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Abstract

Deep denoiser, the deep network for denoising, has been

the focus of the recent development on image denoising. In

the last few years, there is an increasing interest in devel-

oping unsupervised deep denoisers which only call unorga-

nized noisy images without ground truth for training. Nev-

ertheless, the performance of these unsupervised deep de-

noisers is not competitive to their supervised counterparts.

Aiming at developing a more powerful unsupervised deep

denoiser, this paper proposed a data augmentation tech-

nique, called recorrupted-to-recorrupted (R2R), to address

the overfitting caused by the absence of truth images. For

each noisy image, we showed that the cost function de-

fined on the noisy/noisy image pairs constructed by the R2R

method is statistically equivalent to its supervised counter-

part defined on the noisy/truth image pairs. Extensive ex-

periments showed that the proposed R2R method noticeably

outperformed existing unsupervised deep denoisers, and is

competitive to representative supervised deep denoisers.

1. Introduction

Image denoising is one fundamental problem in im-

age processing which receives an enduring interest in last

decades. It aims at removing random noise from the in-

put images to improve their signal-to-noise-ratios (SNRs).

Image denoising is not only an important problem itself but

also serves as a basic module in many image recovery meth-

ods. A noisy image is usually formulated as

y = x+ n, (1)

where y denotes the noisy image, x the noise-free image for

recovery, and n measurement noise. The noise n is often

assumed to be the instance drawn from some distribution.

In recent years, deep learning is the main driving force

in the development of image denoisers. A majority of ex-

isting deep-learning-based denoisers (e.g. [31, 36, 37]) are

supervised, which learn the mapping from the noisy input

to its clean counterpart by training a deep neural network

(DNN) on many clean/noisy image pairs. However, in or-

der to have a trained model that generalizes well, a large

number of such noisy/clean image pairs are needed to suf-

ficiently cover the variations on image content and mea-

surement noise. Fulfilling such a demanding requirement

on training samples may be costly and sometimes chal-

lenging. For example, it is non-trivial to collect real-world

noisy/clean image pairs; see e.g. [25, 33, 3]. For scientific

images and medical images, the task is more challenging.

Recently, it is receiving an increasing interest on relax-

ing the prerequisite of supervised learning on training sam-

ples. Lehtinen et al. [21] presented a weakly supervised

learning method, the so-called Noise2Noise method, which

directly trains the DNN on the pairs of two noisy images of

the same scene. As the noise of such image pairs is indepen-

dent, the expectation of the cost function of Noise2Noise is

then the same as that of the supervised one defined on the

noisy/truth image pairs. However, collecting noisy image

pairs of the same scene remains highly non-trivial as im-

age alignment can be an issue, and it is not possible for

the images of dynamic scenes. More recent works on un-

supervised deep denoisers have been focusing on training

DNNs using a noisy image dataset without pair-wise cor-

respondence, or even training DNNs only using the input

noisy image itself. These methods can be categorized to

two classes.

• Data augmentation methods. Noise2Void [17] and

Noise2Self [5] adopt the blind-spot strategy to avoid

overfitting (convergence to identity map) when train-

ing a DNN to map a noisy image to itself, while

Noiser2Noise [23] and Noise-as-Clean [32] add addi-

tional noise to the original noisy image to generate im-

age pairs which are then used to train the DNN.

• Regularized denoising DNN. The Stein’s Unbiased Risk

Estimator (SURE) [29, 22] regularizes the DNN by pe-

nalizing the divergence of the prediction. Deep image

prior [30] uses early-stopping to avoid the overfitting. In

Self2Self [26], a dropout-based training/testing scheme

is introduced to reduce the bias and variance of the pre-
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diction from the DNN trained on a single noisy image.

