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Abstract

Similarity learning has been recognized as a crucial step

for object tracking. However, existing multiple object track-

ing methods only use sparse ground truth matching as the

training objective, while ignoring the majority of the infor-

mative regions on the images. In this paper, we present

Quasi-Dense Similarity Learning, which densely samples

hundreds of region proposals on a pair of images for con-

trastive learning. We can directly combine this similarity

learning with existing detection methods to build Quasi-

Dense Tracking (QDTrack) without turning to displacement

regression or motion priors. We also find that the resulting

distinctive feature space admits a simple nearest neighbor

search at the inference time. Despite its simplicity, QD-

Track outperforms all existing methods on MOT, BDD100K,

Waymo, and TAO tracking benchmarks. It achieves 68.7

MOTA at 20.3 FPS on MOT17 without using external train-

ing data. Compared to methods with similar detectors,

it boosts almost 10 points of MOTA and significantly de-

creases the number of ID switches on BDD100K and Waymo

datasets. Our code and trained models are available at

https://github.com/SysCV/qdtrack.

1. Introduction

Multiple Object Tracking (MOT) is a fundamental and

challenging problem in computer vision, widely used in

safety monitoring, autonomous driving, video analytics, and

other applications. Contemporary MOT methods [2,4,44,45,

54] mainly follow the tracking-by-detection paradigm [36].

That is, they detect objects on each frame and then associate

them according to the estimated instance similarity. Recent

works [2, 4, 5, 54] show that if the detected objects are ac-

curate, the spatial proximity between objects in consecutive

frames, measured by Interaction of Unions (IoUs) or center

distances, is a strong prior to associate the objects. However,

this location heuristic only works well in simple scenarios.

If the objects are occluded or the scenes are crowded, this
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Figure 1: (a) Traditional ReID model that decouples with

detector and learns with sparse ID loss; (b) joint learning

ReID model with sparse ID loss; (c) joint learning ReID

model with sparse triplet loss; (d) our quasi-dense similarity

learning.

location heuristic can easily lead to mistakes. To remedy this

problem, some methods introduce motion estimation [7, 30]

or displacement regression [10, 35, 54] to ensure accurate

distance estimation.

However, object appearance similarity usually takes a

secondary role [26,45] to strengthen object association or re-

identify vanished objects. The search region is constrained

to be local neighborhoods to avoid distractions because the

appearance features can not effectively distinguish differ-

ent objects. On the contrary, humans can easily associate

the identical objects only through appearance. We conjec-

ture this is because the image and object information is not

fully utilized for learning object similarity. As shown in Fig-

ure 1, previous methods regard instance similarity learning

as a post hoc stage after object detection or only use sparse

ground truth bounding boxes as training samples [45]. These

processes ignore the majority of the regions proposed on

the images. Because objects in an image are rarely iden-
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tical to each other, if the object representation is properly

learned, a nearest neighbor search in the embedding space

should associate and distinguish instances without bells and

whistles.

We observe that besides the ground truths and detected

bounding boxes, which sparsely distribute on the images,

many possible object regions can provide valuable training

supervision. They are either close to the ground truth bound-

ing boxes to provide more positive training examples or in

the background as negative examples. In this paper, we pro-

pose quasi-dense similarity learning, which densely matches

hundreds of regions of interest on a pair of images for con-

trastive learning. The quasi-dense samples can cover most of

the informative regions on the images, providing both more

box examples and hard negatives.

Because one sample has more than one positive samples

on the reference image, we extend the contrastive learn-

ing [12, 39, 47] to multiple positive forms that makes the

quasi-dense learning feasible. Each sample is thus trained to

distinguish all proposals on the other image simultaneously.

This contrast provides stronger supervision than using only

the handful ground truth labels and enhances the instance

similarity learning.

