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Abstract

Weakly supervised object localization (WSOL) remains

an open problem given the deficiency of finding object

extent information using a classification network. Although

prior works struggled to localize objects through various

spatial regularization strategies, we argue that how to extract

object structural information from the trained classification

network is neglected. In this paper, we propose a two-stage

approach, termed structure-preserving activation (SPA), to-

ward fully leveraging the structure information incorporated

in convolutional features for WSOL. First, a restricted acti-

vation module (RAM) is designed to alleviate the structure-

missing issue caused by the classification network on the ba-

sis of the observation that the unbounded classification map

and global average pooling layer drive the network to focus

only on object parts. Second, we designed a post-process

approach, termed self-correlation map generating (SCG)

module to obtain structure-preserving localization maps

on the basis of the activation maps acquired from the first

stage. Specifically, we utilize the high-order self-correlation

(HSC) to extract the inherent structural information retained

in the learned model and then aggregate HSC of multiple

points for precise object localization. Extensive experiments

on two publicly available benchmarks including CUB-200-

2011 and ILSVRC show that the proposed SPA achieves

substantial and consistent performance gains compared with

baseline approaches. Code and models are available at

github.com/Panxjia/SPA CVPR2021.

1. Introduction

Weakly supervised object localization (WSOL) requires

the image-level annotations indicating the presence or

*Equal contribution
†Corresponding author

Figure 1. Self-correlation maps corresponding to the image

positions masked by red crosses. The 2nd and 3rd rows are the

first- and second-order self-correlation maps, respectively.

absence of a class of objects in images to learn localization

models [17, 18, 19, 35, 29, 28]. In recent years, WSOL has

attracted increasing attention because it can leverage rich

Web images with tags to learn object-level models.

As a work for WSOL, Class Activation Mapping

(CAM) [43] uses the intermediate classifier activation to

discover discriminative image regions for target object

localization [4]. Afterward, divergent activation methods [23,

35, 37] design multiple parallel branches or introduce

attention modules to drive networks learning complete

object extent. Adversarial erasing methods [5, 15, 33, 39]

pursue learning full object extent in a hide-and-seek fashion.

Existing methods [15, 33, 39] largely depend on CAM and

spatial regularization to localize objects, e.g., expanding

activated regions to full object extent; however, preserving

the structure of object is unfortunately neglected.

Through experiments, we observed that the head structure

of the classification network causes the CAM missing object

structure information contained in convolutional features.

Specifically, the network driven by sole classification loss

tends to activate a small proportion of features with largest

discriminative capability while depressing the majority of
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object extent. Furthermore, many CAM-based methods

employ a global average pooling (GAP) [13] layer atop the

feature maps to retain the localization information. The GAP

layer treats each pixel within the feature map equally, which

hinders distinguishing true objects from noisy background.

The inherent spatial correlation in CNNs has been widely

used in image classification and object detection areas [2,

31, 32], but remains unexploited for WSOL. Following

the self-attention mechanism, recent works [32, 41, 42]

adopted the first-order pixel-wise correlation to improve

object localization. However, pixels of one object usually

have dissimilar features for the large appearance variation,

which limits the capability of the first-order self-correlation

to preserve object structural information, Fig. 1 (2nd row).

In this study, we propose a two-stage WSOL approach,

termed structure-preserving activation (SPA), for accurate

object localization using sole image-level category labels as

supervision. First, a restricted activation module (RAM) is

designed to avoid the misleading by local extremely high

response for classification by suppressing the response value

range of CAM and differentiate objects from background

under the guidance of estimated pseudo-masks. Second, a

self-correlation map generating (SCG) module is proposed

to refine the localization map under the guidance of the

structural information extracted from trained features. In

SCG, to guide the activation of objects, we propose to

use the high-order self-correlation (HSC) which facilities

capturing precise spatial layouts of objects by long-range

spatial correlations, Fig. 1 (3rd row). We conduct extensive

experiments on the CUB-200-2011 [27] and ILSVRC [20].

Our method obtains significant gains compared with baseline

methods and achieve comparable results with the SOTAs on

bounding box and mask localization.

The contributions of this study include:

• We unveil that spatial structure preserving is crucial

to discover the localization information contained in

convolutional features for WSOL.

• We propose a simple-yet-effective SPA approach to

distill the structure-preserving ability of features for

accurate object localization.

• With negligible computational complexity and cost

overheads, our proposed approach shows consistent and

substantial gains across CUB-200-2011 and ILSVRC

datasets for bounding box and mask localization.

2. Related Work

Weakly supervised object localization (WSOL) aims to

learn the localization of objects with only image-level labels.