1.1. Motivation

Despite the great progress in last few years, the per-

formance of unsupervised learning methods for denoising

is still not comparable to that of their supervised coun-

terparts, e.g. DnCNN [36] trained on noisy/clean pairs

or Noise2Noise trained on noisy/noisy pairs. Indeed,

many of them cannot compete well against classical non-

local denoising methods such as BM3D [11]. So far,

SURE [29] provided the state-of-the-art (SOTA) perfor-

mance among dataset-based unsupervised denoisers, and

Self2Self [26] provided the SOTA performance among

single-image-based unsupervised denoisers. In summary,

• Unsupervised learning has its value in many real-world

applications, since it remains useful when no ground-

truth image is available.

• Most existing unsupervised learning methods have a no-

ticeable performance gap to their supervised counter-

parts, especially for denoising real-world images.

This paper aims at developing an unsupervised learning

method for denoising that works on a set of unorganized

noisy images without truth images. The proposed method

not only provides the SOTA performance among existing

unsupervised learning methods, but also is very competitive

to many supervised learning methods including DnCNN.

1.2. Main Idea

Revisiting Noise2Noise. Before proceeding, we take a

revisit to Noise2Noise, the first attempt that relaxes the

requirement of supervised denoising methods on training

dataset: from noisy/clean image pairs to noisy/noisy image

pairs. It is shown in [21] that the performance of a denoising

network trained on noisy/noisy image pairs is roughly the

same as that trained on noisy/clean image pairs of the same

scene. Mathematically speaking, in the setting of additive

white Gaussian noise (AWGN), a pair of noisy images of

the same scene can be expressed as

y = x+ n, n ∼ N (0, σ2

1
I),

y′ = x+ n′, n′ ∼ N (0, σ2

2
I).

Let Fθ(·) denote the denoising DNN. Then, Noise2Noise

trains the DNN by minimizing the squared-ℓ2 loss:

En,n′{‖Fθ(y)− y′‖2
2
}. (2)

Such a loss function is closely related to the one used in

supervised learning:

En{‖Fθ(y)− x‖2
2
}. (3)

Indeed, we have

En,n′{‖Fθ(y)− y′‖2
2
}

=En,n′{‖Fθ(y)− x− n′‖2
2
}

=En,n′{‖Fθ(y)− x‖2
2
− 2(n′)⊤(Fθ(y)− x) + (n′)⊤n′}

=En,n′{‖Fθ(y)− x‖2
2
} − 2En,n′{(n′)⊤Fθ(y)}+ const.

As long as the noise n and n′ are independent, which gives

En,n′{(n′)⊤Fθ(y)} = 0, the expectation of the loss func-

tion defined on (y,y′) will be equivalent to the supervised

one defined on (y,x) up to a constant. This is the reason

why Noise2Noise can perform comparably to its supervised

counterparts.

Re-corrupting both the input image and target image for

training on unorganized noisy images. Different from

the dataset required by Noise2Noise, we only assume the

availability of a set of unorganized noisy images without

pairwise correspondence. In order to achieve comparable

performance to Noise2Noise, the question is then about how

to construct a pair of noisy images (ŷ, ỹ) with independent

noise from a single noisy image y = x+ n such that

E{‖Fθ(ŷ)− ỹ‖2
2
} = E{‖Fθ(ŷ)− x‖2

2
}+ const.

In the setting of AWGN: n ∼ N (0, σ2I), our answer to the

above question is to recorrupt the noisy image y as follows:

ŷ = y+D⊤z, ỹ = y−D−1z, z ∼ N (0, σ2I), (4)

where D can be any invertible matrix. We showed in Corol-

lary 2 (Section 3) that the noise in ŷ and ỹ are indepen-

dent from each other, and thus the squared-ℓ2 loss function

trained on the image pair (ŷ, ỹ) satisfies

En,z{‖Fθ(ŷ)− ỹ‖2
2
} = En̂{‖Fθ(x+ n̂)−x‖2

2
}+const,

(5)

where n̂ = n +D⊤z. Consider a dataset of un-organized

noisy images

yk = xk + nk, xk ∼ X ,nk ∼ N (0, σ2I), k ∈ N.

