
Variational Relational Point Completion Network

Liang Pan1� Xinyi Chen1,2 Zhongang Cai2,3 Junzhe Zhang1,2

Haiyu Zhao2,3 Shuai Yi2,3 Ziwei Liu1�

1S-Lab, Nanyang Technological University 2SenseTime Research 3Shanghai AI Laboratory

{liang.pan,ziwei.liu}@ntu.edu.sg, {xchen032,junzhe001}@e.ntu.edu.sg

{caizhongang,zhaohaiyu,yishuai}@sensetime.com

(1) 2 Knots Observed (3) 1 Knot Observed

(2) (4)2 Knots Observed 0 Knot Observed

Complete
Shape

Our
Results

Partial
Observation

Complete
Shape

Our
Results

Partial
Observation

(c)

(a)

Partial 
Observation

Coarse 
Completion

Fine 
Completion

PCN GRNet NSFA Ours Ground 
Truth

(b)

Figure 1: (a) VRCNet performs shape completion with two consecutive stages: probabilistic modeling and relational

enhancement. (b) Qualitative Results show that VRCNet generates better shape details than the other works [29, 27, 30].

(c) Our completion results conditioned on partial observations. The arrows indicate the viewing angles. In (1) and (2), 2

knots are partially observed for the pole of the lamp, and hence we generate 2 complete knots. In (3), only 1 knot is observed,

and then we reconstruct 1 complete knot. If no knots are observed (see (4)), VRCNet generates a smooth pole without knots.

Abstract

Real-scanned point clouds are often incomplete due to

viewpoint, occlusion, and noise. Existing point cloud com-

pletion methods tend to generate global shape skeletons and

hence lack fine local details. Furthermore, they mostly learn

a deterministic partial-to-complete mapping, but overlook

structural relations in man-made objects. To tackle these

challenges, this paper proposes a variational framework,

Variational Relational point Completion network (VRC-

Net) with two appealing properties: 1) Probabilistic Mod-

eling. In particular, we propose a dual-path architecture to

enable principled probabilistic modeling across partial and

complete clouds. One path consumes complete point clouds

for reconstruction by learning a point VAE. The other path

generates complete shapes for partial point clouds, whose

embedded distribution is guided by distribution obtained

from the reconstruction path during training. 2) Relational

Enhancement. Specifically, we carefully design point self-

attention kernel and point selective kernel module to ex-

ploit relational point features, which refines local shape de-

tails conditioned on the coarse completion. In addition, we

contribute a multi-view partial point cloud dataset (MVP

dataset) containing over 100,000 high-quality scans, which

renders partial 3D shapes from 26 uniformly distributed

camera poses for each 3D CAD model. Extensive exper-

iments demonstrate that VRCNet outperforms state-of-the-

art methods on all standard point cloud completion bench-

marks. Notably, VRCNet shows great generalizability and

robustness on real-world point cloud scans.

1. Introduction

3D point cloud is an intuitive representation of 3D scenes

and objects, which has extensive applications in various vi-

sion and robotics tasks. Unfortunately, scanned 3D point

clouds are usually incomplete owing to occlusions and

missing measurements, hampering practical usages. There-

fore, it is desirable and important to predict the complete

⋆ Work partially done while working at NUS.

Our project website: https://paul007pl.github.io/projects/VRCNet
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3D shape from a partially observed point cloud.

The pioneering work PCN [29] uses PointNet-based en-

coder to generate global features for shape completion,

which cannot recover fine geometric details. The follow-

up works [14, 23, 15, 27] provide better completion re-

sults by preserving observed geometric details from the

incomplete point shape using local features. However,

they [29, 14, 23, 15, 27] mostly generate complete shapes

by learning a deterministic partial-to-complete mapping,

lacking the conditional generative capability based on the

partial observation. Furthermore, 3D shape completion

is expected to recover plausible yet fine-grained complete

shapes by learning relational structure properties, such as

geometrical symmetries, regular arrangements and surface

smoothness, which existing methods fail to capture.

To this end, we propose Variational Relational Point

Completion network (entitled as VRCNet), which con-

sists of two consecutive encoder-decoder sub-networks that

serve as “probabilistic modeling” (PMNet) and “relational

enhancement” (RENet), respectively (shown in Fig. 1 (a)).