A representative work on WSOL is CAM [43], which

produces localization maps by aggregating deep feature

maps using a class-specific fully connected layer. Hwang

and Kim [9] simplified CAM by removing the last fully

connected layer. Although CAM-based methods are simple

and effective, they only identify small discriminative part

of objects. To improve the activation of CAMs, HaS [23]

and CutMix [23] adopted an erasing-based strategy from

input images to force the network to focus on more relevant

parts of objects. Differently, ACoL [39] and ADL [5]

instead erased feature maps corresponding to discriminative

regions and used multiple parallel classifiers that were

trained adversarially. Apart from the above erasing methods,

SPG [40] and I2C [41] increased the quality of localization

maps by introducing the constraint of pixel-level correlations

into the network. DANet [35] applied a divergent activation

to learn complementary and discriminative visual patterns

for WSOL. SEM [42] refined the localization maps by

using the point-wise similarity within seed regions. GC-

Net [14] took geometric shape into account and proposed a

multi-task loss function. Given that existing methods only

focus on expanding activation regions, they are challenged

by the contradiction between precise classification and

object localization. The problem about how to leverage

a classification network to active and localize full object

extent remains unsolved.

Weakly supervised semantic segmentation (WSSS) aims

to predict precise pixel-level object masks using weak

annotations. The mainstream methods for WSSS with

image-level labels train classification networks to estimate

object localization maps as pseudo masks which are further

used for training the segmentation networks. To generate

accurate pseudo masks, [11, 1, 8, 31] resorted to region

growing strategy. Meanwhile, some researchers investigated

to directly enhance the feature-level activated regions [12, 34,

38]. Others accumulated CAMs through multiple training

phases [10], exploring boundary constraint [3], leveraging

equivariance for semantic segmentation [32], and mining

cross-image semantics [25] to obtain more perfect pseudo

masks. Recently, researchers found saliency maps offer

higher quality heuristic cues than attention maps [6].

Feature Self-Correlation. Spatial self-correlation is an

instantiate of self-attention mechanism for non-sequential

data in computer vision. Most WSOL/WSSS methods [32,

41, 42] utilize the similarity of pixels to refine the features or

activation maps following self-attention mechanism. Wang

et al. [31] proposed a non-local block to capture long-range

dependency within image pixels. Cao et al. [2] found that the

global contexts modeled by non-local network are almost the

same for query positions and thereby proposed NLNet [31]

with SENet [7] for global context modeling. MST [24]

proposed the learnable tree filter to leverage the structural

property of minimal spanning tree to model long-range

dependencies. DNL [36] disentangled the non-local block

into a whitened pairwise term and a unary term to facilitate

the learning process. These methods belong to the first-
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Figure 2. Framework of the proposed SPA approach. During the training phase, we designed a restricted activation module paralleled with

the classification branch on the baseline architecture of simplified CAM [43]. In the inference phase, we proposed a self-correlation map

generating module, which is a post-process method to refine the localization map by introducing the structural information of objects.

order self-correlation, and acquire the long-range context

by stacking numerous modules in different stages. For a

single feature layer, they can only retain local structural

information.

3. Structure-Preserving Activation

3.1. Overview

On the basis of the structure-preserving ability of con-

volutional features, we obtain precise localization maps

by proposing the SPA approach for WSOL. As shown in

Fig. 2, we adopt the CAM network [43] as our baseline and

remove the last fully-connected layer following ACoL [39].

Overall, the proposed SPA retains the structural information

of objects in two stages. First, as shown in the training phase

of Fig .2, we design the RAM to alleviate the structure-

missing issue of the head structure of CAM. Furthermore,

we propose a restricted activation loss (LRA) to cooperate

with cross-entropy loss (LCE) for driving the model to cover

object extent during training phase. The total loss of SPA

training is defined as:

L = LCE + αLRA, (1)

where LCE is the multi-class cross entropy loss, and LRA is

the restricted activation loss in RAM. α is a regularization

factor to balance the two items. Second, as shown in the

inference phase of Fig. 2, we propose the self-correlation

map generating module (SCG) to obtain accurate localization

maps on the basis of the results of CAM during inference

phase. We extract first- and second-order self-correlation

for each point of CAM from the convolutional features

and aggregate them to acquire activation maps for object

localization.

3.2. Restricted Activation Module

The proposed RAM alleviates the structure-missing issue

of CAM from two aspects: suppressing the response value

range of CAM to avoid the misleading by the local extremely

high response for the classification; discriminating the object

from background region with the help of coarse pseudo-

masks.

Given a fully convolutional network (FCN), we denote

the last convolutional feature maps as F ∈ R
H×W×C , where

H ×W is the spatial size, and C is the number of channels

which is equal to the number of target classes. We feed the

feature maps into a GAP [13] layer followed by a softmax

layer for classification, as shown in Fig. 2. To ensure that the

high activation value after GAP layer is due to broad object

activation rather than the local extremely high response, we

first suppress the feature value range using the sigmoid layer:

F
′

t = sigmoid(Ft), (2)

where t is the ground truth label index and Ft is the tth
feature map. The sigmoid layer can effectively suppress

the extremely high response and normalize the values to

(0,1). The GAP layer does not separate the representation of

the context from the object [30], which hinders the model

differentiating the object from background. To overcome this

issue, we propose a simple method to generate coarse pseudo-

masks for guiding the model to focus on the object regions.