The cost function defined on the pairs {(ŷk, ỹk)}k∈N con-

structed by (4) is then equivalent to the following cost func-

tion:

Ex,n̂{‖Fθ(x+ n̂)− x‖2
2
}+ const,

i.e., the one used in the supervised learning on a set of

noisy/truth image pairs {(xk + n̂,xk)}k∈N.

Discussion. From (5), it can be seen that the proposed

scheme (4) of the image pair (ŷ, ỹ) leads to a loss function

in the same form as that of Noise2Noise. Therefore, the

network trained using the proposed scheme can be expected

to have comparable performance to those supervised learn-

ing methods. Through this paper, the training scheme (5)
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built on the construction scheme of image pair (4) is called

Recorrupted-to-Recorrupted, abbreviated as R2R.

Moreover, the proposed R2R scheme also works for the

noise which is signal-dependent. Suppose the noise follows

a normal distribution N (0,Σx) with the x-dependent co-

variance matrix Σx. Then, one only needs to modify the

recorruption scheme as follows:

ŷ = y+
√

ΣxD
⊤z, ỹ = y−

√
ΣxD

−1z, z ∼ N (0, I).

Note that since the covariance matrix Σx is positive defi-

nite, its square root matrix is well defined and satisfies

√
Σx

⊤

=
√
Σx,

√
Σx

√
Σx = Σx.

The modified scheme above still leads to the same result

as (5); see Section 3 for more details.

1.3. Contributions

In this paper, we proposed an unsupervised deep learn-

ing method for image denoising, named as R2R, which is

trained on a dataset of un-organized noisy images, without

truth or pair-wise correspondence. The contributions are

summarized as follows:

• With rigorous mathematical treatment, this paper pre-

sented a so-called R2R unsupervised learning technique

for image denoising, which is statistically equivalent to

the supervised learning on noisy/clean image pairs.

• In comparison to other unsupervised learning methods

for denoising, the proposed R2R is simple and flexible.

It can be trained on external training samples or directly

trained on noisy images for processing.

• Extensive experiments on synthetic noisy images show

that the proposed R2R method performs better than

all compared non-learning and unsupervised learning

methods, and is comparable to representative supervised

denoisers. For denoising real-world images, it is also

very competitive to the top performers among the non-

learning and unsupervised learning methods.

2. Related Work

There is abundant literature on image denoising, and we

only focus on the most related ones.

Non-learning-based image denoisers using image pri-

ors. In the past, many image denoisers have been proposed

by imposing certain pre-defined image priors on clean im-

ages. Some widely-used image priors include: 1) Spar-

sity of image gradients, which leads to ℓp-norm penaliza-

tion methods, e.g. [8, 28]; 2) Similarity of image patches,

which induces non-local methods, e.g. BM3D [11] and

WNNM [12], or rank-based regularization such as [14].

Supervised learning on noisy/truth image pairs. Super-

vised deep learning has been a prominent tool for image de-

noising, which trains denoising DNNs on many noisy/truth

image pairs, e.g. [36, 37, 20, 13, 15, 4, 35, 27]. The DNNs

are trained to map noisy images to their clean counterparts.

DnCNN [36], which uses a residual convolutional DNN for

training, is one widely-used method for benchmarking deep

image denoisers. Instead of using noisy/truth image pairs,

the Noise2Noise (N2N) method [21] is weakly supervised

that trains the DNN on pairs of independent noisy images

of the same scene.

Unsupervised learning on unpaired noisy images. With-

out noisy/truth image pairs, one approach is to use gen-

erative adversarial network (GAN) to generate these pairs

from unpaired data for training, e.g. [10, 7]. Another type

of method directly trains the DNN on noisy data, and the fo-

cus is on how to avoid overfitting which sees the DNN con-

vergence to the identity map. A SURE-based method [29]

regularizes the DNN by penalizing the divergence of the

prediction. Some other methods propose data augmentation

schemes to avoid overfitting and our R2R method falls into

this category. In the following, we will review most related

data augmentation methods.