The first sub-network, PMNet, embeds global features and

latent distributions from incomplete point clouds, and pre-

dicts the overall skeletons (i.e. coarse completions, see

Fig. 1 (a)) that are used as 3D adaptive anchor points for

exploiting multi-scale point relations in RENet. Inspired

by [32], PMNet uses smooth complete shape priors to im-

prove the generated coarse completions using a dual-path

architecture consisting of two parallel paths: 1) a recon-

struction path for complete point clouds, and 2) a comple-

tion path for incomplete point clouds. During training, we

regularize the consistency between the encoded posterior

distributions from partial point clouds and the prior dis-

tributions from complete point clouds. With the help of

the generated coarse completions, the second sub-network

RENet strives to enhance structural relations by learning

multi-scale local point features. Motivated by the success

of local relation operations in image recognition [31, 7], we

propose the Point Self-Attention Kernel (PSA) as a basic

building block for RENet. Instead of using fixed weights,

PSA interleaves local point features by adaptively predict-

ing weights based on the learned relations among neighbor-

ing points. Inspired by the Selective Kernel (SK) unit [12],

we propose the Point Selective Kernel Module (PSK) that

utilizes multiple branches with different kernel sizes to ex-

ploit and fuse multi-scale point features, which further im-

proves the performance.

Moreover, we create a large-scale Multi-View Partial

point cloud (MVP) dataset with over 100,000 high-quality

scanned partial and complete point clouds. For each com-

plete 3D CAD model selected from ShapeNet [26], we ran-

domly render 26 partial point clouds from uniformly dis-

tributed camera views on a unit sphere, which improves the

data diversity. Experimental results on our MVP and Com-

pletion3D benchmark [21] show that VRCNet outperforms

SOTA methods. In Fig. 1 (b), VRCNet reconstructs richer

details than the other methods by implicitly learning the

shape symmetry from this incomplete lamp. Given different

partial observations, VRCNet can predict different plausi-

ble complete shapes (Fig. 1 (c)). Furthermore, VRCNet can

generate impressive complete shapes for incomplete real-

world scans from KITTI [3] and ScanNet [2], which reveals

its remarkable robustness and generalizability.

The key contributions can be summarized as: 1) We

propose a novel Variational Relational point Completion

Network (VRCNet), and it first performs probabilistic mod-

eling using a novel dual-path network followed by a rela-

tional enhancement network. 2) We design multiple rela-

tional modules that can effectively exploit and fuse multi-

scale point features for point cloud analysis, such as the

Point Self-Attention Kernel and the Point Selective Kernel

Module. 3) Furthermore, we contribute a large-scale multi-

view partial point cloud (MVP) dataset with over 100,000

high-quality 3D point shapes. Extensive experiments show

that VRCNet outperforms previous SOTA methods on all

evaluated benchmark datasets.

2. Related Works

Multi-scale Features Exploitation. Convolutional oper-

ations have yielded impressive results for image applica-

tions [11, 6, 19]. However, conventional convolutions can-

not be directly applied to point clouds due to the absence

of regular grids. Previous networks mostly exploit local

point features by two operations: local pooling [24, 18, 16]

and flexible convolution [4, 22, 13, 25]. Self-attention of-

ten uses linear layers, such as fully-connected (FC) lay-

ers and shared multilayer perceptron (shared MLP) layers,

which are appropriate for point clouds. In particular, re-

cent works [31, 7, 17] have shown that local self-attention

(i.e. relation operations) can outperform their convolutional

counterparts, which holds the exciting prospect of design-

ing networks for point clouds.

Point Cloud Completion. The target of point cloud com-

pletion is to recover a complete 3D shape based on a partial

point cloud observation. PCN [29] first generates a coarse

completion based on learned global features from the partial

input point cloud, which is upsampled using folding oper-

ations [28]. Following PCN, TopNet [21] proposes a tree-

structured decoder to predict complete shapes. To preserve

and recover local details, previous approaches [23, 15, 27]

exploit local features to refine their 3D completion results.

