
Dual Pixel Exploration: Simultaneous Depth Estimation and Image Restoration

Liyuan Pan 1,2,∗, Shah Chowdhury 1,3,∗, Richard Hartley 1, Miaomiao Liu 1,

Hongguang Zhang 1,4, and Hongdong Li 1

1 Australian National University 2 A&F, CSIRO 3 Data61, CSIRO 4 SE Institute, AMS

{liyuan.pan,Shah.Chowdhury}@anu.edu.au

Abstract

The dual-pixel (DP) hardware works by splitting each

pixel in half and creating an image pair in a single snap-

shot. Several works estimate depth/inverse depth by treat-

ing the DP pair as a stereo pair. However, dual-pixel dis-

parity only occurs in image regions with the defocus blur.

The heavy defocus blur in DP pairs affects the performance

of matching-based depth estimation approaches. Instead of

removing the blur effect blindly, we study the formation of

the DP pair which links the blur and the depth informa-

tion. In this paper, we propose a mathematical DP model

which can benefit depth estimation by the blur. These ex-

plorations motivate us to propose an end-to-end DDDNet

(DP-based Depth and Deblur Network) to jointly estimate

the depth and restore the image. Moreover, we define a re-

blur loss, which reflects the relationship of the DP image

formation process with depth information, to regularise our

depth estimate in training. To meet the requirement of a

large amount of data for learning, we propose the first DP

image simulator which allows us to create datasets with DP

pairs from any existing RGBD dataset. As a side contri-

bution, we collect a real dataset for further research. Ex-

tensive experimental evaluation on both synthetic and real

datasets shows that our approach achieves competitive per-

formance compared to state-of-the-art approaches.

1. Introduction

The Dual-Pixel (DP) sensor has been used by DSLR

(digital single-lens reflex camera) and smartphone cameras

to aid focusing. Though the DP sensor is designed for auto-

focus [32, 16, 15], it is used in applications such as, depth

estimation [10, 29, 43], defocus deblurring [1], reflection

removal [30], and shallow Depth-of-Field (DoF) images

synthesis [36]. In this paper, we model the imaging process

of the DP sensor theoretically, and show its effectiveness for

simultaneous depth estimation and image deblurring.

∗Equal contribution

(a) Inputs (b) Ours (c) GT
Figure 1. The pipeline of our approach. (a) The input of our

DDDNet. A red line in each DP image is drawn to indicate a small

shift between the left and right sub-aperture views. (b) Our de-

blurred image and estimated inverse depth map. (c) The Ground-

Truth (GT) sharp image and inverse depth map. The input DP pair

is from a real-world DP sensor, or generated by our simulator.

A DP camera simultaneously captures two images, one

formed from light rays passing through the right half of the

aperture, and one from those passing through the left half of

the aperture. Because of the displacement of these two half-

apertures, the two images form a stereo pair. The primary

role of DP cameras is to enable auto-focus. The set of points

in the world that are exactly in focus forms a plane parallel

to the lens (perpendicular to the axis of the camera), and

points that lie on this plane are both in focus, and imaged

with zero-disparity in the two images. Points that lie further

away from the camera are imaged with positive disparity

in the two images and those that are closer have negative

disparity. By detecting and modelling these disparities, it

is possible to compute scene depth, as in standard stereo

imaging. (In auto-focus these disparities are used to move

the sensor, or the lens, to focus on any part of the scene.)

At the same time, points other than those lying on the in-

focus plane will be significantly out of focus, which raises

the possibility of using depth-from-defocus techniques to

estimate depth in the scene. This out-of-focus effect is

more significant than with ordinary stereo pairs, making

stereo matching potentially more challenging for DP cam-

eras. However, because of the small base-line, between the
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two half-apertures, occlusion effects are minimal.

Thus, computing depth from a DP camera can be seen as

an out-of-focus stereo estimation problem. This paper aims

to combine depth-from-disparity and depth-from-defocus

approaches in a single network, demonstrating the advan-

tage of modelling them both simultaneously.

To accomplish this, we study the imaging process of a

DP pair and provide a mathematical model handling the in-

trinsic problem of depth from defocus blur for a DP pair.

Our method can jointly recover an all-in-focus image and

estimate the depth of a scene (see Fig. 1). Our contributions

are summarised as follows:

1. We propose a theoretical DP model to explicitly define

the relationship between depth, defocus blur and all-

in-focus image;

2. We design an end-to-end DP-based Depth and Deblur

Network (DDDNet) to jointly estimate the depth map

and restore the sharp image;

3. We formulate a reblur loss based on our DP model

which is used to regularise depth estimate in training;

4. We create a DP image simulator, which enables us to

create DP datasets from any RGB-D dataset;

5. We collect a real dataset to stimulate further research.

Extensive experimental evaluation on both synthetic and

real data shows that our approach achieves competitive per-

formance compared to state-of-the-art approaches.