Noise2Void (N2V) [17] and Noise2Self (N2S) [5] are

based on the blind-spot strategy that randomly drops some

pixels of the input and predicts them using their remaining

neighbours. Laine et al. [18] proposes a specific blind-spot

architecture that excludes the center pixel in its receptive

field. The blind-spot technique can be conceptually inter-

preted as recorrupting the noisy sample by multiplicative

Bernoulli noise. The issue is that a lot of information is

discarded when dropping image pixels. In contrast, the pro-

posed R2R keeps all image pixels. It is equivalent to train

the DNN in a supervised manner with a only slightly higher

noise level (e.g. D = 1

2
I in (4)). As a result, the R2R can

be trained with better performance.

Given the noisy image y, Noisier2Noise and Noisy-as-

Clean use a noisier image as input, which is synthesized by

recorrupting y with the noise z, and then the DNN is trained

over the pair (y + αz,y):

min
θ

Ey,z‖Fθ(y + αz)− y‖2
2
. (6)

The connection between the loss function defined above and

the supervised one is not clear. In comparison, taking D =
αI in (4), the R2R trains the DNN on (y + αz,y − z/α):

min
θ

Ey,z‖Fθ(y + αz)− (y − z/α)‖2
2
, (7)

which is rigorously showed a statistical connection to the

supervised learning. Indeed, the denoiser obtained by mini-

mizing (6) is E(y|ŷ) (ŷ = y + αz). To reduce noise effect

further, Noisier2Noise runs a post-process for correction:

α−2
(
(1 + α2)E(y|ŷ)− z

)
.
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In contrast, our R2R obtains the ideal denoiser E(x|ŷ) di-

rectly owing to the equivalence to the supervised learning.

The partially-linear denoiser [16] considered training a

denoiser over the recorrupted image pairs similar to our

R2R method, and showed its connection to supervised lin-

ear denoisers. As a denoising DNN is typically non-linear,

they proposed to penalize the non-linear structure of the

DNN to approximate its supervised counterpart well. A

two-stage training procedure is then developed to learn such

a denoiser with special structure. In comparison, the pro-

posed cost function in our R2R method can use standard

optimization procedure to train the network.

Self-supervised learning on a single noisy image. In

the past, there have been extensive studies on sparsity-

driven unsupervised learning for denoising, e.g., the KSVD

method for dictionary learning [2] and the data-driven

wavelet frames [6]. Recently, there are also some works

that train the network only on the target image itself, with-

out calling any external training samples. The deep image

prior (DIP) [30] uses early stopping to avoid overfitting, as it

is observed that regular image patterns can be learned prior

to random noise during the training. The Self2Self (S2S)

method [26] adopts a dropout-based ensemble technique to

handle the overfitting, which has the SOTA performance

among existing single-image-based methods.

3. Main body

Recall that a noisy image y and its noise-free counterpart

x is related by

y = x+ n,

where n denotes the random noise and follows the normal

distribution N (0,Σx). Typical supervised learning meth-

ods train the DNNs by

min
θ

Ex,yL(Fθ(y),x), (8)

where L(·, ·) denotes some loss function and the squared

ℓ2-norm loss is used in the following. Without the access to

clean images, simply replacing x in (8) with y

min
θ

Ey‖Fθ(y)− y‖2
2
, (9)

will yield a trivial identity solution, i.e., the DNN does not

remove any noise but outputs the noisy image itself.

Instead, for each noisy sample y, our R2R training gen-

erates paired images {(ŷ, ỹ)} as follows:

ŷ = y +Az, ỹ = y −Bz, (10)

where A, B satisfies AB⊤ = Σx and z is sampled from

standard normal distribution N (0, I). Then we train the

DNN over (ŷ, ỹ) by

min
θ

L(θ;A,B) := Ey,z‖Fθ(y +Az)− (y −Bz)‖2
2
.

(11)

Denote n̂ = n + Az and ñ = n − Bz. It can be cal-

culated that the covariance of n̂ and ñ is zero. Since they

follow Gaussian distribution jointly, it yields that they are

independent. Consequently, we have the following theorem

regarding the loss function L(θ;A,B) defined in (11).