Recently, NSFA [30] recovers complete 3D shapes by com-

bining known features and missing features. However,

NSFA assumes that the ratio of the known part and the

missing part is around 1 : 1 (i.e., the visible part should

be roughly a half of the whole object), which does not hold

for point clouds completion in most cases.
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Figure 2: Our PMNet (light blue block) consists of two parallel paths, the upper construction path (orange line) and

the lower completion path (blue line). The reconstruction path is only used in training, and the completion path generates

a coarse complete point cloud based on the inferred distribution and global features. Subsequently, our RENet (Fig 4)

adaptively exploits relational structure properties to predict the fine complete point cloud.

3. Our Approach

We define the incomplete point cloud X as a partial ob-

servation for a 3D object, and a complete point cloud Y is

sampled from the surfaces of the object. Note that X need

not to be a subset of Y, since X and Y are generated by two

separate processes. The point cloud completion task aims

to predict a complete shape Y′ conditioned on X. VRCNet

generate high-quality complete point clouds in a coarse-to-

fine fashion. Firstly, we predict a coarse completion Y′
c

based on embedded global features and an estimated para-

metric distribution. Subsequently, we recover relational ge-

ometries for the fine completion Y′
f by exploiting multi-

scale point features with novel self-attention modules.

3.1. Probabilistic Modeling

Previous networks [29, 21] tend to decode learned global

features to predict overall shape skeletons as their comple-

tion results, which cannot recover fine-grained geometric

details. However, it is still beneficial to first predict the

shape skeletons before refining local details for the follow-

ing reasons: 1) shape skeletons describe the coarse com-

plete structures, especially for those areas that are entirely

missing in the partial observations; 2) shape skeletons can

be regarded as adaptive 3D anchor points for exploiting lo-

cal point features in incomplete point clouds [15]. With

these benefits, we propose the Probabilistic Modeling net-

work (PMNet) to generate the overall skeletons (i.e. coarse

completions) for incomplete point clouds.

In contrast to previous methods, PMNet employs prob-

abilistic modelling to predict the coarse completions based

on both embedded global features and learned latent dis-

tributions. Moreover, we employ a dual-path architec-

ture (shown in Fig. 2) that contains two parallel pipelines:

the upper reconstruction path for complete point clouds Y

and the lower completion path for partial point clouds X.

The reconstruction path follows a variational auto-encoder

(VAE) scheme. It first encodes global features zg and la-

tent distributions qφ(zg|Y) for the complete shape Y, and

then it uses a decoding distribution prθ(Y|zg) to recover a

complete shape Y′
r. The objective function for the recon-

struction path can be formulated as:

Lrec =− λKL
[

qφ(zg|Y)
∥

∥ p(zg)
]

+ Epdata(Y)Eqφ(zg|Y)

[

log prθ(Y|zg)
]

,
(1)

where KL is the KL divergence, E denotes the estimated

expectations of certain functions, pdata(Y) denotes the true

underlying distribution of data, and p(zg) = N (0, I) is the

conditional prior predefined as a Gaussian distribution, and

λ is a weighting parameter.

The completion path has a similar structure as the con-

structive path, and both two paths share weights for their en-

coder and decoder except the distribution inference layers.

Likewise, the completion path aims to reconstruct a com-

plete shape Y′
c based on global features zg and latent distri-

butions pψ(zg|X) from an incomplete input X. To exploit

the most salient features from the incomplete point cloud,

we use the learned conditional distribution qφ(zg|Y) en-

coded by its corresponding complete 3D shapes Y to regu-

larize latent distributions pψ(zg|X) during training (shown

as the Distribution Link in Fig. 2, the arrow indicates that

we regularize pψ(zg|X) to approach qφ(zg|Y)). Hence,

qφ(zg|Y) constitutes the prior distributions, pψ(zg|X) is

the posterior importance sampling function, and the objec-

tive function for completion path is defined as follows:

Lcom =− λKL
[

qφ(zg|Y)
∥

∥ pψ(zg|X)
]

+ Epdata(X)Epψ(zg|X)

[

log pcθ(Y|zg)
]

,
(2)

where φ, ψ and θ represent different network weights of

their corresponding functions. Notably, the reconstruction

path is only used in training, and hence the dual-path archi-

tecture does not influence our inference efficiency.
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Figure 3: Our proposed point kernels. (a) Our PSA adaptively aggregate neighboring point features. (b) Using selective

kernel unit, our PSK can adaptively adjust receptive fields to exploit and fuse multi-scale point features. (c) By adding a

residual connection, we construct our RPSK that is an important building block for our RENet.