2. Related Work

For space reasons, we briefly review depth estimation

from monocular, stereo, DP, and defocus.

Monocular. Supervised monocular depth estimation meth-

ods typically rely on large training datasets [22, 9]. Self-

supervised methods [31, 34, 20, 12] often use estimated

depths and camera poses to generate synthesized images,

serving as supervision signals.

Stereo. To summarize, a stereo depth estimation frame-

worl [13, 41, 25, 6, 27, 40, 2] often contains: matching cost

computation, cost aggregation, and disparity optimization.

Recently, several speed-up methods [37, 39] are available.

Dual-pixel. A DP pair has defocus blur and tiny baseline.

To tackle the tiny baseline, Wadhwa et al. [36] utilize a

small search size in block matching. Garg et al. [10] present

the first learning models for affine invariant depth estima-

tion to tackle affine ambiguity. Zhang et al. [43] present a

Du2Net that uses a wide baseline stereo camera to compen-

sate for the DP camera. However, it is specifically tailored

for the ‘Google Pixel’ (narrow aperture, small DoF). The

above three methods ignored the blur cue that could in prin-

ciple fill in the parts where the disparity is imprecise (due to

the tiny baseline). To tackle the defocus blur in a DP pair,

Abuolaim et al. [1] first propose a DPDNet that remove the

blur effect blindly. Recently, Punnappurath et al. [29] use

a point spread function (PSF) to model the defocus blur and

formulate the DP disparity by the PSF. However, the sym-

metry assumption of the PSF (only holds for constant depth

region) limits its application for real-world scenario. More-

over, the method is time-consuming and has three steps (not

end-to-end). In contrast, we study the imaging process of a

DP pair and give a mathematical model jointly handling the

intrinsic problem of depth from defocus blur for a DP pair.

Depth from defocus and deblurring. Depth from defocus

has the same geometric constraints as disparity but differ-

ent physiological constraints [8]. The estimated depth, also

dubbed as defocus map, is commonly used to guide the de-

blurring [3, 33, 38, 26, 23, 44, 21]. DMENet [19] proposes

the first end-to-end CNN architecture to estimate a spatially

varying defocus map and use it for deblurring.

DP data. Only Canon and Google provide DP data to cus-

tomers though most DSLR and smartphone cameras have

the DP sensor. Several researchers [36, 10, 43] use ‘Google

Pixel’ to collect data. However, smartphone cameras use a

fixed and narrow aperture that cannot be adjusted. Canon

is used in [1, 30, 29] with different aperture sizes, but it

is expensive. Both of the two sensors are hard to get the

associated GT information, such as depth. In parallel, the

rise of deep learning has led to an explosion of demands for

data. In this paper, we present the first DP simulator that

synthesizes DP images with GT, from any RGB-D data.

In summary, both the stereo cue and defocus cue pro-

vided by a DP pair benefit the depth estimation. In this pa-

per, we proposed a DP model in Section 3 and a DDDNet in

Section 4 to jointly estimate the depth and restore the image.

3. Dual-Pixel Image Formation

In this section, we first discuss the formation of the two

DP images and the defocus blur in Section 3.1. Then, in

Section 3.2, we present our DP model and explore how to

synthesize DP images from the RGB-D image. Based on

the DP model, we build a DP simulator in Section 3.3.

3.1. Model of a dual­pixel camera

A DP camera can be modelled as an ordinary camera

with a lens satisfying the thin-lens model, in which two (or

more) images IL and IR are simultaneously captured. Here,

the subscripts L and R denote the left and right view sep-

arately. In the model, the focal plane of the camera can

be considered as consisting of two identically placed focal

planes, one of which captures light rays coming from the

left side of the lens, and the other captures light from the

right side of the lens. The two images, IL and IR, can be

considered as images taken by two different (but coplanar)

lens, corresponding to regions in the aperture of a thin-lens.

