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Abstract

Human trajectory prediction is critical for autonomous

platforms like self-driving cars or social robots. We present

a latent belief energy-based model (LB-EBM) for diverse

human trajectory forecast. LB-EBM is a probabilistic model

with cost function defined in the latent space to account

for the movement history and social context. The low-

dimensionality of the latent space and the high expressivity

of the EBM make it easy for the model to capture the multi-

modality of pedestrian trajectory distributions. LB-EBM is

learned from expert demonstrations (i.e., human trajectories)

projected into the latent space. Sampling from or optimizing

the learned LB-EBM yields a belief vector which is used

to make a path plan, which then in turn helps to predict a

long-range trajectory. The effectiveness of LB-EBM and the

two-step approach are supported by strong empirical results.

Our model is able to make accurate, multi-modal, and social

compliant trajectory predictions and improves over prior

state-of-the-arts performance on the Stanford Drone trajec-

tory prediction benchmark by 10.9% and on the ETH-UCY

benchmark by 27.6%.

1. Introduction

Forecasting the future trajectories of pedestrians is crit-

ical for autonomous moving platforms like self-driving

cars or social robots with which humans are interacting.

It has recently attracted interest from many researchers

[15, 64, 25, 50, 3, 7, 28, 32]. See [49] for an overview.

Trajectory forecast is a challenging problem since human fu-

ture trajectories depend on a multitude of factors such as past

movement history, goals, behavior of surrounding pedestri-

ans. Also, future paths are inherently multimodal. Given the

past trajectories, there are multiple possible future paths. We

propose a latent belief energy-based model (LB-EBM) which

captures pedestrian behavior patterns and subtle social inter-

action norms in the latent space and make multimodal tra-

jectory predictions. LB-EBM is learned from expert demon-

strations (i.e., human trajectories) following the principle of

inverse reinforcement learning (IRL) [36, 11, 12, 17].

Traditional IRL approaches [36] first learn a cost function

from expert demonstrations in an outer loop and then use

reinforcement learning to extract the policy from the learned

cost function in an inner loop. These approaches are often

highly computationally expensive. To avoid such an issue,

GAIL (Generative Adversarial Imitation Learning) [21, 7]

optimizes a policy network directly. GAIL can generate

multimodal action predictions given an expressive policy

generator. The multimodality is however modeled implicitly

and completely relies on the policy generator. Our approach

strikes a middle ground between traditional IRL and GAIL.

We learn an energy-based model (EBM) as the cost function

in a low dimensional latent space and map the EBM distribu-

tion to actions with a policy generator. Similar to traditional

IRL, we learn a cost function but our cost function is defined

in a low dimensional space so that our cost function is eas-

ier to model and learn. Resembling GAIL, we also learn a

policy generator which allows for directly mapping a latent

vector to the action trajectory, while we explicitly learn a

multimodal cost function instead of learning it implicitly and

completely relying on the policy generator.

An EBM [59, 38, 40] in the form of Boltzmann or Gibbs

distribution maps a latent vector to its probability. It has

no restrictions in its form and can be instantiated by any

function approximators such as neural networks. Thus, this

model is highly expressive and learning from human trajec-

tories allows it to capture the multimodality of the trajectory

distribution. Our proposed LB-EBM is defined in a latent

space. An encoder is jointly learned to project human tra-

jectories into the latent space and hence provides expert

demonstrations to the latent cost function.

Furthermore, this cost function accounts for trajectory his-

tory and motion behavior of surrounding pedestrians. Thus

sampling from or optimizing the cost function yields a latent

belief, regarding future trajectory, which considers the cen-

tric agent’s behavior pattern and social context surrounding

this agent. A future trajectory is then forecasted in two steps.

We first use the social-aware latent belief vector to make

a rough plan for future path. It is intuitive that human do

not plan every single future step in advance but we often

have a rough idea about how to navigate through our future
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path, which is based on one’s belief after observing other

agents’ motion. The belief is inherently related to the agent’s

behavior pattern. This forms the intuitive motivation of our

modeling approach. Conditioned on the plan, the trajectory

is then predicted with the assistance of individual motion

history and social cues. Several recent works take two steps

to make trajectory forecast. They either first estimate the

final goal [32] or make a plan on a coarse grid map [29]. We

take a similar approach. The plan in our approach is defined

to be positions of some well-separated steps in the future

trajectory, which can be easily extracted from the data.