Theorem 1. Suppose y = x+n and n follows the normal

distribution N (0,Σx). Define a pair of images (ŷ, ỹ) by

(10), where z is independent from n. Then with the condi-

tion AB⊤ = Σx, it holds that

L(θ;A,B) = L̃(θ;A) + const, (12)

where L̃(θ;A) is the loss for supervised learning:

L̃(θ;A) := Ex,y,z‖Fθ(y +Az)− x‖2
2
. (13)

Proof. See the supplemental material file for the proof.

As an extension, we have the following corollary derived

from Theorem 1.

Corollary 2. Suppose y = x+n and n ∼ N (0,Σx). The

paired images (ŷ, ỹ) are generated by

ŷ = y +
√
ΣxD

⊤z, ỹ = y −
√

ΣxD
−1z, (14)

where z draws from N (0, I) and is independent of n. Then

it holds that

Ey,z‖Fθ(ŷ)− ỹ‖2
2
= Eŷ‖Fθ(ŷ)− x‖2

2
+ const. (15)

Theorem 1 implies that our R2R training is equiva-

lent to training a denoiser over paired noisy/clean images

{(y + Az,x)} in a supervised way. To test on the target

noisy image u, we feed u+Az into the trained DNN such

that the statistics of the inputs are consistent during training

and testing. Let θ∗ be the learned DNN parameters. The

following scheme is used for prediction

u∗ =

∫
Fθ∗(u+Az)ΦI(z)dz ≈

T∑

j=1

Fθ∗(u+Azj),

(16)

where {zj}Tj=1
are independent samples drawn from

N (0, I). The Monte Carlo approximation is used to ap-

proximate the integration. The averaging of multiple for-

ward processes is to reduce the effect of recorruption on the

input image. However, if the DNN is trained over a suf-

ficiently wide range of noise levels, the obtained R2R de-

noiser can also work well for the original noise level. In

this case, we compute Fθ∗(u) directly to denoise the test

image.
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4. Experiments

In this section, we evaluate our proposed R2R training

on AWGN removal and real-world image denoising. More

details can be found in the supplementary materials.

Our R2R training is independent of the network archi-

tectures. In our experiments, we use the same architecture

as that of DnCNN [36], a baseline denoising DNN in the

study of deep denoisers. The results of the compared meth-

ods are cited from the literature directly if possible. Other-

wise, we use the pre-trained models or the codes provided

by the authors to obtain the results. If none is available,

e.g. Noisier2noise [23], we strictly follow the instructions

of the paper to implement it by ourselves, and make efforts

to optimize its performance.

Remark 3. In the comparison, the best performer is em-

phasized by bold, and the second best is colored in blue.

4.1. Experiments on AWGN Removal

We test the denoising performance on the gray-scale ver-

sion of the BSD68 dataset which is corrupted by AWGN of

two noise levels σ = 25, 50. The compared dataset-based

learning methods are retrained on the benchmark image

dataset BSD400 which contains 400 gray-scale images of

size 180× 180. The noisy versions of all images are gener-

ated by adding zero-mean AWGN with specific noise levels.

For unsupervised learning methods, including N2V [17],

N2S[5], SURE [29], Laine et al. [18], Nr2N [23] and our

R2R, only noisy images are provided for training. For

N2N [21], one more noisy version of each training image

is generated. During training, the patches of size 40 × 40
are extracted from the training images and augmented by

rotation, flipping and mirroring. For our method, a DnCNN

network with 17 convolution layers is trained for 50 epochs

with batch size 128. The initial learning rate is 10−3 and

halves after 30 epochs. We generate our R2R image pairs

for training by (14), where D = αI and D−1 = I/α with

α = 0.5. For prediction, we adopt (16) with T = 50.

