.

relation reasoning than current ones which often miss im-

portant hints for recognizing actions. Therefore, we propose

Actor-Context-Actor Relation Network for explicitly mod-

eling higher-order relations between actors based on their

interactions with the context. Extensive experiments on the

action detection task show our ACAR-Net outperforms ex-

isting methods that leverage relation reasoning, and achieves

state-of-the-art results on several challenging benchmarks of

spatio-temporal action localization.
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