3.2. Relational Enhancement

After obtaining coarse completions Y′
c, the Relational

Enhancement network (RENet) targets at enhancing struc-

tural relations to recover local shape details. Although pre-

vious methods [23, 30, 15] can preserve observed geomet-

ric details by exploiting local point features, they cannot

effectively extract structural relations (e.g. geometric sym-

metries) to recover those missing parts conditioned on the

partial observations. Inspired by the relation operations

for image recognition [7, 31], we propose the Point Self-

Attention kernel (PSA) to adaptively aggregate local neigh-

boring point features with learned relations in neighboring

points (Fig. 3 (a)). The operation of PSA is formulated as:

yi =
∑

j∈N (i)

α(xN (i))j ⊙ β(xj), (3)

where xN (i) is the group of point feature vectors for

the selected K-Nearest Neighboring (K-NN) points N (i).
α(xN (i)) is a weighting tensor for all selected feature vec-

tors. β(xj) is the transformed features for point j, which

has the same spatial dimensionality with α(xN (i))j . Af-

terwards, we obtain the output yi using an element-wise

product ⊙, which performs a weighted summation for all

points j ∈ N (i). The weight computation α(xN (i)) can be

decomposed as follows:

α(xN (i)) = γ
(

δ(xN (i))
)

,

δ(xN (i)) =
[

σ(xi), [ξ(xj)]∀j∈N (i)

]

,
(4)

where γ, σ and ξ are all shared MLP layers (Fig. 3 (a)), and

the relation function δ combines all feature vectors xj ∈
xN (i) by using concatenation operations.

Observing that different relational structures can have

different scales, we enable the neurons to adaptively ad-

just their receptive field sizes by leveraging the selective

kernel unit [12]. Hence, we construct the Point Selective
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Figure 4: Our Relational Enhancement Network

(RENet) uses a hierarchical encoder-decoder architecture,

which effectively learns multi-scale structural relations.

Kernel module (PSK), which adaptively fuses learned struc-

tural relations from different scales. In Fig. 3 (b), we show

a two-branch case, which has two PSA kernels with differ-

ent kernel (i.e. K-NN) sizes. The operations of the PSK are

formulated as:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Vc = Ũc · ac + Ûc · bc ,

ac =
eAcz

eAcz + eBcz
, bc =

eBcz

eAcz + eBcz
,

U = Ũ+ Û, sc =
1

N

N
∑

i=1

Uc(i), z = η(Ws),

(5)

where Û, Ũ ∈ R
N×C are point features encoded by two

kernels respectively, Ṽ ∈ R
N×C is the final fused features,

s is obtained by using element-wise average pooling over

all N points for each feature c ∈ C, η is a FC layer, W ∈
R

d×C , A,B ∈ R
C×d, and d is a reduced feature size.

Furthermore, we add an residual path besides the main

path (shown in Fig. 3 (c)) and then construct the Residual

Point Selective Kernel module (R-PSK) that is used as a

building block for RENet. As shown in Fig. 4, RENet fol-

lows a hierarchical encoder-decoder architecture by using

Edge-preserved Pooling (EP) and Edge-preserved Unpool-

ing (EU) modules [16]. We use an Edge-aware Feature Ex-

pansion (EFE) module [15] to expand point features, which
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Table 1: Comparing MVP with existing datasets. MVP has many appealing properties, such as 1) diversity of uniform

views; 2) large-scale and high-quality; 3) rich categories. Note that both PCN and C3D only randomly render One incomplete

point cloud for each CAD model to construct their testing sets. (C3D: Completion3D; Cat.: Categories; Distri.: Distribution;

Reso.: Resolution; PC: Point Cloud; FPS: Farthest Point Sampling; PDS: Poisson Disk Sampling. Point cloud resolution is

shown as multiples of 2048 points.)

#Cat.
Training Set Testing Set Virtual Camera Complete PC Incomplete PC

#CAD #Pair #CAD #Pair Num. Distri. Reso. Sampling Reso. Sampling Reso.