To be general, let it be assumed that the light for image

IL passes through a region AL of the lens, and that for im-

age IR comes from a region AR. Let us consider the case
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Figure 2. Formation of the two image IL and IR from two points

CL and CR on the lens plane may be thought of as pin-hole pro-

jections (with centres CL and CR and focal-length F ) of the vir-

tual image formed by the lens.

where AL and AR are infinitesimally small, consisting of

just two points CL and CR (see Fig. 2). Choose a coor-

dinate frame such that the lens lies on the plane X = 0,

and the centre of the lens is at the origin. In addition, let

the “world” lie to the left of the lens (that is with points

X < 0), and the camera lie to the right of the lens. Let

W consisting of points X = (X,Y,Z) 1 with X < −f ,

and let W′ be the 3D image of the virtual world, created

by the lens, lying to the right of the lens. In particular, if

X′ = (X′,Y′,Z′) ∈ W′, then X′ > f . Here, f is the fo-

cal length of the lens. Consider a plane of sensors (called

a focal plane) lying inside the camera. Assume that this is

parallel to the lens, so it is a plane defined by the equation

X = F, with F > 0. The symbol of F is chosen to imply

that this is the distance of the focal plane from the lens, but

it is not the same as the focal length of the lens, which is f .

Observation. An image IL of the world W formed from

rays passing through a point CL in the focal plane is the

same as a pin-hole camera image of the virtual world W′

with projection centre CL and the same focal plane. The

same statement is true for the image IR formed from rays

passing through CR.

Proof. Refer to Fig. 2. Consider a world point X, mapped

by the lens to a virtual world point X′. This means that

if C is any point on the lens, then the ray XC is refracted

by the lens to the ray CX′. In particular, this is true for

the point CL lying on the lens. Let the point Y be the point

where the ray CLX
′ (extended if necessary) meets the focal

plane. Then Y is the point where X is imaged in IL. This

is because a ray traverses the path XCLY, passing through

X′ on the way. On the other hand, looked at in terms of

the pinhole camera with centre CL, the ray from CL to X′

meets the focal plane at Y. This means that Y is the image

of the point X′ in the pinhole image taken from CL.

Therefore, if the two regions were single points CL and

CR, then the two images IL and IR are exactly a stereo pair

of images of the virtual world W′. Although the two points

CL and CR are necessarily very close together, the virtual

world is also very small and very close to the camera lens,

so there will be appreciable disparity.

1All vectors are column vectors.
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Figure 3. Rays from a point X in the scene at depth d pass through

the aperture AL and are focused at a point X′ at depth d′ in the

virtual world W′. The set of all the rays passing through AL form,

after refraction, a double-sided cone, with vertex at X′. This cone,

meets the focal plane at depth F in a region that is geometrically

similar to the shape of AL. This explanation is continued in Fig. 4.

Non-pinhole model. In the case where the two regions AL

and AR are bigger than a pinhole, and in fact constitute half

the lens itself, the images IL and IR formed will be made

up as the superposition of images of the virtual world W′

taken at all points CL in region AL and CR in region AR.

They will consequently be blurred. This is shown in Fig. 3.

Therefore, the problem of finding depth in the scene

from images IL and IR is equivalent to doing stereo from

blurred images. This will have its problems. The blur will

be depth dependent. Points in the virtual world that lie on

the focal plane π will be in focus at independent of the po-

sition of the point CL and CR. Thus, points in the world

corresponding to this placement of the focal plane will be

both in focus and identically positioned in the two images

IL and IR. Points that lie off the focal plane will be blurred

and at the same time displaced by a disparity.

3.2. Image synthesis from RGB­D image

Given an image with an associated depth map, it is pos-

sible to synthesize either of the pair of dual-pixel images.

Consider the image I, formed from all rays passing through

a region A in the plane of the lens. (Note, A is either AL

or AR, and the corresponding image is either IL or IR.)

Let IW be an RGB-D image of the world, taken nomi-

nally from the viewpoint of the lens centre. Since the lens

is normally very small with respect to the world, it will be

assumed that any world point visible from the lens centre

will be visible from any other point on the lens.

The RGB-D image gives us 3D coordinates of any point

visible in the image. Let X = (X,Y,Z) ∈ W be such a

point. The image of this point in the virtual world W′ is

given by

X′ = (X′,Y′,Z′) =
f

f +X
(X,Y,Z). (1)

This point is then projected from each point C ∈ A onto

the focal plane X = F . The projection rays, through X′

from points in A form a cone with cross-section A and ver-

tex X′. This cone meets the focal plane in a further cross-

section A′, Since the lens and focal plane are parallel, A

and A′ will be similar regions, in the sense that there is a
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Figure 4. Viewed side-on, rays from a point X pass through the

aperture AL (similarly AR) and are focused at X′. They meet the

focal plane at depth F (which may be either side of X′) covering

a region A
′
L geometrically similar to AL. The scale of A′

L is

computed by similar triangles; the scale factor is given by (d′ −
F )/d′. This scale factor is positive if F lies in front of X′ and

negative if it lies behind; in this letter case, A′
L is inverted with

respect to AL.

similarity transform relating A and A′. Even more, this is

simply a scaling and translation (where the scale may be

positive or negative). In particular, a point C ∈ A maps to

a point C′ = sC+ t. Here, t is a 2-dimensional offset and

s is a scale. For a given point X, the values of s and t are

constant, not dependent on the particular point C chosen,

but they vary according to the point X chosen.