See Tab. 1 for quantitative comparison of different meth-

ods on the testing dataset and Fig. 1 for visual compari-

son of some results. It can be seen that among all non-

learning-based methods and unsupervised learning meth-

ods, the proposed R2R is the best performer in terms of

both PSNR and SSIM. It is surprising to see that our method

also outperformed N2N, which is weakly supervised on the

noisy/noisy image pairs. One plausible cause might be that

N2N can only utilize the provided noisy pairs while our

method can generate multiple instances of image pairs from

a single noisy image, which makes our R2R generalize bet-

ter. In comparison with the representative supervised learn-

ing method DnCNN, the performance gap between our R2R

and DnCNN is very small, less than 0.1dB in PSNR. That

is, our proposed unsupervised method R2R is indeed com-

parable to its supervised counterpart, i.e. DnCNN.

4.2. Experiments on RealWord Image Denoising

We test the performance of different methods on four

real-world image datasets, i.e. CC [24], PloyU [33], SIDD

Validation and SIDD Benchmark [1]. For CC, PolyU and

SIDD Validation, ground truth images are provided. For

SIDD Benchmark, the results are evaluated by submitting

the denoised images to the project website 1. The images in

these datasets are captured by different cameras from differ-

ent scenes and cropped to small image blocks for process-

ing. There are 15 and 100 images of size 512 × 512 in the

CC and PolyU dataset respectively. For both the SIDD Val-

idation and Benchmark, images of 40 scenes are captured,

each of which are cropped into 32 blocks of size 256×256,

resulting in totally 1024 image blocks in the dataset.

SIDD dataset with unorganized noisy images for train-

ing. For SIDD, there is a training dataset with raw format

available. The camera image processing pipeline is also

available to convert the image in raw format to sRGB for-

mat. For noisy raw-RGB images in the training dataset, the

noisy level function (NLF) is reported, which models the

noise as a heteroscedastic signal dependent Gaussian vari-

able with its variance proportional to the image intensity:

Σx = diag(β1x+ β2), (17)

where β1 is the signal-dependent multiplicative component

of the noise (the Poisson or shot noise), and β2 is the inde-

pendent additive Gaussian component of the noise.

We use the provided NLF to generate independent noisy

raw-RGB image pairs by the scheme (14) with D = 2I ,

and D−1 = I/2, without calling the estimated clean im-

ages in the SIDD training dataset. These raw-RGB image

pairs are then rendered to sRGB images using the provided

camera image processing pipeline procedure for the follow-

ing training of a sRGB-to-sRGB denoising DNN. Note that

neither gamma correction nor tone mapping are called to

generate the sRGB images provided in SIDD Validation and

Benchmark dataset, and the same for our generated R2R

sRGB noisy image pairs. As a result, the mean of image

noise remains zero after being converted from raw-RGB

space to sRGB space, and our method is still applicable.

320 noisy images in SIDD-Medium Dataset and a DnCNN

with 20 convolution layers are used for our method. At each

iteration, 32 pairs of image patches of size 128× 128 from

the dataset are extracted for training. The number of iter-

ation is 5 × 105 and the learning rate is 5 × 10−5. Here

our R2R method is trained on the images with various noise

levels, and the obtained denoising model is relatively insen-

sitive to the noise level. Thus, there is no need to recorrupt

1https://www.eecs.yorku.ca/ kamel/sidd/
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Table 1. Quantitative comparison, in PSNR(dB)/SSIM, of different methods for AWGN removal on BSD68. The compared methods are

categorized according to the type of training samples.