The inference process, which maintains the matching can-

didates and measures the instance similarity, also plays an

important role in the tracking performance. Besides similar-

ity, MOT also needs to consider false positives, id switches,

new appeared objects, and terminated tracks. To tackle the

missing targets with our similarity metric, we include back-

drops, the unmatched objects in the last frame, for matching

and use bi-directional softmax to enforce the bi-directional

consistency. The objects that do not have matching targets

will lack the consistency thus has low similarity scores to

any objects. To track the multiple targets, we also conduct

duplicate removal to filter the matching candidates.

Quasi-dense similarity learning can be easily used with

most existing detectors since generating region of interests

is widely used in object detection algorithms. In this paper,

we apply our method to Faster R-CNN [37] along with a

lightweight embedding extractor and residual networks [15]

and build Quasi-Dense Tracking (QDTrack) models. We con-

duct extensive experiments on MOT [28], BDD100K [51],

Waymo [41], and TAO [8] tracking benchmarks. Despite its

simplicity, QDTrack outperforms all existing methods with-

out bells and whistles. It achieves 68.7 MOTA on MOT17

at 20.3 FPS without using external training data. More-

over, it boosts almost 10 points of MOTA and significantly

decreases the number of ID switches on BDD100K and

Waymo datasets, establishing solid records on these brand-

new large-scale benchmarks. QDTrack allows end-to-end

training, thereby simplifying the training and testing proce-

dures of multi-object tracking frameworks. The simplicity

and effectiveness shall benefit further research.

2. Related work

Recent developments in multiple object tracking [23]

follow the tracking-by-detection paradigm [36]. These ap-

proaches present different methods to estimate the instance

similarity between detected objects and previous tracks, then

associate objects as a bipartite matching problem [31].

Location and motion in MOT The spatial proximity has

been proven effective to associate objects in consecutive

frames [4, 5]. However, they cannot do well in complicated

scenarios such as crowd scenes. Some methods use mo-

tion priors, such as Kalman Filter [4, 52], optical flow [48],

and displacement regression [10, 16], to ensure accurate

distance estimations. In contrast to the old paradigm that

detects objects and predicts displacements separately, De-

tect & Track [10] is the first work that jointly optimizes

object detection and tracking modules. It predicts the dis-

placements of the objects in consecutive frames and asso-

ciates the objects with the Viterbi algorithm. Tracktor [2]

directly adopts a detector as a tracker. CenterTrack [54] and

Chained-Tracker [35] predict the object displacements with

pair-wise inputs to associate the objects. Although these

methods show promising results, they [2, 45] still need an

extra re-identification model as complementary to re-identify

vanished objects, making the entire framework complicated.

Appearance similarity in MOT To exploit instance ap-

pearance similarity to strengthen tracking and re-identify

vanished objects, some methods directly use an independent

model [2,20,22,29,38,40,45,49] or add an extra embedding

head to the detector for end-to-end training [26, 44, 50, 53].

However, they still learn the appearance similarity following

the practice in image similarity learning, then measure the

instance similarity by cosine distance. That is, they train the

model either as a n-classes classification problem [45] where

n equals to the number of identities in the whole training

set or using triplet loss [18]. The classification problem is

hard to extend to large-scale datasets, while the triplet loss

only compares each training sample with two other iden-

tities. These rudimentary training samples and objectives

leave instance similarity learning not fully explored in MOT.

Meanwhile, they still heavily rely on motion models and dis-

placement predictions to track objects, and the appearance

similarity only takes the secondary role.

In contrast to these methods, QDTrack learns the instance

similarity from dense-connected contrastive pairs and asso-

ciates objects from the feature space with a simple nearest

neighbor search. QDTrack has higher performance but with

a simpler framework. The promising results prove the power

of quasi-dense similarity learning in multiple object tracking.

Contrastive learning Contrastive learning and its vari-

ants [1,6,13,17,32,42,43,47] have shown promising perfor-

mance in self-supervised representation learning. However,

it does not draw much attention when learning the instance

similarity in multiple object tracking. In this paper, we
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Figure 2: The training pipeline of our method. We apply dense matching between quasi-dense samples on the pair of images

and optimize the network with multiple positive contrastive learning.

supervise dense matched quasi-dense samples with multi-

ple positive contrastive learning by the inspiration of [42].