Refer to Fig. 4. In particular, by similar triangles [14]

C′ = T (C) = (1− s)C+ sX′ , (2)

where s = F/d′.

Image coordinates. We start with an RGB-D image, so

each pixel in an image comes with an associated depth. For

simplicity, we assume that all distances (including depth)

are measured in pixel coordinates.

We make the following assumptions. A pixel with co-

ordinates 2 (y, z) corresponds with a ray in space defined

by −d(1, y/f, z/f) for varying d. In particular, since each

point in the image comes with a depth, we are assuming

that the point imaged at point (y, z) has 3D coordinates

(−d,−dy/f,−dz/f). This corresponds to a pinhole cam-

era with focal plane given by X = f and camera centre

(pinhole) at the origin.

A point X = −d(1, y/f, z/f) at depth d will be mapped

to a point X′ = d′(1, y/f, z/f), where 1/d+ 1/d′ = 1/f ,

or

d′ = fd/(d− f) . (3)

Let C = (0,Y0,Z0) be a point in A (lying on the lens plane

X = 0). The line from C through X′ = d′(1, y/f, z/f)
is expressed as (1 − s)C + sX′ for varying values of s.

This line meets the plane X = F when s = F/d′. The

coordinates of this point are therefore

T (X,C) =
d′ − F

d′
C+

F

d′
X′

=
d′ − F

d′
C+ F (1, y/f, z/f) .

(4)

2It is convenient to use (y, z) for image coordinates, instead of the

usual (x, y).

We are only interested in the (Y,Z)-coordinates, in which

case we have

T (X,C) =
d′ − F

d′
(Y0,Z0) + F (y/f, z/f) . (5)

Here, the transformation function T (X,C) for the left

and right image has been defined with points CL and CR

in AL and AR respectively.

3.3. DP simulator

Given a sharp image I ∈ IRH×W and its associated

depth map d ∈ IRH×W , we can simulate a DP image pair

B{L,R} as follows. Here, H and W are the image height

and width, and it is also assumed that focal length f and

focal-plane-sensor distance F are known (measured in units

of pixel-size).

For each pixel (y, z) in I , as shown in Fig. 4 the intensity

of a pixel is spread over regions RL and RR, in the left and

right view of the DP pair. Each region contains a set of

points p, containing |R| pixels, and the intensity I(y, z) of

the pixel (y, z) is spread out evenly over this set of pixels.

Now running over all pixels I(y, z), and summing, a pair of

dual-pixel images are created. This is essentially blurring

with depth-dependent blur kernel.

This operation is expensive computationally, since it re-

quires looping over each pixel (y, z) in the image, as well

as each pixel in the region R, thus 4 levels of looping.

We utilize the concept of ‘integral image’ to speed up

the computation, so that it has complexity independent of

the size of the region R, thus of order O(n) where n is the

number of pixels. In this description, we assume that the

left and right halves of the aperture are approximated by

rectangles, though with some amount of extra computation,

more general shapes may be accommodated.

Given a pixel (y, z) of the RGB-D image at a given

depth, its corresponding light rays will pass through ev-

ery point of AL. To compute the blur-region RL, one

needs only to compute the destinations of the rays pass-

ing through the four corners of AL, which will be denoted

by ptl = (ytl, ztl), ptr = (ytr, ztr), pbl = (ybl, zbl) and

pbr = (ybr, zbr) in the left image BL. The positions of

these four points are given by Eq. (5). Here, the subscript

tl, tr, bl and br denotes top-left, top-right, bottom-left and

bottom-right, respectively.