σ = 25

Single-image-based Methods Noisy/Noisy Noisy/Clean

BM3D WNNM DIP S2S N2N DnCNN

28.56/0.801 28.80/0.809 27.96/0.774 28.57/0.802 28.86/0.823 29.19/0.830

Trained on Unpaired Noisy Images

N2V N2S SURE Nr2N Laine et al. R2R

27.72/0.794 28.12/0.792 28.94/0.818 28.55/0.808 28.84/0.814 29.14/0.822

σ = 50

Single-image-based Methods Noisy/Noisy Noisy/Clean

BM3D WNNM DIP S2S N2N DnCNN

25.62/0.687 25.87/0.698 25.04/0.645 25.93/0.698 25.77/0.700 26.22/0.720

Trained on Unpaired Noisy Images

N2V N2S SURE Nr2N Laine et al. R2R

25.12/0.684 25.62/0.678 25.93/0.678 25.61/0.681 25.78/0.698 26.13/0.709

DIP (24.65dB) S2S (25.54dB) SURE (25.55dB) N2V (24.36dB) N2S (24.95dB)

Laine et al. (25.14dB) Nr2N (25.32dB) N2N (25.51dB) DnCNN (25.90dB) R2R (25.82dB)

Figure 1. Visual results of removing AWGN of noise level σ = 50 on an example image from BSD68.

the test images, i.e., we use the trained model Fθ∗(·) di-

rectly for prediction during testing.

In addition to two representative non-learning meth-

ods CBM3D and WNNM, two methods specifically de-

signed for denoising real-world images are also included,

namely multi-channel weighted nuclear norm minimization

(MCWNNM) [34], and “noise clinic” (NC) method [19].

DnCNN, N2V and N2S are also retrained on SIDD-Medium

for comparison, with (DnCNN) or without( N2V and N2S)

calling the clean images in it. All the denoising methods are

performed and evaluated on the sRGB space.

See Tab. 2 for quantitative comparison and Fig. 2 for vi-

sual comparison of some examples. It can be seen that the

proposed R2R method outperformed all other non-learning-

based methods and unsupervised learning methods. How-

ever, there is a noticeable performance gap between the R2R

method and the supervised DnCNN, which may be caused

by the inaccurate noise model and noise level function.

CC and PolyU dataset without external noisy training

samples. For CC and PolyU, there is no training dataset

available. Thus we train the denoiser on themselves directly

without calling any external training samples. As noise

characters are quite different for images captured under dif-

ferent conditions related to ISO level, shutter speed, illumi-

nation and other factors, we process these images individu-

ally. To obtain the results of DnCNN, we use the pre-trained

blind DnCNN model for prediction, which are trained over

the color version of BSD400 with AWGN where the noise

level is uniformly sampled from [0, 55].

For sRGB images in CC and PolyU, the noise model (17)

is not applicable as the gamma correction and tone mapping

in the camera image processing procedure distorted the sta-

tistical characters of noise from raw images. Thus, we sim-

ply model the noise by AWGN with different noise levels

in different color channels, the same as MCWNNM [34].

The noise level is estimated using the method [9]. Then

we set A = 20σI and B = σI/20 in our recorruption

scheme (10) for data generation with the estimated noise

level σ for each color channel. Here a relative large recor-

ruption coefficient 20 is used because the noise level in im-

ages from CC and PolyU is low and heavier recorruption is

better for avoiding overfitting. For each image, we train a

DnCNN with 17 convolution layers for 8000 iterations us-

ing a learning rate of 10−3. It takes around half an hour to
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Table 2. Quantitative comparison, in PSNR(dB)/SSIM, of different methods for denoising real-world images from SIDD.

Dataset CBM3D WNNM MCWNNM NC N2V N2S R2R DnCNN

SIDD Benchmark 25.65/0.685 25.78/0.809 33.37/0.875 31.26/0.826 27.68/0.668 29.56/0.808 34.78/0.898 36.54/0.927

SIDD Validation 25.65/0.475 26.20/0.693 33.40/0.815 31.31/0.725 29.35/0.651 30.72/0.787 35.04/0.844 36.83/0.870

Noisy MCWNNM NC N2V N2S R2R DnCNN
Figure 2. Visual results for denoising real-word images from SIDD Benchmark.

process one image of size 512× 512× 3 for our method.

See Tab. 3 for the comparison of the R2R method to the

pre-trained DnCNN and those methods that do not require

any external training dataset, where N2V-single and N2S-

single are the extensions of N2V and N2S to the case of sin-

gle noisy image training. Our method still outperformed all

other unsupervised deep learning methods by a large mar-

gin. There is a small advantage of our method over the

top non-learning-based performer MCWNNM on the CC

dataset, while a small disadvantages on the PolyU dataset.