The proposed LB-EBM and other modules are learned

end-to-end. We test our model on the Stanford Drone (SDD)

trajectory prediction benchmark and the ETH-UCY bench-

mark and improves the prior state-of-the-art performance by

10.9% on SDD and 27.6% on ETH-UCY.

Our work has the following contributions.

• We propose a latent belief energy-based model (LB-

EBM), following the principle of IRL, which naturally

captures the multimodal human trajectory distribution.

• Our approach predicts multimodal and social compliant

future trajectories.

• Our model achieves the state-of-the-art on widely-used

human trajectory forecasting benchmarks.

2. Related Work

Agents’ motions depend on their histories, goals, social

interactions with other agents, constraints from the scene

context, and are inherently stochastic and multimodal. Con-

ventional methods of human trajectory forecasting model

contextual constraints by hand-crafted features or cost func-

tions [4, 20, 61]. With the recent success of deep networks,

RNN-based approaches have become prevalent. These works

propose to model interactions among multiple agents by ap-

plying aggregation functions on their RNN hidden states

[1, 15, 19], running convolutional layers on agents’ spatial

feature maps [5, 10, 64, 58], or leveraging attention mecha-

nisms or relational reasoning on constructed graphs of agents

[27, 50, 51, 63, 57]. Some recent studies are, however, re-

thinking the use of RNN and social information in modeling

temporal dependencies and borrowing the idea of transform-

ers into the area [13]. We apply these social interaction

modeling approaches with a few modifications in our work.

Modeling Goals. Recent progress has suggested that

directly modeling goals could significantly decrease the er-

ror for trajectory forecasting. [47] introduces a prediction

method conditioning on agent goals. [32] proposes to first

predict the goal based on agents’ individual histories and

then to forecast future trajectories conditioning on the pre-

dicted goal. [29] introduces a two-step planning scheme,

first in a coarse grid then in a finer one, which can be viewed

as directly modeling goals and sub-goals. We follow the gen-

eral scheme of two-step prediction. The plan in our approach

is defined to be positions of some well-separated steps in

the future trajectory, which can be easily extracted from the

data.

Multimodality. Most recent prediction works have em-

phasized more on modeling the multimodality nature of

human motions. [2, 6] directly predict multiple possible ma-

neuvers and generate corresponding future trajectories given

each maneuver. [25, 22] use Variational Auto-Encoders [8]

and [15, 25, 50, 64] use Generative Adversarial Networks

[14, 33] to learn distributions. Many works [29, 44, 46, 54]

also focus on developing new datasets, proposing different

formulations, utilizing latent variable inference, and explor-

ing new loss functions to account for multimodality. Our

work adopts the likelihood-based learning framework with

variational inference. We propose a novel way to model the

multimodality of human trajectories, by projecting them into

a latent space with variational inference and leveraging the

strength of latent space energy-based model.

Value Function. Human behaviors are observed as ac-

tions, e.g. trajectories, but the actions are actually guided

by hidden value functions, revealing human preference and

cost over different actions. Some previous works explicitly

or implicitly model these types of cost functions as inter-

mediate steps for sampling possible futures. These works

generally follow the reinforcement learning formulation of

value functions Q. [37] directly uses Q-Learning to learn

value functions. [60, 24] formulate trajectory planning and

prediction problems as inverse optimal control and GAIL

(generative adversarial imitation learning) problems. [31]

models social interaction by game theory and attempt to

find the hidden human value by fictitious play. P2TIRL

[7] is learned by a maximum entropy inverse reinforcement

learning (IRL). Our work also follows the basic principle of

inverse reinforcement learning to learn human cost functions

explicitly in a latent space.

Energy-Based Models. The energy function in the EBM

[66, 59, 38, 9, 18] can be viewed as an objective function, a

cost function, or a critic [53]. It captures regularities, rules or

constrains. It is easy to specify, although optimizing or sam-

pling the energy function requires iterative computation such

as MCMC. Recently [40, 41, 42] proposed to learn EBM

in a low dimensional latent space, which makes optimizing

or sampling the energy function much more efficient and

convenient. The current work follows this approach.