We create a differential mask IL ∈ IRH×W for the re-

gion RL defined by

IL(ptl) = I(y, z)/|RL|, IL(ptr) = −I(y, z)/|RL|,

IL(pbl) = −I(y, z)/|RL|, IL(pbr) = I(y, z)/|RL| .
(6)

These values are summed for the regions RL corresponding

to all points (y, z) in the image, to create the differential

image. Finally, we integrate the differential image, and the
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Figure 5. The architecture of the proposed DDDNet. With the input DP image pair, the DepthNet first estimates a coarse inverse depth map

D̂c. Then, we combine the coarse and blurred inverse depth map with B{L,R}, and feed them to the DeblurNet. The deblurred image and

estimated inverse depth map are fed to our DP simulator to synthesize a DP image pair. The synthesized DP images are compared to the

inputs using our reblur loss (Eq. (11)), to regularise the DDDNet in training. Note that, the ground truth inverse depth maps and sharp

images are used as supervision signals in training. (Best viewed in colour on screen.)

left/right view of the DP image pair is given by

B̂{L,R} = T (I{L,R}), (7)

where T (·) denotes the integral process. The integration

process [35] is also closely related to ‘summed area tables’

in graphics [5].

Our simulator allows the vision community to collect

large amounts of DP data with ground truth, opening the

door to accurately benchmark DP-based methods. Our sim-

ulator can also be used to supervise the learning process.

With the DP model and the simulator, we build our

DDDNet considering both stereo and defocus cues.

4. DP-based Depth and Deblur Network

4.1. Network architecture.

The input of our DDDNet is the left and right view of a

DP image pair B{L,R}. The output of our DDDNet is the

estimated inverse depth map D̂ and the deblurred image Î.

We use ground-truth latent sharp image I and inverse depth

map D for training.

The pipeline of DDDNet is shown in Fig. 5. It con-

sists of two components: DepthNet g(·) with parameters
~G and DeblurNet f(·) with parameters ~F . The Depth-

Net is based on [4] and the DeblurNet is based on the

multi-patch network [42]. Note that our approach is inde-

pendent to the choices of f(·) and g(·) (e.g., multi-scale

and multi-patch architectures). We start with a coarse in-

verse depth map D̂c estimation by the DepthNet, where

D̂c = g(B{L,R}; ~G). Then, we combine the coarse and

blurred inverse depth map with B{L,R}, and feed it to the

DeblurNet. The DeblurNet is an encoder-decoder network,

and {Î, D̂} = f(B{L,R}, D̂c; ~F).

4.2. Loss functions.

We use a combination of an image restoration loss, depth

loss, and an image reblur loss. The final loss is a sum of the

three losses.
L = Lres + Ld + Lreb . (8)

(a) Input image (b) GT: Depth (c) BTS [20]

(d) SDoF [36] (e) DPdisp [29] (f) Ours

Figure 6. An example of inverse depth estimation result on the

real DPD-disp dataset [29]. (Best viewed in colour on screen.)

Image restoration loss Lres. This loss ensures the de-

blurred image is similar to the target image, and is given

by

Lres =
1

N

∑

y,z

‖I(y, z)− Î(y, z)‖ , (9)

where N is the number of pixels and ‖ · ‖ is the ℓ2 norm.

Depth loss Ld. We adopt the smooth ℓ1 loss. Smooth ℓ1
loss S(·) is widely used in a regression task, for its robust-

ness and low sensitivity to outliers [11]. The Ld is defined

as

Ld =
1

N

∑

y,z

S(D(y, z)− D̂(y, z)) . (10)

Image reblur loss Lreb. The reblur loss penalizes the dif-

ferences between the input blurred images and the reblurred

images (from the DP simulator). The reblur loss explicitly

enforces the restored image and inverse depth map to lie on

the manifold of the ground-truth image and inverse depth

map, subject to our DP model. The Lreb is given by

Lreb =
1

N

∑

y,z

‖B{L,R}(y, z)− B̂{L,R}(y, z)‖ . (11)
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Table 1. Quantitative analysis of deblurring results on the DPD-

blur dataset [1], Our-syn dataset, and Our-real dataset. The best

results are shown in bold. Here, ‘Ourswb’ and ‘Oursreb’ denotes

our model trained without and with the reblur loss, respectively.

The results demonstrate that our model improves significantly with

the reblur loss. Besides ‘PSNR’ (in dB), to explicitly illustrate the

improved quality of deblurred images, we use a metric ‘RMSE rel’

(RMSE/255, in %) to further explain ‘what 1dB improvement

means’. Compared with the second-best method, the relative im-

provement of our method in intensity value for the three datasets

is 13%, 19%, and 12%, respectively.
DPD-blur

EBDB [17] DMENet [19] DPDNet [1] Ourswb/Oursreb
PSNR ↑ 24.82 23.93 25.53 26.15/26.76