PCN [29] 8 28974 ∼200k 1200 1200 8 Random 160×120 Uniform 8× Random ∼3000

C3D [21] 8 28974 28974 1184 1184 1 Random 160×120 Uniform 1× Random 1×

MVP 16 2400 62400 1600 41600 26 Uniform 1600×1200 PDS 1/2/4/8× FPS 1×

Uniformly Sampling Poisson Disk Sampling

Low Resolution High Resolution

(c) Rendered partial point clouds with different resolutions

(d) Sampled complete point clouds with different sampling methods

26 partial point clouds for 
an airplane CAD model

(b) The 26 rendered incomplete point clouds for this 3D airplane
(a) 26 uniformly distributed 

camera poses

Figure 5: Our Multi-View Partial point cloud dataset (MVP). (a) shows an example for our 26 uniformly distributed camera

poses on a unit sphere. (b) presents the 26 partial point clouds for the airplane from our uniformly distributed virtual cameras.

(c) compares the rendered incomplete point clouds with different camera resolutions. (d) shows that Poisson disk sampling

generates complete point clouds with a higher quality than uniform sampling.

generates high-resolution complete point clouds with pre-

dicted fine local details. Consequently, multi-scale struc-

tural relations can be exploited for fine details generation.

3.3. Loss Functions

Our VRCNet is trained end-to-end, and the training

loss consists of three parts: Lrec (reconstruction path),

Lcom (completion path) and Lfine (relational enhance-

ment). Lrec and Lcom have two loss items, a KL diver-

gence loss and a reconstruction loss, while Lfine only has

a reconstruction loss. The KL divergence is defined as:

LKL(q, p) = −KL
[

q(z)
∥

∥ p(z)
]

. (6)

Considering the training efficiency, we choose the symmet-

ric Chamfer Distance (CD) as the reconstruction loss:

LCD(P,Q) =
1

|P|

∑

x∈P

min
y∈Q

‖x−y‖2+
1

|Q|

∑

y∈Q

min
x∈P

‖x−y‖2,

(7)

where x and y denote points that belong to two point clouds

P and Q, respectively. Consequently, the joint loss function

can be formulated as:

L =λrecLrec + λcomLcom + λfineLfine

=λrec

[

LKL(qφ(zg|Y), N (0, I)) + LCD(Y′
r,Y)

]

+λcom

[

LKL(pψ(zg|X), qφ(zg|Y)) + LCD(Y′
c,Y)

]

+λfineLCD(Y′
f ,Y),

(8)

where λf , λr and λc are the weighting parameters.

4. Multi-View Partial Point Cloud Dataset

Towards an effort to build a more unified and com-

prehensive dataset for incomplete point clouds, we con-

tribute the MVP dataset, a high-quality multi-view partial

point cloud dataset, to the community. We compare the

MVP dataset to previous partial point cloud benchmarks,

PCN [29] and Completion3D [21] in Table 1. The MVP

dataset has many advantages over the other datasets.

Diversity & Uniform Views. First, the MVP dataset

consists of diverse partial point clouds. Instead of ren-

dering partial shapes by using randomly selected camera

poses [29, 21], we select 26 camera poses that are uniformly

distributed on a unit sphere for each CAD model (Fig. 5 (a)).

Notably, the relative poses between our 26 camera poses are

fixed, but the first camera pose is randomly selected, which

is equivalent to performing a random rotation to all 26 cam-

era poses. The major advantages of using uniformly dis-

tributed camera views are threefold: 1) The MVP dataset

has fewer similar rendered partial 3D shapes than the other

datasets. 2) Its partial point clouds rendered by uniformly

distributed camera views can cover most parts of a com-

plete 3D shape. 3) We can generate sufficient incomplete-

complete 3D shape pairs with a relatively small number of

3D CAD models. According to Tatarchenko et. al. [20],

many 3D reconstruction methods rely primarily on shape

recognition; they essentially perform shape retrieval from

the massive training data. Hence, using fewer complete

shapes during training can better evaluate the capability of

generating complete 3D shapes conditioned on the partial
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Table 2: Shape completion results (CD loss multiplied by 104) on our multi-view partial point cloud dataset (16,384 points).

VRCNet outperforms all existing methods by convincing margins. Note that besides the conventional 8 categories in existing

datasets, MVP allows evaluation on 8 additional categories.
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Avg.