3. Model and Learning

3.1. Problem Definition

Let xt
i ∈ R

2 denote the position of a person i at time t

in a scene where there are n people in total. The history
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trajectory of the person i is xxxi = {xt
i, t = 1, ..., tpast} and

XXX = {xxxi, i = 1, ..., n} collects past trajectories of all people

in a scene. Similarly, the future trajectory of this person at

time t is denoted as yti . yyyi = {yti , t = tpast + 1, ..., tpred}
and YYY = {yyyi, i = 1, ..., n} indicate the future trajectory of

the person i and all future trajectories, respectively. The goal

is to jointly predict the future trajectories of all the agents in

the scene or to learn the probabilistic distribution, p(YYY |XXX).
Directly modeling p(YYY |XXX) is essentially supervised learn-

ing or behavior cloning which often fails to capture the mul-

timodality. Instead, we introduce two auxiliary variables.

The first is zzzi which represents the latent belief of the agent

i after observing the trajectory history of his or her own and

surrounding agents,XXX . LetZZZ = {zzzi, i = 1, ..., n}. zzzi is a la-

tent variable since we cannot observe one’s latent belief. The

other auxiliary variable is pppi which denotes the plan of the

agent i considering the latent belief zzzi and trajectory history

XXX . Similarly, let PPP = {pppi, i = 1, ..., n}. pppi can be either

latent or observed. We choose to use a few well-separated

steps of future trajectory, yyyi, to represent one’s plan, making

it an observable. Thus, we can extract plan from the data

to provide supervision signal, making the learning easier.

With the aforementioned setup, we model the following joint

distribution,

p(ZZZ,PPP ,YYY |XXX) = p(ZZZ|XXX)
︸ ︷︷ ︸

LB-EBM

Plan
︷ ︸︸ ︷

p(PPP |ZZZ,XXX) p(YYY |PPP ,XXX)
︸ ︷︷ ︸

Prediction

. (1)

After learning the model, we can follow the above chain

to make trajectory prediction. A well-learned LB-EBM or

cost function captures expert’s belief distribution given tra-

jectory history and motion behavior of surrounding agents.

Sampling from or optimizing this cost function gives a good

belief representation taking account into individual behavior

pattern and social context. This cost function is inherently

multimodal since it learns from the multimodal human tra-

jectories. We can then make a plan with p(PPP |ZZZ,XXX) (the

plan module) by directly generating a trajectory plan. Lastly,

p(YYY |PPP ,XXX) (the prediction module) makes a trajectory pre-

diction given the plan and past history. In the following

section, we detail each part of the decomposed distribution

and introduce related encoding functions.

3.2. LB­EBM

In our approach, the key step is to learn a cost function

defined in a latent belief space. For a latent belief vector zzzi,

the cost function is defined to be

Cα(zzzi, Psocial(XXX)) (2)

where α denotes the parameters of the cost function. Two rel-

evant encoding modules are, Epast which is used to encode

the trajectory history xxxi of each agent and Psocial which is

a pooling module that aggregates {Epast(xxxi), i = 1, ..., n}
to provide the latent belief space with individual behavior

history and social context. Cα(·) takes [zzzi;Psocial(XXX)] as

the input where [ · ; · ] indicates concatenation.

Assuming we have a well-learned cost function, we can

find a zzzi by minimizing the cost function with respect to

it given XXX , generate a plan with the latent belief, and then

make the trajectory plan. The cost function is learned from

expert demonstrations projected into the latent space. A

plan, pppi, extracted from an observed future human trajec-

tory, yyyi, can be projected to the latent space. Suppose yyyi
consists of 12 time steps and pppi can take the positions at

the 3rd, 6th, 9th, and 12th time steps as the plan. Denote

the projected latent vector to be zzz+i . α is learned from

{zzz+ij , i = 1, ..., n; j = 1, ..., N} where j indicates the jth

scene with N scenes in total. See section 3.6 for the learning

details. The projection or inference is done by an inference

network Einference. The distribution of the inferred latent

belief is qφ(zzzi|pppi,XXX), which is assumed to be a multivari-

ate Gaussian with a diagonal covariance matrix. In partic-

ular, the mean function µφ(pppi,XXX) and covariance matrix

σ2
φ(pppi;XXX) both takes [Eplan(pppi);Psocial(XXX)] as the input

and share the neural network module except the last layer.