In contrast to these image-level contrastive methods, our

method allows multiple positive training, while these meth-

ods can only handle the case when there is only one positive

target. The promising results of our method shall draw the at-

tention to contrastive learning in the multiple object tracking

community.

3. Methodology

We propose quasi-dense similarity learning to learn the

feature embedding space that can associate identical objects

and distinguish different objects for online multiple object

tracking. We define dense matching to be matching between

box candidates at all pixels, and quasi-dense means only

considering the potential object candidates at informative

regions. Accordingly, sparse matching means the method

only considers ground truth labels as matching candidates

when learning object association. The main ingredients of

using quasi-dense matching for multiple object tracking are

object detection, instance similarity learning, and object

association.

3.1. Object detection

Our method can be easily coupled with most existing de-

tectors with end-to-end training. In this paper, we take Faster

R-CNN [37] with Feature Pyramid Network (FPN) [24] as

an example, while we can also apply other detectors with

minor modifications. Faster R-CNN is a two-stage detec-

tor that uses Region Proposal Network (RPN) to generate

Region of Interests (RoIs). It then localizes and classifies

the regions to obtain semantic labels and locations. Based

on Faster R-CNN, FPN exploits lateral connections to build

the top-down feature pyramid and tackles the scale-variance

problem. The entire network is optimized with a multi-task

loss function

Ldet = Lrpn + λ1Lcls + λ2Lreg, (1)

where the RPN loss Lrpn, classification loss Lcls, regression

loss Lreg remain the same as the original paper [37]. The

loss weights λ1 and λ2 are set to 1.0 by default.

3.2. Quasi­dense similarity learning

We use the region proposals generated by RPN to learn

the instance similarity with quasi-dense matching. As shown

in Figure 2, given a key image I1 for training, we randomly

select a reference image I2 from its temporal neighborhood.

The neighbor distance is constrained by an interval k, where

k ∈ [−3, 3] in our experiments. We use RPN to generate

RoIs from the two images and RoI Align [14] to obtain their

feature maps from different levels in FPN according to their

scales [24]. We add an extra lightweight embedding head,

in parallel with the original bounding box head, to extract

features for each RoI. An RoI is defined as positive to an

object if they have an IoU higher than α1, or negative if they

have an IoU lower than α2. α1 and α2 are 0.7 and 0.3 in our

experiments. The matching of RoIs on two frames is positive

if the two regions are associated with the same object and

negative otherwise.

Assume there are V samples on the key frame as train-

ing samples and K samples on the reference frame as con-

trastive targets. For each training sample, we can use the

non-parametric softmax [32, 47] with cross-entropy to opti-

mize the feature embeddings

Lembed = −log
exp(v · k+)

exp(v · k+) +
∑

k− exp(v · k−)
, (2)
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Figure 3: The testing pipeline of our method. We maintain the matching candidates and use bi-softmax to measure the instance

similarity so that we can associate objects with a simple nearest neighbour search in the feature space.

where v, k+, k− are feature embeddings of the training sam-

ple, its positive target, and negative targets in K. The overall

embedding loss is averaged across all training samples, but

we only illustrate one training sample for simplicity.

We apply dense matching between RoIs on the pairs of

images, namely, each sample on I1 is matched to all samples

on I2, in contrast to only using sparse sample crops, mostly

ground truth boxes, to learn instance similarity in previous

works [3, 18]. Each training sample on the key frame has

more than one positive targets on the reference frame, so

Eq. (2) can be extended as

Lembed = −
∑

k+

log
exp(v · k+)

exp(v · k+) +
∑

k− exp(v · k−)
. (3)

However, this equation does not treat positive and nega-

tive targets fairly. Namely, each negative one is considered

multiple times while only once for positive counterparts.