PCN [29] 2.95 4.13 3.04 7.07 14.93 5.56 7.06 6.08 12.72 5.73 6.91 2.46 1.02 3.53 3.28 2.99 6.02

TopNet [21] 2.72 4.25 3.40 7.95 17.01 6.04 7.42 6.04 11.60 5.62 8.22 2.37 1.33 3.90 3.97 2.09 6.36

MSN [14] 2.07 3.82 2.76 6.21 12.72 4.74 5.32 4.80 9.93 3.89 5.85 2.12 0.69 2.48 2.91 1.58 4.90

Wang et. al. [23] 1.59 3.64 2.60 5.24 9.02 4.42 5.45 4.26 9.56 3.67 5.34 2.23 0.79 2.23 2.86 2.13 4.30

ECG [15] 1.41 3.44 2.36 4.58 6.95 3.81 4.27 3.38 7.46 3.10 4.82 1.99 0.59 2.05 2.31 1.66 3.58

GRNet [27] 1.61 4.66 3.10 4.72 5.66 4.61 4.85 3.53 7.82 2.96 4.58 2.97 1.28 2.24 2.11 1.61 3.87

NSFA [30] 1.51 4.24 2.75 4.68 6.04 4.29 4.84 3.02 7.93 3.87 5.99 2.21 0.78 1.73 2.04 2.14 3.77

VRCNet (Ours) 1.15 3.20 2.14 3.58 5.57 3.58 4.17 2.47 6.90 2.76 3.45 1.78 0.59 1.52 1.83 1.57 3.06

observation, rather than naively retrieving a known similar

complete shape. An example of 26 rendered partial point

clouds are shown in Fig. 5 (b).

Large-Scale & High-Resolution. Second, the MVP

dataset consists of over 100,000 high-quality incomplete

and complete point clouds. Previous methods render in-

complete point clouds by using small virtual camera reso-

lutions (e.g. 160 × 120), which is much smaller than real

depth cameras (e.g. both Kinect V2 and Intel RealSense are

1920 × 1080). Consequently, the rendered partial point

clouds are unrealistic. In contrast, we use the resolution

1600 × 1200 to render partial 3D shapes of high quality

(Fig. 5 (c)). For ground truth, we employ Poisson Disk

Sampling (PDS) [1, 8] to sample non-overlapped and uni-

formly spaced points for complete shapes (Fig. 5 (d)). PDS

yields smoother complete point clouds than uniform sam-

pling, making them a better representation of the underly-

ing object CAD models. Hence, we can better evaluate net-

work capabilities of recovering high-quality geometric de-

tails. Previous datasets provide complete shapes with only

one resolution. Unlike those datasets, we create complete

point clouds with different resolutions, including 2048(1x),

4096(2x), 8192(4x) and 16384(8x) for precisely evaluating

the completion quality at different resolutions.

Rich Categories. Third, the MVP dataset consists of 16

shape categories of partial and complete shapes for training

and testing. Besides the 8 categories (airplane, cabinet, car,

chair, lamp, sofa, table and watercraft) included in previous

datasets [29, 21], we add another 8 categories (bed, bench,

bookshelf, bus, guitar, motorbike, pistol and skateboard).

By using more categories of shapes, it becomes more chal-

lenging to train and evaluate networks on the MVP dataset.

To sum up, our MVP dataset consists of a large number

of high-quality synthetic partial scans for 3D CAD models,

which imitates real-scanned incomplete point clouds caused

by self-occlusion. Besides 3D shape completion, our MVP

dataset can be used in many other partial point cloud tasks,

such as classification, registration and keypoints extraction.

Compared to previous partial point cloud datasets, MVP

dataset has many favorable properties. More detailed com-

parisons between our dataset and previous datasets are re-

ported in our supplementary materials.

5. Experiments

Evaluation Metrics. In line with previous methods [21, 27,

30], we evaluate the reconstruction accuracy by computing

the Chamfer Distance (Eq. (7)) between the predicted com-

plete shapes Y′ and the ground truth shapes Y. Based on

the insight that CD can be misleading due to its sensitiv-

ity to outliers [20], we also use F-score [10] to evaluate the

distance between object surfaces, which is defined as the

harmonic mean between precision and recall.

Implementation Details. Our networks are implemented

using PyTorch. We train our models using the Adam op-

timizer [9] with initial learning rate 1e−4 (decayed by 0.7

every 40 epochs) and batch size 32 by NVIDIA TITAN Xp

GPU. Note that VRCNet does not use any symmetry tricks,

such as reflection symmetry or mirror operations.