The mask generation method is based on the observation

that the activation values within the background area are

distributed much evenly across all classes, and the activation

value of the object region can always be highly responsive

in at least one target class. Therefore, we obtain the coarse

background mask Mbg as:

Mbg = I(V ar(softmax(F )) < τ), (3)
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Figure 3. Pipeline of the proposed SCG module. Here we show

examples of using first- and second-order SC to obtain final

localization maps, respectively.

where I(·) is the indicator function, and V ar(·) denotes the

standard deviation of each position on the feature map in the

channel dimension. τ is a constant value as the threshold to

determinate the background region. We further obtain the

coarse object region as:

Mobj = I(V ar(softmax(F )) > τ + σ), (4)

where σ denotes the gap between the background and object

regions. On the basis of pseudo-masks, we define the

restricted activation loss to guide the model to focus on

the object region as:

LRA =
1

HW

∑

i,j

(Mbg ∗ F
′

t +Mobj ∗ (1− F
′

t ))|i,j , (5)

where ∗ indicates element-wise multiplication. The simple

L1 regularization loss can guide the model to suppress the

background area while paying much attention to active full

object extent. Cooperating with the classification branch, the

proposed RAM enables the model to preserve the structural

information of the target object.

3.3. Self­correlation Map Generating

Before introducing SCG, we first analyze the first-

order self-correlation(SC1) and introduce the concept of

spatial HSC, which could capture the long-range structural

information on the basis of rich context of the object. Then,

for generating precise localization maps on the basis of HSC,

we propose SCG to distill the structure-preserving ability of

deep CNN. Given that we mainly utilize first- and second-

order SC in our experiments, we here depict SC2(refer to

supplementary for the definition of general high-order SC).

First-order Self-correlation. We refer the relation re-

sponse directly calculated by pixel-to-pixel similarity as

spatial first-order self-correlation (SC1). Given a feature

map f ∈ R
HW×C , we use cosine distance to evaluate inter-

pixel similarity for feature of index i and j:

S(fi, fj) =
fi

Tfj

||(fi)|| · ||(fj)||
, (6)

where i, j ∈ {0, 1, . . . , HW − 1} indicate the index of

features, and fi, fj ∈ R
C×1 are the feature vectors. We

define the first-order self-correlation of f as:

SC1(f) =
[

SC1(f)i,j
]

,

where SC1(f)i,j = ReLU(S(fi, fj)).
(7)

The similarities S(·, ·) are activated by ReLU [16]

to suppress negative values and SC1(f) ∈ R
HW×HW .

Given the large appearance variation, the pixels within

an object are usually dissimilar. The 2nd row in Fig. 1

shows several examples of self-correlation corresponded

to positions masked by the red cross. It shows that first-

order self-correlation can only preserve local spatial structure

information.

Second-order Self-correlation. To apply the inherent
structure-preserving ability of the network for accurate
WSOL, we propose to use second-order self-correlation
(SC2) to capture long-range structural information of
objects. The second order similarity between fi and fi are
formulated as:

S
2(fi, fj) =

1

(HW )

∑

k∈Ω

S(fi, fk) · S(fk, fj), (8)

where i 6= k 6= j and Ω denotes the set of indexes of

all features. The S2(fi, fj) is then normalized to [0, 1]
following:

Ŝ2(fi, fj) =
S2(fi, fj)−mink∈ΩS

2(fi, fk)

maxk∈ΩS2(fi, fk)−mink∈ΩS2(fi, fk)
,

(9)

Then, we define SC2 as:

SC2(f) =
[

Ŝ2(fi, fj))|i,j

]

. (10)

The 3rd row in Fig. 1 lists numerous examples of SC2.

Compared with SC1, SC2 can preserve the details of the

object by considering long-range context. However, the SC2

may introduce additional noise. Therefore, we utilize SC1

and SC2 by combining them using element-wise maximum

operation in our experiments.

CAM [43] can only highlight the local region of interest

and thus lose the structural information. To acquire accurate

object extent, we propose the SCG to refine the localization

maps with the help of HSC which is defined as:

HSCi,j = max(SC1
i,j , SC

2
i,j), (11)
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where SC1 and SC2 are defined by Eqs. 7 and 10.

For clarity of the description, we here reshape HSC(f)
to R

H×W×H×W . We first employ the CAM to obtain

the coarse localization map Mcam ∈ R
H×W following

ACoL [39] by removing the last fully-connected layer. We

define a threshold δh to discover the coarse object mask

Mobj
cam = Mcam > δh. Given the indices of object region,

we extract the corresponded HSC of the object as:

HSCobj = G(HSC,Mobj
cam), (12)

where HSCobj ∈ R
N×H×W . G(·) denotes the index

function, and N is the number of pixels within object region.