SSIM ↑ 0.801 0.812 0.826 0.827/0.842

MSE rel ↓ 5.74 6.36 5.29 4.93/4.59

Our-syn

PSNR ↑ 26.48 30.14 31.45 32.17/33.21

SSIM ↑ 0.891 0.939 0.926 0.948/0.956

MSE rel ↓ 4.74 3.11 2.68 2.46/2.17

Our-real

PSNR ↑ 21.67 23.18 22.65 23.99/24.03

SSIM ↑ 0.763 0.809 0.808 0.826/ 0.850

MSE rel ↓ 8.25 6.39 7.09 6.24/ 6.13

Table 2. Quantitative analysis of depth estimation on the DPD-

disp dataset [29]. As the DPD-disp dataset only provides test-

ing data, we directly use our model (trained on Our-syn dataset,

namely ‘Ours’) without fine-tuning and achieves the second best.

Then, we use our reblur loss to fine-tuning our model (without us-

ing the GT depth map). Our model with the reblur loss ‘Oursft
(fine-tune)’ achieves competitive results, indicating that our simu-

lated DP outputs resemble those from a real DP sensor.

AI(1) ↓ AI(2) ↓ 1-ρs ↓
Geometric

Mean
↓

BTS [20] 0.1070 0.1767 0.6149 0.2686

Monodepth2 [12] 0.1139 0.1788 0.6153 0.2285

SDoF [36] 0.0875 0.1294 0.2910 0.1443

DPdisp [29] 0.0481 0.0845 0.1037 0.0671

Ours 0.0906 0.1291 0.2456 0.1207

‘Oursft’ 0.0609 0.0985 0.1026 0.1098

5. Experiment

5.1. Experimental setup

Real dataset. We evaluate our method on three real DP

datasets, namely, the Defocus Depth estimation dataset

(DPD-disp) [29], Defocus Deblur Dual-Pixel dataset (DPD-

blur) [1], and our new-collected dataset (Our-real) . DPD-

disp dataset provides DP images with depth maps. The

ground-truth (GT) depth map is computed by applying the

well-established depth-from-defocus technique. DPD-blur

provides a collection of image pairs captured by Canon 5D

IV with all-in-focus and out-of-focus. In testing, we down-

sampled the frames to 50% of their original size (1120 ×
1680 pixels). Compared with the DPD-blur dataset, Our-

real is collected by Canon with a variety of aperture sizes,

varying from f/4 to f/22. Each all-in-focus image is as-

sociated with several out-of-focus blurred images, yielding

a diversity dataset. Our-real contains 150 scenes, including

both indoor and outdoor scenes, captured under a variety of

lighting conditions.

Synthetic dataset. Our synthetic dataset is generated us-

ing the proposed DP simulator. We use the NYU depth

dataset [24] as the input to our simulator, as it provides RGB

images with depths. Giving different camera parameters,

we simulate 5000 image pairs for training and 500 image

pairs for testing.

Evaluation metrics. Given a DP-pair, our method jointly

estimates a depth map and a deblurred image. We use stan-

dard metrics to evaluate the quality of estimated depth map

and restored image separately [7, 28]. For depth map, we

use absolute relative error ‘Abs Rel’, square relative error

‘Sq Rel’, root mean square error ‘RMSE’ and its log scale

‘RMSE log’, and the δ inlier ratios (maximal mean relative

error of δi = 1.25i for i ∈ 1, 2, 3). For restored image, we

adopt the peak signal-to-noise ratio ‘PSNR’, structural simi-

larity ‘SSIM’, and RMSE relative error ‘RMSE rel’. For the

DPD-disp dataset, we follow DPdisp [29] to use the affine

invariant version of MAE ( ‘AI(1)’), RMSE (‘AI(w)’), and

Spearman’s rank correlation (‘1− |ρs|’) for evaluation.

Baseline methods. For depth map, we compare with state-

of-the-art monocular (BTS [20], Monodepth2 [12]), stereo

(AnyNet [37]), and DP (SDoF [36], DPdisp [29]) based

depth estimation methods. For defocus deblurring, we com-

pared with EBDB [17], DMENet [19], and DPDNet [1].

All methods are evaluated on each dataset independently.

All learning methods are fine-tuned for each dataset (except

DPD-disp, as no training data is provided). To fine-tune

DMENet [19] on the DPD-blur and Our-real dataset, we

use BTS [20] to estimate a coarse depth map to train, as the

two datasets do not provide ground-truth depth maps. The

same coarse depth maps are also used to train our network.

Implementation details. Our network is trained from

scratch using the Adam optimizer [18] with a learning rate

of 10−4 and a batch size of 10. Our model is trained on a

single NVIDIA Titan XP GPU.