Here Eplan is simply an embedding function which encodes

the plan pppi into a feature space to be ready to concatenate

with Psocial(XXX).
The LB-EBM assumes the following conditional proba-

bility density function

pα(zzzi|Psocial(XXX)) (3)

=
1

Zα(Psocial(XXX))
exp [−Cα(zzzi, Psocial(XXX))]p0(zzzi),

(4)

where Zα(Psocial(XXX)) =
∫
exp [−Cα(zzzi, Psocial(XXX))]dzzzi

is the normalizing constant or partition function and p0(zzzi)
is a known reference distribution, assumed to be standard

Gaussian in this paper. The cost function Cα serves as the

energy function. The latent belief vectors of experts zzz+ij are

assumed to be random samples from pα(zzzi|Psocial(XXX)) and

thus has low cost on Cα(zzzi, Psocial(XXX)).
The joint distribution of the latent belief vectors of agents

in a scene is then defined to be

p(ZZZ|XXX) =

n∏

i=1

pα(zzzi|Psocial(XXX)), (5)

where {zzzi, i = 1, ..., n} given the joint trajectory history XXX

are independent because an agent cannot observe the belief

of other agents.

To sample from LB-EBM, we employ Langevin dynamics

[35, 65, 39]. For the target distribution pα(zzz|Psocial(XXX)),
the dynamics iterates

zzzk+1 = zzzk + s∇zzz log pα(zzz|Psocial(XXX)) +
√
2sǫk, (6)
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Figure 1. An overview of our model on an individual agent i. The past trajectory xi (left side in the figure) is encoded by Epast to get the

individual encoding x′

i. The social pooling module Psocial is then applied to get the agent’s history encoding x′′

i accounting for social

context. In training, the ground-truth plan pi (right side in the figure) is extracted from the future trajectory yi (e.g., extract the steps 3,

6, 9, 12 from a 12-time-step future as the plan) and then encoded by Eplan to get p′i. The expert plan is then projected into the latent

space, conditional on the trajectory history and social context, x′′

i , through the inference module (light blue). It takes x′′

i and p′i as input,

parameterized by φ, and is only used in training to output the mean µφ and co-variance matrix σ2

φ for the posterior distribution, qφ, of the

latent vector zi. Purple part denotes the latent belief energy-based model (LB-EBM) module, Cα, defined on the latent belief vector zi
conditional on x′′

i . The LB-EBM learns from the posterior distribution of the projected ground-truth plan qφ. A sample from the posterior

(in training) or a sample from LB-EBM (in testing) enters the plan module (yellow) together with x′′

i . The plan module is parametrized by β,

which is a regular regression model where the mean µβ is estimated and used as the module prediction. The generated plan together with x′′

i

enters the prediction module (red), parameterized by γ. It is also a regular regression model where the mean µγ is estimated and used as the

module prediction, which is also the trajectory forecast of the whole network.

where k indexes the time step of the Langevin dynamics, s

is a small step size, and ǫk ∼ N(0, I) is the Gaussian white

noise. Note that the index i for zzz is removed for notational

simplicity. ∇zzz log pα(zzz|Psocial(XXX)) can be efficiently com-

puted by back-propagation. Given the low-dimenionality of

the latent space, Langevin dynamics sampling mixes fast. In

practice, we run the dynamics for a fixed number of times

(20). The small number of steps and the small model size of

the LB-EBM make it highly affordable in practice.

3.3. Plan

The distribution of the plan of the agent i is pβ(pppi|zzzi,XXX),
and it is assumed to be a Gaussian distribution with mean

µβ(zzzi,XXX) and an identity covariance matrix. In partic-

ular the mean function takes as input the concatenation

[zzzi;Psocial(XXX)]. The joint distribution of the plans of all

agents in a scene is

p(PPP |ZZZ,XXX) =

n∏

i=1

pβ(pppi|zzzi, Psocial(XXX)), (7)

where pppi is assumed to be independent of {zzzj , j 6= i} given

zzzi and Psocial(XXX) and {pppi, i = 1, ..., n} are assumed to be

independent conditional on {zzzi} and Psocial(XXX).