Then the self-correlation map of the object Mobj
scg is obtained

by aggregating the HSC of each point within object region

as:

Mobj
scg =

1

N

∑

i

HSCobj [i]. (13)

To remove the possible background area covered by Mobj
scg ,

we define another threshold δl and obtain the background

self-correlation map M bg
scg in a similar way. We acquire the

final localization map Mscg as:

Mscg = ReLU(Mobj
scg −M bg

scg) (14)

The final self-correlation map Mscg is refined by removing

the background area and is activated using ReLU to suppress

negative values. Algorithm 1 illustrates the procedure of the

proposed SCG approach.

Algorithm 1 Localization algorithm of SCG.

Input: Coarse localization map Mcam ∈ R
H×W ; feature

map f ∈ R
H×W×C ; threshold δh and δl;

Output: Final localization map Mscg;

1: Obtain high-order self-correlation HSC ∈ R
HW×HW

2: Reshape HSC ∈ R
H×W×H×W ← reshape(HSC)

3: Discover the coarse object region Mobj
cam ←Mcam > δh

4: Extract object HSC HSCobj ← G(HSC,Mobj
cam)

5: Obtain the object map Mobj
scg ← sum(HSCobj)

6: Discover background region M bg
cam ←Mcam < δl

7: Extract background HSC HSCbg ← G(HSC,M bg
cam)

8: Obtain the background map M bg
scg ← sum(HSCbg)

9: Obtain localization map Mscg ← (Mobj
scg −M bg

scg)(>0)

return Mscg;

4. Experiments

4.1. Experimental Settings

Datasets. We evaluate the proposed approach on two pub-

licly available benchmarks including CUB-200-2011 [27]

and ILSVRC [20], following the previous SOTAs [4, 15, 41,

42]. CUB-200-2011 is a fine-grained bird dataset of 200

Figure 4. Visualization of the localization maps of CAM [43], SPA

with first- and second-order self-correlation, respectively. The

images are from the CUB-200-2011 [27] testing set.

different species, which is split into the training set of 5, 994
images and the testing set of 5, 794 images. For ILSVRC,

there exist around 1.2 million images of 1, 000 categories for

training and 50, 000 images for validation. Both benchmarks

are all only annotated with class labels for training. In

addition to class labels, CUB-2000-2011 provides the tight

box and mask labels for images in testing set. For ILSVRC,

only tight box labels are provided for validation. Zhang et

al. [42] annotated the ground-truth masks for the images on

the validation set of ILSVRC: 5, 729 images are manually

excluded and the rest are split into the validation (23, 151
images) and testing sets (21, 120 images).

Metrics. We apply two kinds of metrics to evaluate

the localization maps from the bounding box and mask,

respectively. For bounding boxes, we follow the baseline

methods [20, 40, 43] and report the location error (Loc. Err.).

A prediction is positive when it satisfies the following two

conditions simultaneously: the predicted classification labels

match the ground-truth categories; the predicted bounding

boxes have over 50% IoU with at least one of the ground-

truth boxes. Gt-Known indicates it considers localization

only regardless of classification. For masks, we mainly uti-

lize Peak-IoU and Peak-T, which are defined in SEM [42], to

directly evaluate the localization performance by performing

a pixel-wise comparison between the predicted localization

map and the ground-truth mask. Peak-IoU ∈ [0, 1] and Peak-

T ∈ [0, 255] denote the best IoU score and its corresponding

threshold, respectively. A high-quality localization map

should meet two requirements: 1) the full object extent

can be accurately covered with a specific threshold; 2)

brightness values of pixels belonging to object and the

background should differ greatly so that the objects can

be well visualized [42]. High Peak-IoU and Peak-T values

indicates good localization maps.
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Methods Backbone
Loc Err.

Top-1 Top-5 Gt-Known

Backprop [21] VGG16 61.12 51.46 -

CAM [43] VGG16 57.20 45.14 -

CutMix [37] VGG16 56.55 - -

ADL [5] VGG16 55.08 - -

ACoL [39] VGG16 54.17 40.57 37.04

I2C [41] VGG16 52.59 41.49 36.10

MEIL [15] VGG16 53.19 - -

Ours VGG16 50.44 38.68 34.95

CAM [43] InceptionV3 53.71 41.81 37.32

SPG [40] InceptionV3 51.40 40.00 35.31

ADL [5] InceptionV3 51.29 - -

ACoL [39] GoogLeNet 53.28 42.58 -

DANet [35] GoogLeNet 52.47 41.72 -

MEIL [15] InceptionV3 50.52 - -

I2C [41] InceptionV3 46.89 35.87 31.50

GC-Net [14] InceptionV3 50.94 41.91 -

Ours InceptionV3 47.27 35.73 31.67

Table 1. Comparison between our method and the state-of-the-art

on the ILSVRC [20] validation set.

Implementation Details. We implement the proposed

algorithm on the basis of two popular backbone networks,

i.e., VGG16 [22] and Inception V3 [26]. We make the

same modifications on backbones following ACoL [39] and

SPG [26], and use the simplified method in ACoL [39] to

obtain localization maps. Both networks are fine-tuned

on the pre-trained weights of ILSVRC [20]. The input

images are randomly cropped to 224 × 224 pixels after

being re-sized to 256 × 256 pixels. For classification, we

average the scores from the softmax layer with 10 crops.