Alternatively, we can first reformulate Eq. (2) as

Lembed = log[1 +
∑

k−

exp(v · k− − v · k+)]. (4)

Then in the multi-positive scenario, it can be extended by

accumulating the positive term as

Lembed = log[1 +
∑

k+

∑

k−

exp(v · k− − v · k+)]. (5)

We further adopt L2 loss as an auxiliary loss

Laux = (
v · k

||v|| · ||k||
− c)2, (6)

where c is 1 if the match of two samples is positive and 0

otherwise. Note the auxiliary loss aims to constrain the logit

magnitude and cosine similarity instead of improving the

performance.

The entire network is joint optimized under

L = Ldet + γ1Lembed + γ2Laux, (7)

where γ1 and γ2 are set to 0.25 and 1.0 by default in this

paper. We sample all positive pairs and three times more

negative pairs to calculate the auxiliary loss.

3.3. Object association

Tracking objects across frames purely based on object

feature embeddings is not trivial. For example, if an ob-

ject has no target or more than one target during matching,

the nearest search will be ambiguous. In other words, an

object should have only one target in the matching candi-

dates. However, the actual tracking process is complex. The

false positives, id switches, newly appeared objects, and

terminated tracks all increase the matching uncertainty. We

observe that our inference strategy, including ways of main-

taining the matching candidates and measuring the instance

similarity, can mitigate these problems.

Bi-directional softmax Our main inference strategy is bi-

directional matching in the embedding space. Figure 3 shows

our testing pipeline. Assume there are N detected objects

in frame t with feature embeddings n, and M matching can-

didates with feature embeddings m from the past x frames,

the similarity f between the objects and matching candidates

is obtained by bi-directional softmax (bi-softmax):

f(i, j) = [
exp(ni · mj)∑M−1

k=0
exp(ni · mk)

+
exp(ni · mj)∑N−1

k=0
exp(nk · mj)

]/2.

(8)

The high score under bi-softmax will satisfy a bi-directional

consistency. Namely, the two matched objects should be
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Table 1: Results on MOT16 and MOT17 test set with private detectors. Note that we do not use extra data for training. ↑
means higher is better, ↓ means lower is better. ∗ means external data besides COCO and ImageNet is used.

Dataset Method MOTA ↑ IDF1 ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDs ↓

MOT16

TAP [55] 64.8 73.5 78.7 292 164 12980 50635 571

CNNMTT [27] 65.2 62.2 78.4 246 162 6578 55896 946

POI∗ [52] 66.1 65.1 79.5 258 158 5061 55914 3093

TubeTK_POI∗ [33] 66.9 62.2 78.5 296 122 11544 47502 1236

CTrackerV1 [35] 67.6 57.2 78.4 250 175 8934 48305 1897

Ours 69.8 67.1 79.0 316 150 9861 44050 1097

MOT17

Tracktor++v2 [2] 56.3 55.1 78.8 498 831 8866 235449 1987

Lif_T∗ [19] 60.5 65.6 78.3 637 791 14966 206619 1189

TubeTK∗ [33] 63.0 58.6 78.3 735 468 27060 177483 4137

CTrackerV1 [35] 66.6 57.4 78.2 759 570 22284 160491 5529

CenterTrack∗ [54] 67.8 64.7 78.4 816 579 18498 160332 3039

Ours 68.7 66.3 79.0 957 516 26589 146643 3378

each other’s nearest neighbor in the embedding space. The

instance similarity f can directly associate objects with a

simple nearest neighbor search.

No target cases Objects without a target in the feature

space should not be matched to any candidates. Newly ap-

peared objects, vanished tracks, and some false positives fall

into this category. The bi-softmax can tackle this problem

directly, as it is hard for these objects to obtain bi-directional

consistency, leading to low matching scores. If a newly de-

tected object has high detection confidence, it can start a new

track. Moreover, previous methods often directly drop the

objects that do not match any tracks. We argue that despite

most of them are false positives, they are still useful regions

that the following objects are likely to match. We name

these unmatched objects backdrops and keep them during

matching. Experiments show that backdrops can reduce the

number of false positives.