5.2. Results and discussions

We compare our results with baselines on depth estima-

tion and image deblurring on 4 (including real and syn-

thetic) datasets.

Deblurring results. We show the quantitative and qual-

itative comparisons for deblurring in Table 1, Fig. 7 and

Fig. 8, respectively. In Table 1, we achieve competitive re-

sults compared with the state-of-the-art methods [17, 19, 1]

on both DPD-blur, Our-syn, and Our-real dataset. Here,

‘Ourswb’ and ‘Oursreb’ denote results without and with

the reblur loss, respectively. The relative improvement is

around 10%, demonstrating that using our DP-model based

reblur loss can significantly improve the deblurring perfor-
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Table 3. Quantitative analysis of deblurring and depth estimation results on our synthetic dataset. The synthetic dataset is generated using

our DP simulator. Here, we evaluate the intermediate outputs of DDDNet (see Fig. 5) step by step, ‘Oursb’ denotes the coarse depth map

D̂c from DepthNet, ‘Ourswb’ denotes the depth map D̂ from DeblurNet, and ‘Oursreb’ denotes the final results with the reblur loss. BTS

achieves lower in ‘RMSE’ but higher in ‘RMSE log’, and the reason is that BTS gets a number of zeros in their results.

Sensor Method abs rel ↓ sq rel ↓ rmse ↓ rmse log ↓ a < 1.25 ↑ a < 1.252 ↑ a < 1.253 ↑ PSNR ↑
Monocular BTS [20] 0.377 0.195 0.255 0.484 0.554 0.741 0.994 -

Stereo AnyNet [37] 0.128 0.117 0.731 0.168 0.828 0.923 0.998 -

Dual-pixel

DPdisp [29] 0.328 0.479 1.252 0.332 0.438 0.804 0.965 -

Oursb 0.149 0.364 1.222 0.224 0.743 0.930 0.978 -

Ourswb 0.091 0.082 0.599 0.123 0.918 0.993 0.998 32.171

Oursreb 0.083 0.052 0.461 0.111 0.936 0.998 1.000 33.218
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(a) Input image (b) GT image (c) Intensity error (d) DPDNet [1] (e) Ours: Î

Figure 7. Examples of deblurring results on the real DPD-blur dataset [1] (top two rows) and our collected real DP dataset (bottom three

rows). (c) The distribution of the intensity error (‘RMSE rel’). It shows the percentile of the number of pixels below an error ratio. The

lower the curve, the better. For space limitations, we only display deblurred images from the second-best baseline [29] for comparison.

(Best viewed in colour on screen.)

mance of our DDDNet. Fig. 7 and Fig. 8 show the qualita-

tive and quantitative comparisons on the three datasets.

Depth results. We first provide depth estimation results on

the DPD-disp dataset. The comparisons are shown in Table

2 and Fig. 6. As no training data is available, we directly

test our model (trained on Our-syn dataset) on their test-

ing set without fine-tuning and achieve the second best per-

formance. Furthermore, note that our DP-model based re-

blur loss can be used as a ‘self-supervision’ signal to adapt

our DDDNet to this test dataset, we can further fine-tune

our model trained on Our-syn dataset using our reblur loss,

without using GT depth map. Our model with reblur loss

‘Ours (fine-tune)’ achieves competitive results compared

with the state-of-the-art methods [20, 12, 36, 29].

We then provide depth comparisons on Our-syn dataset.

The results are shown in Table 3 and Fig. 8. In Table 3, we

evaluate the outputs of our DDDNet step by step, it shows

that, with our joint optimization of depth estimation and de-

blurring, we improve the quality of both the depth map and

the deblurred image. Also, with our DP-model based reblur
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(a) GT: Image I (b) Input image (c) EBDB [17] (d) DMENet [19] (e) DPDNet [1] (f) Ourswb: Î

(g) GT: inverse depth D (h) BTS [20] (i) AnyNet [37] (j) DPdisp [29] (k) Oursb: D̂c (l) Oursreb: D̂

0 20 40 60 80 100

Number of pixels (%)

-2

-1

0

1

2

E
rr

o
r 

(p
ix

e
l)

0 20 40 60 80 100

Number of pixels (%)

0.5

1

1.5

2

E
rr

o
r

(m) Inverse depth error, D− D̂ (n) Inverse depth error, D/D̂

Figure 8. An example of deblurring and inverse depth estimation results on our synthetic dataset. (a) The ground truth image. (b) The left

view of the simulated DP image pair. (c) Deblurred by EBDB [17]. (d) Deblurred by DMENet [19]. (e) Deblurred by DPDNet [1]. (f)

Our deblurring result. (g) The ground truth inverse depth. (h) Depth by the monocular based method BTS [20] (converted to inverse depth

for display). (i) Inverse depth by the stereo based method AnyNet [37]. (j) Inverse depth by the DP based method DPdisp [29]. (k) Output

inverse depth of the DepthNet (see Fig. 5). (l) Our inverse depth result. (m) Inverse depth error: D− D̂, the closer to zero, the better. (n)

Inverse depth error: D/D̂, the closer to 1, the better. The error distributions help to statistically analyze the accuracy of each method.