We also implement several recent benchmark methods, i.e.,

CAM [43], HaS [23], ACoL [39], SPG [26], ADL [5], and

CutMix [37] in accordance with the codes1 released by Choe

et al. [4]. For fair comparisons, we adopt the same training

strategy with SEM [42]. The codes for Peak-IoU and Peak-T

are provided on the workshop of Learning from Imperfect

Data (LID)2. To calculate the self-correlation on VGG16,

we utilize the features of Stages 4 and 5, and combine the

two HSCs by element-wise summation. For Inception V3,

we utilize the features of layer feat4 and feat5 to calculate

HSC and sum them element wise.

4.2. Experimental Results

Bounding Box Localization. We first compare the pro-

posed approach with the SOTAs on the localization error

by using tight bounding boxes. We only show the Loc.

Err. (refer to the supplementary materials for more details).

Table 1 reports the results of our method and several

baselines on the ILSVRC validation set. Our method, on the

basis of VGG16, achieves the lowest error rate of 50.44%
in Top-1 Loc. Err., significantly surpassing all the baselines.

1https://github.com/clovaai/wsolevaluation
2https://lidchallenge.github.io/challenge.html

Methods Backbone
Loc Err.

Top-1 Top-5 Gt-Known

CAM [43] GoogLeNet 58.94 49.34 44.9

SPG [40] GoogLeNet 53.36 42.8 -

DANet [35] InceptionV3 50.55 39.54 33.0

ADL [5] InceptionV3 46.96 - -

Ours InceptionV3 46.41 33.50 27.86

CAM [43] VGG16 55.85 47.84 44.0

ADL [5] VGG16 47.64 - -

ACoL [39] VGG16 54.08 43.49 45.9

DANet [35] VGG16 47.48 38.04 32.3

SPG [40] VGG16 51.07 42.15 41.1

I2C [41] VGG16 44.01 31.6 -

MEIL [15] VGG16 42.54 - -

GC-Net [14] VGG16 36.76 24.46 18.9

Ours VGG16 39.73 27.5 22.71

Table 2. Comparison between our method and the state-of-the-art

on the CUB-200-2011 [27] test set.

Specifically, we achieve remarkable gains of 3.5% and 4.4%
in terms of Top-1 Loc. Err. compared with ACoL and

ADL. Compared with the state-of-the-art I2C, we achieve a

performance gain of 2.0%, which is a significant margin to

the challenging problem. On the InceptionV3, our method

obtains comparable results with I2C and surpasses other

methods significantly. I2C leverages pixel-level similarities

across different objects to prompt the consistency of object

features within the same categories, but it cannot retain the

structural information for the objects. Fig. 5 shows several

examples of the localization maps by CAM [43] and the

proposed SPA. Our results retain the structure of objects

well and cover more extent of the objects.

Table 2 compares the proposed method with various

baseline methods on the CUB-200-2011 testing set. All

the baselines adopt CAM to obtain localization maps. Our

method, on the basis of VGG16, surpasses all the baseline

methods on Top-1, Top-5, and Gt-Known metrics, yielding

the localization error of Top-1 39.73%, and Top-5 27.5%.

Compared with the current state-of-the-art I2C and MEIL,

we achieve gains of 3.5% and 2.0% in terms of Top-1 Loc.

Err., respectively. Fig. 4 shows some examples of the

localization map. The 3rd and 4th rows are the results of

our method by using first- and second-order self-correlation,

respectively. Compared with CAM [43], the results of our

method preserve the structure of objects well. The results of

SC2 obtain more accurate masks than that of SC1, but they

obtain almost the same tight bounding boxes. To reveal the

superiority of the method, we further evaluate our method

by comparing with the ground-truth masks below.

Mask Localization. To further verify the effectiveness of

our method, we compare the localization map with the

ground-truth mask and adopt the Peak-T and Peak-IoU as

metrics following SEM [42]. We also report the Gt-Known

Loc. Acc. of each method. In this section, we only apply

611647



Figure 5. Visualization of the localization maps with CAM [43] (middle row) and the proposed SPA (bottom row). The ground truth boxes

are in red. The images are from the ILSVRC [20] validation set.

(a) Image (b) CAM (c) M
obj
scm (d) M

bg
scm (e) Mscm

Figure 6. Visualization of process for SCG. Given the input

images (a), we employ simplified CAM [43] to obtain the coarse

localization maps (b). (c) and (d) are the object and background

SC maps by aggregating HSCs of pixels within the corresponding

areas on the basis of CAM, respectively. The final SCGs (e) are

obtained by subtracting background from object SC maps.

the SCG to the baseline methods without involving RAM

for fair comparison with SEM. Given the input images, we

employ the simplified CAM following ACoL [39] to obtain

the coarse localization maps. Fig. 6 visualizes the detailed

process of the proposed SCG. All baseline methods adopt

our re-implemented models and surpass the corresponding

results of SEM as shown in Table 3. The proposed SCG

achieves consistent gains on Peak-IoU, Peak-T, and Gt-

Known. Specifically, we achieve an improvement by 2.3%
compared with the best baseline HaS [23] in terms of Peak-

IoU. As for Peak-T, our results significantly outperform all

the baselines by improving about 50 points on average. The

re-implemented SEM on the basis of the code released by

the author performs worse than all the baselines.