Multi-targets cases Most state-of-the-art detectors only

do intra-class duplicate removal by None Maximum Sup-

pression (NMS). Consequently, some objects at the same

locations might have different categories. In most cases,

only one of these objects is true positive while the others

not. This process can boost the object recall and contribute

to a high mean Average Precision (mAP) [9, 25]. However,

it will create duplicate feature embeddings. To handle this

issue, we do inter-class duplicate removal by NMS. The IoU

threshold for NMS is 0.7 for objects with high detection

confidence (larger than 0.5) and 0.3 for objects with low

detection confidence (lower than 0.5).

4. Experiments

We conduct experiments not only on the MOT [28] bench-

mark but also on the other brand-new large-scale benchmarks

including BDD100K [51], Waymo [41], and TAO [8]. We

hope our efforts can facilitate future multiple object tracking

research to benefit from these large-scale datasets. We also

show the generalization ability of our method on BDD100K

segmentation tracking benchmark. More results, such as

oracle analyses and failure case analyses are presented in the

supplementary material.

4.1. Datasets

MOT Challenge We perform experiments on two MOT

benchmarks: MOT16 and MOT17 [28]. The dataset contains

7 videos (5,316 images) for training and 7 videos (5,919

images) for testing. Only pedestrians are evaluated in this

benchmark. The video frame rate is 14 - 30 FPS.

BDD100K We use BDD100K [51] detection training set

and tracking training set for training, and tracking valida-

tion/testing set for testing. It annotates 8 categories for eval-

uation. The detection set has 70,000 images. The tracking

set has 1,400 videos (278k images) for training, 200 videos

(40k images) for validation, and 400 videos (80k images) for

testing. The images in the tracking set are annotated per 5

FPS with a 30 FPS video frame rate.

Waymo Waymo open dataset [41] contains images from 5

cameras associated with 5 different directions: front, front

left, front right, side left, and side right. There are 3,990

videos (790k images) for training, 1,010 videos (200k im-

ages) for validation, and 750 videos (148k images) for test-

ing. It annotates 3 classes for evaluation. The videos are

annotated in 10 FPS.

TAO TAO dataset [8] annotates 482 classes in total, which

are the subset of LVIS dataset [11]. It has 400 videos, 216

classes in the training set, 988 videos, 302 classes in the

validation set, and 1419 videos, 369 classes in the test set.

The classes in train, validation, and test sets may not overlap.

The videos are annotated in 1 FPS. The objects in TAO are in

a long-tailed distribution that half of the objects are person
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Table 2: Results on BDD100K tracking validation and test set. Our method outperforms all methods on this benchmark.

Method Split mMOTA ↑ mIDF1 ↑ MOTA ↑ IDF1 ↑ FN ↓ FP ↓ ID Sw. ↓ MT ↑ ML ↓ mAP ↑

Yu et al. [51] val 25.9 44.5 56.9 66.8 122406 52372 8315 8396 3795 28.1

Ours val 36.6 50.8 63.5 71.5 108614 46621 6262 9481 3034 32.6

Yu et al. [51] test 26.3 44.7 58.3 68.2 213220 100230 14674 16299 6017 27.9

DeepBlueAI test 31.6 38.7 56.9 56.0 292063 35401 25186 10296 12266 -

madamada test 33.6 43.0 59.8 55.7 209339 76612 42901 16774 5004 -

Ours test 35.5 52.3 64.3 72.3 201041 80054 10790 17353 5167 31.8

Table 3: Results on Waymo tracking validation set using py-motmetrics library (top) 1and test set using official evaluation.

* indicates methods using undisclosed detectors.