5.1. Shape Completion on Our MVP Dataset

Quantitative Evaluation. As introduced in Sec. 4, our

MVP dataset consists of 16 categories of high-quality par-

tial/complete point clouds that are generated by CAD mod-

els selected from the ShapeNet [26] dataset. We split our

models into a training set (62,400 shape pairs) and a test set

(41,600 shape pairs). Note that none of the complete shapes

in our test set are included in our training set. To achieve a

fair comparison, we train all methods using the same train-

ing strategy on our MVP dataset. The evaluated CD loss

and F-score for all evaluated methods (16,384 points) are re-

ported in Table 2 and Table 3, respectively. VRCNet outper-

forms all existing competitive methods in terms of CD and

F-score@1%. Moreover, VRCNet can generate complete

point clouds with various resolutions (N = 2048, 4096,

8192 and 16384). We compare our methods with existing
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Table 3: Shape completion results (F-Score@1%) on our multi-view partial (MVP) point cloud dataset (16,384 points).
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b
ed
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u
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u
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p
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at
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o
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d

Avg.

PCN [29] 0.816 0.614 0.686 0.517 0.455 0.552 0.646 0.628 0.452 0.694 0.546 0.779 0.906 0.665 0.774 0.861 0.638

TopNet [21] 0.789 0.621 0.612 0.443 0.387 0.506 0.639 0.609 0.405 0.680 0.524 0.766 0.868 0.619 0.726 0.837 0.601

MSN [14] 0.879 0.692 0.693 0.599 0.604 0.627 0.730 0.696 0.569 0.797 0.637 0.806 0.935 0.728 0.809 0.885 0.710

Wang et. al. [23] 0.898 0.688 0.725 0.670 0.681 0.641 0.748 0.742 0.600 0.797 0.659 0.802 0.931 0.772 0.843 0.902 0.740

ECG [15] 0.906 0.680 0.716 0.683 0.734 0.651 0.766 0.753 0.640 0.822 0.706 0.804 0.945 0.780 0.835 0.897 0.753

GRNet [27] 0.853 0.578 0.646 0.635 0.710 0.580 0.690 0.723 0.586 0.765 0.635 0.682 0.865 0.736 0.787 0.850 0.692

NSFA [30] 0.903 0.694 0.721 0.737 0.783 0.705 0.817 0.799 0.687 0.845 0.747 0.815 0.932 0.815 0.858 0.894 0.783

VRCNet (Ours) 0.928 0.721 0.756 0.743 0.789 0.696 0.813 0.800 0.674 0.863 0.755 0.832 0.960 0.834 0.887 0.930 0.796

Table 4: Shape completion results (CD loss multiplied by

104) with various resolutions.

# Points
2,048 4,096 8,192 16,384

CD F1 CD F1 CD F1 CD F1

PCN [29] 9.77 0.320 7.96 0.458 6.99 0.563 6.02 0.638

TopNet [21] 10.11 0.308 8.20 0.440 7.00 0.533 6.36 0.601

MSN [14] 7.90 0.432 6.17 0.585 5.42 0.659 4.90 0.710

Wang et. al. [23] 7.25 0.434 5.83 0.569 4.90 0.680 4.30 0.740

ECG [15] 6.64 0.476 5.41 0.585 4.18 0.690 3.58 0.753

VRCNet (Ours) 5.96 0.499 4.70 0.636 3.64 0.727 3.12 0.791

Table 5: Ablation studies (2,048 points) for the proposed

network modules, including Point Self-Attention Kernel,

Dual-path Architecture and Point Selective Kernel Module.

Point

Self-Attention

Dual-path

Architecture

Kernel

Selection
CD F1

6.64 0.476

� 6.35 0.484

� � 6.15 0.492

� � � 5.96 0.499

approaches that support multi-resolution completion in Ta-

ble 4, and VRCNet outperforms all the other methods.