Error Analysis. To further reveal the effect of our method,

we divide the localization error into five cases: classification

Methods SEM [42] SCG Peak-IoU Peak-T GT-Known

CAM [43] 53.59 33 64.09

X 51.39 74 62.67

X 56.38 79 66.79

HaS [23] 54.99 50 65.32

X 51.59 79 63.06

X 57.29 92 68.31

ACoL [39] 50.89 52 63.28

X 48.92 83 59.92

X 52.45 132 65.45

CutMix [37] 54.54 34 64.65

X 52.02 79 63.84

X 56.96 83 68.23

SPG [40] 53.76 33 64.19

X 51.74 84 63.08

X 56.40 89 66.78

ADL [5] 52.87 29 63.64

X 50.01 72 62.38

X 56.01 76 66.08

Table 3. Evaluation results of Peak-T, Peak-IoU and GT-Known Loc

Acc on ILSVRC validation set. All the methods apply Inception

V3 as the backbone network.

Methods
ILSVRC(%) CUB-2011-200(%)

M-Ins Part More M-Ins Part More

VGG16 10.65 3.85 9.58 - 21.91 10.53

Ours 9.97 2.83 7.66 - 9.25 6.33

InceptionV3 10.36 3.22 9.49 - 23.09 5.52

Ours 9.48 2.89 7.80 - 12.81 6.83

Table 4. Localization error statistics.

(Cls), multi-instance (M-Ins), localization part (Part), local-

ization more (More), and other (OT) errors. Part indicates

that the predicted bounding box only cover the parts of

object, and IoU is less than a certain threshold. Contrastingly,

More indicates that the predicted bounding box is larger than

the ground truth bounding box by a large margin. Each

metric calculates the percentage of images belonging to the

corresponding error in the validation/testing set. Table 4 lists

localization error statistics of M-Ins, Part, and More. Our

method effectively reduces the M-Ins, Part, and More errors,
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Figure 7. Localization maps of some images from ILSVRC

validation set with CAM [43] and the proposed SPA. Ground truth

boxes are in red. Both methods cannot separate each instance when

multiple instances exist in the scene.

which indicates that our localization maps are much accurate.

Refer to supplementary materials for detailed analysis and

definitions of each metric.

4.3. Ablation Study

We conduct a series of experiments to verify the effec-

tiveness of the proposed RAM and SCG. Table 5 shows

the results on the ILSVRC validation set with different

configurations. On VGG16, the RAM and SCG improve

the baseline by 2% and 1.4%, respectively. It achieves a

significant gain of 3.1% when we use both modules simul-

taneously. On Inception V3, the two modules also achieve

remarkable gains, yielding a localization error of Top-1

47.29%. In Table 6, we evaluate the performance of the

RAM and SCG on CUB-200-2011 testing set. The proposed

approach achieves significant improvements. Specifically,

the SCG and RAM obtain gains of 11.5% and 8.1% in terms

of Top-1 Loc. Err. on VGG16 respectively, and it achieves

a remarkable improvement of 17.7% when we employ both

modules simultaneously. On Inception V3, our method

also achieves a significant gain of 9.2% Top-1 Loc. Err.

The experimental results show that the proposed approach

achieves consistent and substantial improvement on different

backbones and benchmarks. Refer to the supplementary

materials for more details.

4.4. Limitation

Although the proposed approach achieves much better

performance than CAM-based SOTAs, it is challenged

when multiple instances come together. Fig. 7 shows

localization results with CAM and our approach in the multi-

instance scenes. Compared with CAM, our results more

precisely cover the object extent. However, given the lack of

instance-level supervision, distinguishing different instances

is difficult. The results in Table 4 also show that the M-Ins

error is currently the main source of localization error. The

structural information from other images containing only one

Methods SCG RAM
Loc Err.

Top-1 Top-5 Gt-Known

VGG16 53.76 42.75 39.21

X 51.15 39.57 35.98

X 52.33 40.88 37.29

X X 50.44 38.68 34.95

InceptionV3 49.86 38.86 35.05

X 47.38 35.75 31.74

X 49.31 38.20 34.29

X X 47.27 35.73 31.67

Table 5. Localization error on ILSVRC [20] validation set when

using different configurations.

Methods SCG RAM
Loc Err.