Method Split Category MOTA ↑ IDF1 ↑ FN ↓ FP ↓ ID Sw. ↓ MT ↑ ML ↓ mAP ↑

IoU baseline [26] val Vehicle 38.25 - - - - - - 45.78

Tracktor++ [2, 26] val Vehicle 42.62 - - - - - - 42.41

RetinaTrack [26] val Vehicle 44.92 - - - - - - 45.70

Ours val Vehicle 55.6 66.2 514548 214998 24309 17595 5559 49.5

Ours val All 44.0 56.8 674064 264886 30712 21410 7510 40.1

Method Split Category MOTA/L1 ↑ FP/L1 ↓ MisM/L1 ↓ Miss/L1 ↓ MOTA/L2 ↑ FP/L2 ↓ MisM/L2 ↓ Miss/L2 ↓

Tracktor [21, 41] test Vehicle 34.80 10.61 14.88 39.71 28.29 8.63 12.10 50.98

CascadeRCNN-SORTv2* test All 50.22 7.79 2.71 39.28 44.15 6.94 2.44 46.46

HorizonMOT* test All 51.01 7.52 2.44 39.03 45.13 7.13 2.25 45.49

Ours (ResNet-50) test All 49.40 7.41 1.46 41.74 43.88 7.10 1.31 48.21

Ours (ResNet-101 + DCN) test All 51.18 7.64 1.45 39.73 45.09 7.20 1.31 46.41

and 1 / 6 of the objects are car.

4.2. Implementation details

We use ResNet-50 [15] as the backbone by default in this

paper. We select 128 RoIs from the key frame as training

samples, and 256 RoIs from the reference frame with a

positive-negative ratio of 1.0 as contrastive targets. We use

IoU-balanced sampling [34] to sample RoIs. We use 4conv-

1fc head with group normalization [46] to extract feature

embeddings. The channel number of embedding features is

set to 256 by default. We train our models with a total batch

size of 16 and an initial learning rate of 0.02 for 12 epochs.

We decrease the learning rate by 0.1 after 8 and 11 epochs.

Here, we first talk about the common practices if not spec-

ified mentioned afterwards. We use the original scale of the

images for training and inference. We do not use any other

data augmentation methods except random horizontal flip-

ping. We use a model pre-trained on ImageNet for training.

When conducting online joint object detection and tracking,

we initialize a new track if its detection confidence is higher

than 0.8. The backdrops are only kept for one frame. The

objects can be associated only when they are classified as

the same category.

For fair comparison with recent works, we follow the

practice [44] on MOT17 that randomly resizes and crops

1https://github.com/cheind/py-motmetrics

the longer side of the images to 1088 and does not change

the aspect ratio at the training and inference time. Other

data augmentation includes random horizontal flipping and

color jittering, which is the common practice in [35, 44, 54].

We do not use extra data for training except a pre-trained

model from COCO. Note that COCO is not considered as

additional training data by the official rules and widely used

in most methods.

On TAO, we randomly select a scale between 640 to

800 to resize the shorter side of images during training. At

inference time, the shorter side of the images are resized to

800. We use a LVIS [11] pre-trained model, consistent with

the implementation of [8]. However, we observe severe

over-fitting problem when training on the training videos of

TAO, which hurts the detection performance. So we freeze

the detection model and only fine-tune the embedding head

to extract instance representations.

More details such as more hyper-parameters and momen-

tum updating are presented in the supplementary material.

4.3. Main results

Our method outperforms all existing methods on afore-

mentioned benchmarks without bells and whistles. The per-

formance are evaluated with the official metrics.

MOT The results with private detectors on MOT16 and

MOT17 benchmarks are shown in Table 1. Our model
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Table 4: Ablation studies on quasi-dense matching and the inference strategy on the BDD100K tracking validation set. All

models are comparable on detection performance. D. R. means duplicate removal. (P) means results of the class “pedestrian”.

Quasi-Dense
Metric

Matching candidates
MOTA ↑ IDF1 ↑ mMOTA ↑ mIDF1 ↑ MOTA(P) ↑ IDF1(P) ↑

one-positive multi-positive D. R. Backdrops

- - cosine - - 60.4 63.0 34.0 47.9 37.6 49.7

X - cosine - - 61.5 66.8 35.5 50.0 40.5 52.7

- X cosine - - 62.5 67.8 36.2 50.0 44.0 54.3

- X bi-softmax - - 62.9 70.0 35.4 48.5 45.5 58.8

- X bi-softmax X - 63.2 70.1 36.4 50.4 45.5 58.3

- X bi-softmax X X 63.5 71.5 36.6 50.8 46.7 60.2

+3.1 +8.5 +2.6 +2.9 +9.1 +10.5

Table 5: Ablations studies on location and motion cues on

the BDD100K tracking validation set.