Our method outperforms other baselines significantly. (Best viewed in colour on screen.)

loss, we further improve our performance. For example, for

the ‘abs rel’ metric, the relative error for the coarse depth

map as the output of the DepthNet (see Fig. 5), the Deblur-

Net without reblur loss and the DeblurNet with reblur loss

is 0.149, 0.091 and 0.083, respectively.

To further illustrate the superiority of our results, we re-

construct the scene to other views with the estimated sharp

image and depth map. The reconstructed videos can be

found in our project page.

Effectiveness of our simulated DP images. To further

show the usefulness of our simulated DP images, our

model trained on Our-syn dataset is directly used to test on

the DPD-blur dataset. The result is 20.28dB/0.650/9.68%
in PSNR/SSIM/RMSE rel without any fine-tuning. Af-

ter fine-tuning, our model trained on Our-syn get re-

markable performance, with PSNR/SSIM/RMSE rel at

26.92dB/0.864/4.51%, outperforming the performance of

our model (26.76dB/0.891/4.59%) directly trained on the

DPD-blur dataset. To further show the transfer ability of

our model trained using simulated DP images, we only

use a half amount of images from the DPD-blur dataset

to finetune our model trained on Our-syn dataset, obtain-

ing a good performance, with PSNR/SSIM/RMSE rel at

26.52dB/0.822/4.72% in 20 epoches.

6. Conclusions

In this paper, we derive a mathematical DP model for-

mulating the imaging process of the DP camera. We pro-

pose an end-to-end DDDNet (DP-based Depth and Deblur

Network), to jointly estimate a inverse depth map and re-

store a sharp image from a blurred DP image pair. Also,

we present a reblur loss building upon our DP model and

integrate it into our DDDNet. For future work, we plan to

extend our DDDNet to a self-supervised depth and sharp

image estimation network.
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[32] Przemysław Śliwiński and Paweł Wachel. A simple model

for on-sensor phase-detection autofocusing algorithm. Jour-

nal of Computer and Communications, 1(06):11, 2013. 1

[33] Supasorn Suwajanakorn, Carlos Hernandez, and Steven M

Seitz. Depth from focus with your mobile phone. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3497–3506, 2015. 2

[34] Fabio Tosi, Filippo Aleotti, Matteo Poggi, and Stefano Mat-

toccia. Learning monocular depth estimation infusing tradi-

tional stereo knowledge. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019. 2

[35] Paul Viola, Michael Jones, et al. Robust real-time object

detection. International journal of computer vision, 4(34-

47):4, 2001. 5

[36] Neal Wadhwa, Rahul Garg, David E Jacobs, Bryan E Feld-

man, Nori Kanazawa, Robert Carroll, Yair Movshovitz-

Attias, Jonathan T Barron, Yael Pritch, and Marc Levoy.

Synthetic depth-of-field with a single-camera mobile phone.

ACM Transactions on Graphics (TOG), 37(4):1–13, 2018. 1,

2, 5, 6, 7

[37] Yan Wang, Zihang Lai, Gao Huang, Brian H Wang, Laurens

Van Der Maaten, Mark Campbell, and Kilian Q Weinberger.

Anytime stereo image depth estimation on mobile devices. In

2019 International Conference on Robotics and Automation

(ICRA), pages 5893–5900. IEEE, 2019. 2, 6, 7, 8

[38] Guodong Xu, Yuhui Quan, and Hui Ji. Estimating defocus

blur via rank of local patches. In Proceedings of the IEEE

International Conference on Computer Vision, pages 5371–

5379, 2017. 2

[39] Haofei Xu and Juyong Zhang. Aanet: Adaptive aggrega-

tion network for efficient stereo matching. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 1959–1968, 2020. 2

[40] Zhichao Yin, Trevor Darrell, and Fisher Yu. Hierarchical dis-

crete distribution decomposition for match density estima-

tion. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2019. 2
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