Top-1 Top-5 Gt-Known

VGG16 57.49 49.05 46.24

X 45.98 35.59 31.33

X 49.34 39.14 34.50

X X 39.73 27.55 22.71

InceptionV3 55.64 44.27 39.14

X 48.84 35.80 30.77

X 52.04 40.21 35.17

X X 46.41 33.50 27.86

Table 6. Localization error on CUB-200-2011 [27] test set when

using different configurations.

instance may alleviate this problem. In the future work, the

consistency of structure preserving across images must be

explored to achieve weakly supervised instance localization.

5. Conclusion

In this study, we unveiled the fact that the spatial

structure-preserving is crucial to discover the localization

information contained in convolutional features for WSOL.

We accordingly proposed a structure preserving activation

(SPA) approach to precisely localize objects. SPA leverages

the restricted activation maps to alleviate the structure

missing issue of head structure of the classification network.

It also utilizes self-correlation generation (SCG) to distill

the structure-preserving ability of features for acquiring

precise localization maps. In SCG, second-order correlation

is proposed to make up the inability of first-order self-

correlation for capturing long-range structural information.

Extensive experiments on CUB-200-2011 and ILSVRC

benchmarks validated the effectiveness of the proposed

approach, in striking contrast with the state-of-the-arts. The

SPA approach provides a fresh insight to the WSOL problem.

Acknowledgment. This work was supported by National Key

R&D Program of China under no. 2018YFC0807500, and by Na-

tional Natural Science Foundation of China under nos. U20B2070,

61832016, 61832002 and 61720106006, and by CASIA-Tencent

Youtu joint research project.

811649



References

[1] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic

affinity with image-level supervision for weakly supervised

semantic segmentation. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2018. 2

[2] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han Hu.

Gcnet: Non-local networks meet squeeze-excitation networks

and beyond. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV) Workshops, Oct 2019.

2

[3] Liyi Chen, Weiwei Wu, Chenchen Fu, Xiao Han, and Yuntao

Zhang. Weakly supervised semantic segmentation with

boundary exploration. In Proceedings of the European

Conference on Computer Vision (ECCV), 2020. 2

[4] Junsuk Choe, Seong Joon Oh, Seungho Lee, Sanghyuk Chun,

Zeynep Akata, and Hyunjung Shim. Evaluating weakly

supervised object localization methods right. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 3133–3142, 2020. 1, 5, 6

[5] Junsuk Choe and Hyunjung Shim. Attention-based dropout

layer for weakly supervised object localization. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2219–2228, 2019. 1, 2, 6, 7

[6] Ruochen Fan, Ming-Ming Cheng, Qibin Hou, Tai-Jiang Mu,

Jingdong Wang, and Shi-Min Hu. S4net: Single stage

salient-instance segmentation. Computational Visual Media,

6(2):191–204, 2020. 2

[7] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation

networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June 2018.

2

[8] Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu, and

Jingdong Wang. Weakly-supervised semantic segmentation

network with deep seeded region growing. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 2

[9] Sangheum Hwang and Hyo-Eun Kim. Self-transfer learning

for weakly supervised lesion localization. In Medical Image

Computing and Computer-Assisted Intervention (MICCAI),

pages 239–246, 2016. 2

[10] Peng-Tao Jiang, Qibin Hou, Yang Cao, Ming-Ming Cheng,

Yunchao Wei, and Hong-Kai Xiong. Integral object mining

via online attention accumulation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision

(ICCV), 2019. 2

[11] Alexander Kolesnikov and Christoph H Lampert. Seed,

expand and constrain: Three principles for weakly-supervised

image segmentation. In European conference on computer

vision, pages 695–711. Springer, 2016. 2

[12] Jungbeom Lee, Eunji Kim, Sungmin Lee, Jangho Lee, and

Sungroh Yoon. Ficklenet: Weakly and semi-supervised

semantic image segmentation using stochastic inference. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2019. 2

[13] Min Lin, Qiang Chen, and Shuicheng Yan. Network in

network. arXiv preprint arXiv:1312.4400, 2013. 2, 3

[14] Weizeng Lu, Xi Jia, Weicheng Xie, Linlin Shen, Yicong Zhou,

and Jinming Duan. Geometry constrained weakly supervised

object localization. arXiv preprint arXiv:2007.09727, 2020.

2, 6

[15] Jinjie Mai, Meng Yang, and Wenfeng Luo. Erasing integrated

learning: A simple yet effective approach for weakly super-

vised object localization. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 8766–8775, 2020. 1, 5, 6

[16] Vinod Nair and Geoffrey E Hinton. Rectified linear units

improve restricted boltzmann machines. In ICML, 2010. 4

[17] George Papandreou, Liang-Chieh Chen, Kevin P Murphy,

and Alan L Yuille. Weakly-and semi-supervised learning of a

deep convolutional network for semantic image segmentation.