Appearance IoU Motion Regression mMOTA ↑ mIDF1 ↑

- X - - 26.3 36.0

- X X - 27.7 38.5

- X - X 28.6 39.3

X - - - 36.6 50.8

X X - - 36.3 49.8

X X X - 36.4 49.9

X X - X 36.4 50.1

achieves the best MOTA of 68.7% and IDF1 of 66.3% on the

MOT17. We outperform the state-of-the-art tracker Center-

Track [54] by 0.9 points on MOTA and 1.6 points on IDF1

respectively. Our method does not achieve a relatively low

ID Sw. because we have a higher recall. The number of ID

Sw. will likely increase when we have more tracks. This is

also why the results with public detectors, which are shown

in the supplementary material, have lower IDs, because their

recall are lower (FN is higher).

BDD100K The main results on BDD100K tracking valida-

tion and testing sets are in Table 2. The mMOTA and mIDF1,

which represent object coverage and identity consistency re-

spectively, are 36.6% and 50.8% on the validation set, and

35.5% and 52.3% on the testing set. On the two sets, our

method outperforms the baseline benchmark method by 10.7

points and 9.2 points in terms of mMOTA, and 6.3 points

and 7.6 points in terms of mIDF1 respectively. We also out-

perform the champion of BDD100K 2020 MOT Challenge

(madamada) by a large margin but with a simpler detector.

The significant advancements demonstrate that our method

enables more stable object tracking.

Waymo Table 3 shows our main results on Waymo open

dataset. We report the results on the validation set follow-

ing the setup of RetinaTrack [26], which only conduct ex-

periments on the vehicle class. We also report the overall

performance for future comparison. We report the results

on the test set via official rules. Our method outperforms

all baselines on both validation set and test set. We obtain

a MOTA of 44.0% and a IDF1 of 56.8% on the validation

set. We also obtain a MOTA/L1 of 49.40% and a MOTA/L2

of 43.88% on the test set. The performance of vehicle on

the validation set is 10.7, 13.0, and 17.4 points higher than

RetinaTrack [26], Tracktor++ [2, 26], and IoU baseline [26],

respectively. Our model with ResNet-101 and deformable

convolution (DCN) has the state-of-the-art performance on

the test benchmark which is on par with the champion of

Waymo 2020 2D Tracking Challenge (HorizonMOT) but

only with a simple single model.

TAO We obtain 16.1 points and 12.4 points of AP50 on

the validation and test set, respectively. The results are

2.9 points and 2.2 points higher than TAO’s solid baseline,

which are 13.2 points and 10.2 points respectively. Although

we only boost the overall performance by 2 - 3 points, we

observe that we outperform the baseline by a large margin

on frequent classes, that is, 38.6 points vs. 18.5 points on

person. This improvement is buried by the average across

the entire hundreds of classes. It shows that the crucial part

on TAO is still how to improve the tracking on tail classes,

which should be a meaningful direction for further research.

Other details are presented in the supplementary material.

4.4. Ablation studies

We conduct ablation studies on BDD100K validation set,

where we investigate the importance of the major model

components for training and testing procedures.

Importance of quasi-dense matching The results are pre-

sented in the top sub-table of Table 4. MOTA and IDF1 are

calculated over all instances without considering categories

as overall evaluations. We use cosine distance to calculate

the similarity scores during the inference procedure. Com-

pared to learning with sparse ground truths, quasi-dense

tracking improves the overall IDF1 by 4.8 points (63.0%

to 67.8%). The significant improvement on IDF1 indicates

quasi-dense tracking greatly improves the feature embed-

dings and enables more accurate associations.

We then analyze the improvements in detail. In the table,

we can observe that when we match each training sample

to more negative samples and train the feature space with
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(a) Sparse (b) Quasi-Dense

Figure 4: Visualizations of instance embeddings with (a) sparse matching and (b) quasi-dense matching using t-SNE.