Qualitative Evaluation. The qualitative comparison re-

sults are shown in Fig. 6. The proposed VRCNet can gen-

erate better complete shapes with fine details than the other

methods. In particular, we can clearly observe the learned

relational structures in our complete shapes. For example,

the missing legs of the chairs (the second row and the fourth

row in Fig. 6) are recovered based on the observed legs with

the learned shape symmetry. In the third row of Fig. 6, we

reconstruct the incomplete lamp base with a smooth round

bowl shape, which makes it a more plausible completion

than the others. The partially observed motorbike in the

last row does not contain its front wheel, and VRCNet re-

constructs a complete wheel by learning the observed back

wheel. Consequently, VRCNet can effectively reconstruct

complete shapes by learning structural relations, including

geometrical symmetries, regular arrangements and surface

smoothness, from the incomplete point cloud.

Table 6: Shape completion results (CD loss multiplied by

104) on the Completion3D benchmark (2,048 points). Our

VRCNet outperforms all SOTAs by significant margins.

Method ai
rp

la
n
e

ca
b
in

et

ca
r

ch
ai

r
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m

p

so
fa

ta
b
le

w
at

er
cr

af
t

Avg.

AtlasNet [5] 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62 17.77

PCN [29] 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73 18.22

TopNet [21] 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82 14.25

GRNet [27] 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86 10.64

VRCNet (Ours) 3.94 10.93 6.44 9.32 8.32 11.35 8.60 5.78 8.12

Ablation Study. The ablation studies for all our proposed

modules, Point Self-Attention Kernel (PSA), Dual-path Ar-

chitecture and Kernel Selection (two-branch PSK), are pre-

sented in Table 5. We use ECG [15] as our baseline model

and evaluate the completion results with 2048 points. By

adding the proposed modules, better completion results can

be achieved, which validates their effectiveness.

5.2. Shape Completion on Completion3D

The Completion3D benchmark is an online platform for

evaluating 3D shape completion approaches. Following

their instructions, we train VRCNet using their prepared

training data and upload our best completion results (2,048

points). As reported in the online leaderboard1, also shown

in Table 6, VRCNet significantly outperforms SOTA meth-

ods and is ranked first on the Completion3D benchmark.

5.3. Shape Completion on Real-world Partial Scans

We further evaluate VRCNet (trained on MVP with all

categories) on real scans, including cars from the KITTI [3]

dataset, chairs and tables from the ScanNet dataset [2]. It

is noteworthy that the KITTI dataset captured point clouds

by using a LiDAR whereas the ScanNet dataset uses a

depth camera. For sparse LiDAR data, we fine-tune all

trained models on ShapeNet-car dataset, but no fine-tuning

is needed for chairs and tables. The qualitative completion

results are shown in Fig. 7. For those sparse point clouds

of cars, VRCNet can predict complete and smooth surfaces
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Partial 
Point Cloud PCN Wang et. al. ECG GRNet NSFA Ours Ground 

Truth

Figure 6: Qualitative completion results (16,384 points) on the MVP dataset by different methods. VRCNet can generate

better complete point clouds than the other methods by learning geometrical symmetries.

(a) Cars from KITTI Dataset (b) Chairs from ScanNet Dataset (c) Tables from ScanNet Dataset

Figure 7: VRCNet generates impressive complete shapes

for real-scanned point clouds by learning and predicting

shape symmetries. (a) shows completion results for cars

from Kitti dataset [3]. (b) and (c) show completion results

for chairs and tables from ScanNet dataset [2], respectively.

that also preserves the observed shape details. In com-

parison, PCN [29] suffers a loss of fine shape details and

NSFA [30] cannot generate high-quality complete shapes

due to large missing ratios. For those incomplete chairs and

tables, VRCNetgenerates appealing complete point clouds

by exploiting the shape symmetries in the partial scans.

User Study. We conduct a user study on completion results

for real-scanned point clouds by PCN, NSFA and VRCNet,

where our VRCNet is the most preferred method overall.

More details are reported in our supplementary materials.

6. Conclusion

In this paper, we propose VRCNet, a variational rela-

tional point completion network, which effectively exploits

3D structural relations to predict complete shapes. Novel

self-attention modules, such as PSA and PSK, are proposed

for adaptively learning point cloud features, which can be

conveniently used in other point cloud tasks. In addition,

we contribute a large-scale MVP dataset, which consists of

over 100,000 high-quality 3D point clouds. We highly en-

courage researchers to use our proposed novel modules and

the MVP dataset for future studies on partial point clouds.
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