The pre-trained blind DnCNN performs poorly on CC and

PolyU since it is trained on AWGN and generalizes poorly

to real noise. See Fig. 3 for some visual results.

4.3. Ablation Study

This section is devoted to the ablation study for a better

understanding of the proposed R2R method. We conduct

the AWGN removal experiments on BSD68 with noise level

σ = 25, 50 in the following.

Performance gain from the prediction scheme (16). To

show the benefit of the prediction scheme (16), we com-

pare the result w/ it to the one w/o it. Tab. 4 shows that

the performance gain brought by the scheme (16) is quite

noticeable.

Performance impact of different value of α. Recall that

we generate paired training data by (14) with D = αI
for AWGN removal. To show the impact of the recorrup-

tion factor α on the performance, we compared the results

yielded by using different values of α in the range [0.1, 1].
It can be seen from Tab. 5 that the impact of different values

of α on the denoising performance is not significant.

Robustness to the estimation error of noise level. our

method requires the prior knowledge on the noise levels of

the training images to construct the pairs by (14). The sensi-

tiveness of our method to the estimation error of noise level

is evaluated. The experiments are conducted by contami-

nating the estimation of noise s.t.d. with up to 10% error,

i.e. the noise level is sampled uniformly from [0.9σ, 1.1σ]
to generate recorrupted images. It can be seen from Tab. 6

that the impact of such error on the performance is negli-

gible, which indicates the robustness of the proposed R2R

method to the estimation error of noise level.
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Table 3. Quantitative comparison, in PSNR(dB) /SSIM, of different methods for denoising real-world images from CC and PolyU.

Datasets Methods

CC

CBM3D WNNM MCWNNM NC DIP

35.19/0.858 35.77/0.9381 37.70/0.954 36.43/0.936 37.37/0.947

N2V-single N2S-single S2S R2R-single DnCNN

32.27/0.862 33.38/0.846 37.52/0.947 37.78/0.951 33.47/0.932

PolyU

CBM3D WNNM MCWNNM NC DIP

37.40/0.953 36.59/0.925 38.51/0.967 36.92/0.945 38.09/0.962

N2V-single N2S-single S2S R2R-single DnCNN

33.83/0.873 35.04/0.902 38.37/0.962 38.47/0.965 35.60/0.964

Ground-Truth (PSNR) Noisy Image (29.63dB) CBM3D (31.96dB) WNNM(32.97dB) MCWNNM (34.61dB) NC (33.49dB)

N2V-single (29.77dB) N2S-single (30.38dB) DIP (33.88dB) S2S (34.43dB) R2R (34.80dB) DnCNN(26.69dB)

Figure 3. Visual comparison of the results from different methods when denoising an example image from dataset CC.

Table 4. PSNR (dB) gain from the prediction scheme (16).

Prediction Fθ∗(y) Our scheme (16)

σ = 25 28.89 29.14

σ = 50 25.86 26.12

Table 5. Impact of different values of α on the PSNR (dB).

α 1 0.5 0.3 0.1

σ = 25 28.81 29.14 29.03 28.98

σ = 50 25.81 26.12 25.93 25.74

Table 6. Robustness of the R2R method to the estimation error of

noise level, in PSNR (dB).

estimation error of σ 10% None

σ = 25 29.09 29.14

σ = 50 26.07 26.12

5. Conclusion

In this paper, we proposed an unsupervised deep learn-

ing denoising method trained on unpaired noisy images

and proved that statistically our training scheme has the

same loss function as that of the supervised training up

to a constant. Its effectiveness was further demonstrated

by the numerical results on AWGN removal, where our

method is comparable to the supervised baseline. For

both AWGN removal and real-world image denoising, our

method achieved the competitive results compared to the

SOTA unsupervised learning methods.
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