Eq. (2), the IDF1 is significantly improved by 3.4 points.

This improvement contributes 70% to the total improved 4.8

points IDF1. This experiment shows that more contrastive

targets, even most of them are negative samples, can im-

prove the feature learning process. The multiple-positive

contrastive learning following Equation (5) further improves

the IDF1 by 1 point (66.8% to 67.8%).

Importance of bi-softmax We investigate how different

inference strategies influence the performance. As shown

in the bottom part of Table 4, replacing cosine similarity by

bi-softmax improves overall IDF1 by 2.2 points and the IDF1

of pedestrian by 4.5 points. This experiment also shows that

the one-to-one constraint further strengthens the estimated

similarity.

Importance of matching candidates Duplicate removal

and backdrops improve IDF1 by 1.5 points. Overall, our

training and inference strategies improve the IDF1 by 8.5

points (63.0% to 71.5%). The total number of ID switches

is decreased by 30%. Especially, the MOTA and IDF1 of

pedestrian are improved by 9.1 points and 10.5 points respec-

tively, which further demonstrate the power of quasi-dense

contrastive learning.

Combinations with motion and location Finally, we try

to add the location and motion priors to understand whether

they are still helpful when we have good feature embeddings

for similarity measure. These experiments follow the pro-

cedures in Tracktor [2] and use the same detector for fair

comparisons. As shown in Table 5, without appearance fea-

tures, the tracking performance is consistently improved with

the introduction of additional information. However, these

cues barely enhance the performance of our approach. Our

method yields the best results when only using appearance

embeddings. The results indicate that our instance feature

embeddings are sufficient for multiple object tracking with

the effective quasi-dense matching, which greatly simplify

the testing pipeline.

Inference speed To understand the runtime efficiency, we

profile our method on NVIDIA Tesla V100. Because it only

adds a lightweight embedding head to Faster R-CNN, our

method only bring marginal inference cost overhead. With

an input size of 1296× 720 and a ResNet-50 backbone on

BDD100K, the inference FPS is 16.4. With an input size

of 1088 × 608 and a ResNet-50 backbone on MOT17, the

Table 6: Results on the BDD100K segmentation tracking test

set. I: ImageNet. C: COCO. S: Cityscapes. B: BDD100K.

"frozen" means adopting the pretrained model from the

BDD100K tracking set and only finetune the mask head.

Method Pretrained mMOTSA ↑ mMOTSP ↑ mIDF1 ↑ ID sw. ↓

SORT [4] I, C, S 12.8 67.3 28.8 3525

Ours I, C, S 24.0 66.3 42.5 1581

Ours (frozen) I, B 30.8 65.5 50.6 884

inference FPS is 20.3.

4.5. Embedding visualizations

We use t-SNE to visualize the embeddings trained with

sparse matching and our quasi-dense matching and show

them in Figure 4. The instances are selected from a video

in BDD100K tracking validation set. The same instance is

shown with the same color. We observe that it is easier to

separate objects in the feature space of quasi-dense match-

ing. More visualizations are presented in the supplementary

material.

4.6. Segmentation tracking

We show the generalization ability of our method by

extending it to instance segmentation tracking. BDD100K

provides a subset for the segmentation tracking task. There

are 154 videos in the training set, 32 videos in the validation

set, and 37 videos in the test set. Table 6 shows the results

on BDD100K segmentation tracking task. The results on the

validation set are presented in the supplementary material.

5. Conclusion

We present QDTrack, a tracking method based on quasi-

dense matching for instance similarity learning. In contrast

to previous methods that use sparse ground-truth matching

as similarity supervision, we learn instance similarity from

hundreds of region proposals on pairs of images, and train

the feature embeddings with multiple positive contrastive

learning. In the resulting feature space, a simple nearest

neighbor search can distinguish instances without bells and

whistles. Our method can be easily coupled with most of the

existing detectors and trained end-to-end for multiple object

tracking and segmentation tracking.
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