In Proceedings of the IEEE international conference on

computer vision, pages 1742–1750, 2015. 1

[18] Deepak Pathak, Philipp Krahenbuhl, and Trevor Darrell. Con-

strained convolutional neural networks for weakly supervised

segmentation. In Proceedings of the IEEE international

conference on computer vision, pages 1796–1804, 2015. 1

[19] Anirban Roy and Sinisa Todorovic. Combining bottom-up,

top-down, and smoothness cues for weakly supervised image

segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3529–3538,

2017. 1

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015. 2, 5, 6, 7, 8

[21] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.

Deep inside convolutional networks: Visualising image

classification models and saliency maps. arXiv preprint

arXiv:1312.6034, 2013. 6

[22] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 6

[23] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek:

Forcing a network to be meticulous for weakly-supervised

object and action localization. In 2017 IEEE international

conference on computer vision (ICCV), pages 3544–3553.

IEEE, 2017. 1, 2, 6, 7

[24] Lin Song, Yanwei Li, Zeming Li, Gang Yu, Hongbin Sun,

Jian Sun, and Nanning Zheng. Learnable tree filter for

structure-preserving feature transform. In Advances in Neural

Information Processing Systems, pages 1711–1721, 2019. 2

[25] Guolei Sun, Wenguan Wang, Jifeng Dai, and Luc Van

Gool. Mining cross-image semantics for weakly supervised

semantic segmentation. In Proceedings of the European

Conference on Computer Vision (ECCV), 2020. 2

[26] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception

architecture for computer vision. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages

2818–2826, 2016. 6

[27] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,

and Serge Belongie. The caltech-ucsd birds-200-2011 dataset.

2011. 2, 5, 6, 8

911650



[28] Fang Wan, Chang Liu, Wei Ke, Xiangyang Ji, Jianbin Jiao,

and Qixiang Ye. C-mil: Continuation multiple instance learn-

ing for weakly supervised object detection. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2199–2208, 2019. 1

[29] Fang Wan, Pengxu Wei, Jianbin Jiao, Zhenjun Han, and

Qixiang Ye. Min-entropy latent model for weakly supervised

object detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1297–1306,

2018. 1

[30] Angtian Wang, Yihong Sun, Adam Kortylewski, and Alan L

Yuille. Robust object detection under occlusion with context-

aware compositionalnets. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 12645–12654, 2020. 3

[31] Xiang Wang, Shaodi You, Xi Li, and Huimin Ma. Weakly-

supervised semantic segmentation by iteratively mining com-

mon object features. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.

2

[32] Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and Xilin

Chen. Self-supervised equivariant attention mechanism for

weakly supervised semantic segmentation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12275–12284, 2020. 2

[33] Yunchao Wei, Jiashi Feng, Xiaodan Liang, Ming-Ming

Cheng, Yao Zhao, and Shuicheng Yan. Object region

mining with adversarial erasing: A simple classification to

semantic segmentation approach. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages

1568–1576, 2017. 1

[34] Yunchao Wei, Huaxin Xiao, Honghui Shi, Zequn Jie, Jiashi

Feng, and Thomas S. Huang. Revisiting dilated convolution:

A simple approach for weakly- and semi-supervised semantic

segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. 2

[35] Haolan Xue, Chang Liu, Fang Wan, Jianbin Jiao, Xiangyang

Ji, and Qixiang Ye. Danet: Divergent activation for weakly

supervised object localization. In Proceedings of the IEEE

International Conference on Computer Vision, pages 6589–

6598, 2019. 1, 2, 6

[36] Minghao Yin, Zhuliang Yao, Yue Cao, Xiu Li, Zheng Zhang,

Stephen Lin, and Han Hu. Disentangled non-local neural

networks. arXiv preprint arXiv:2006.06668, 2020. 2

[37] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk

Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-

larization strategy to train strong classifiers with localizable

features. In Proceedings of the IEEE International Conference

on Computer Vision, pages 6023–6032, 2019. 1, 6, 7

[38] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. In-

terpretable convolutional neural networks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 8827–8836, 2018. 2

[39] Xiaolin Zhang, Yunchao Wei, Jiashi Feng, Yi Yang, and

Thomas S Huang. Adversarial complementary learning

for weakly supervised object localization. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1325–1334, 2018. 1, 2, 3, 5, 6, 7

[40] Xiaolin Zhang, Yunchao Wei, Guoliang Kang, Yi Yang,

and Thomas Huang. Self-produced guidance for weakly-

supervised object localization. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 597–

613, 2018. 2, 5, 6, 7

[41] Xiaolin Zhang, Yunchao Wei, and Yi Yang. Inter-image

communication for weakly supervised localization. In

Proceedings of the European Conference on Computer Vision

(ECCV), 2020. 2, 5, 6

[42] Xiaolin Zhang, Yunchao Wei, Yi Yang, and Fei Wu. Rethink-

ing localization map: Towards accurate object perception with

self-enhancement maps. arXiv preprint arXiv:2006.05220,

2020. 2, 5, 6, 7

[43] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and

Antonio Torralba. Learning deep features for discriminative

localization. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 2921–2929,

2016. 1, 2, 3, 4, 5, 6, 7, 8

1011651