3.4. Prediction

The prediction distribution is defined similarly as the plan

distribution,

p(YYY |PPP ,XXX) =

n∏

i=1

pγ(yyyi|pppi, Psocial(XXX)), (8)

and pγ(yyyi|pppi, Psocial(XXX)) assumes a Gaussian distribution

with mean µγ(pppi,XXX) and an identity covariance matrix. The

input to the mean function is [Eplan(pppi);Psocial(XXX)].

3.5. Pooling

The trajectory history XXX of agents in a scene is pooled

through self-attention [56]. It allows us to enforce a spatial-

temporal structure on the social interactions among agents.

This enforcement is simply achieved by designing a spatial-

temporal binary mask with prior knowledge. We follow the

mask design of [32]. The pooling mask M is defined to be,

M [i, j] =







0 if min
1≤s,t≤tpast

‖xt
i − xs

j‖2 > d

1 otherwise.
(9)

Adjusting the hyperparameter d allows for varying the social-

temporal adjacency of social interactions.
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3.6. Joint learning

The log-likelihood of data in a single scene, (XXX,YYY ,PPP ),
is

log p(PPP ,YYY |XXX) = log

∫

ZZZ

p(ZZZ,PPP ,YYY |XXX) (10)

which involves the latent variable ZZZ and directly opti-

mizing it involves sampling from the intractable posterior

p(ZZZ|PPP ,XXX). We however can optimize a variational lower

bound of it in an end-to-end fashion to learn the entire net-

work,

L(θ) = Eqφ(ZZZ|PPP,XXX) log pβ(PPP |ZZZ,XXX) (11)

+ Eqdata(YYY |PPP,XXX) log pγ(YYY |PPP ,XXX) (12)

−KL(qφ(ZZZ|PPP ,XXX)||p0(ZZZ)) (13)

− Eqφ(ZZZ|PPP,XXX)Cα(ZZZ,XXX)− logZα(XXX), (14)

where θ collects the parameters of the whole network.

Also note that p0(ZZZ) =
∏

i p0(zzzi) and Cα(ZZZ,XXX) =
∑

i Cα(zzzi,XXX). Please see the supplementary for the deriva-

tion details. The gradients of all terms are straightforward

with backpropagation except logZα(XXX). The gradient of

it with respect to α is Ep(ZZZ|XXX)[∇αCα(ZZZ,XXX)]. It involves

sampling from LB-EBM. This is done with Langevin dy-

namics (Equation 6). As we discussed earlier, sampling

from LB-EBM only requires a small number of steps and the

necessary model size is fairly small due to the low dimen-

sionality. Thus the sampling is highly affordable. Although

the loss function −L{θ} is optimized end-to-end, let us take

a close look at the optimization of the cost function given its

core role in our model. Let J (α) be the loss function of the

LB-EBM, the gradient of it with respect to α is,

∇αJ (α) (15)

= Eqφ(ZZZ|PPP,XXX)[∇αCα(ZZZ,XXX)]− Ep(ZZZ|XXX)[∇αCα(ZZZ,XXX)],

(16)

where qφ(ZZZ|PPP ,XXX) projects the expert plan PPP to the latent

belief space. α is updated based on the difference between

the expert beliefs and those sampled from the current LB-

EBM. Thus, the latent cost function is learned to capture

expert beliefs given the trajectory history and surrounding

context.

4. Experiments

We test our model on two widely used pedestrians tra-

jectory benchmarks (see section 4.2 for details) against a

variety competitive baselines. These experiments highlight

the effectiveness of our model with (1) improvements over

the previous state-of-the-art models on the accuracy of tra-

jectory prediction and (2) the prediction of multimodal and

social compliant trajectories as demonstrate in qualitative

analysis.

4.1. Implementation Details and Design Choices

The trajectory generator or policy network is an autore-

gressive model in most prior works [1, 15, 25, 50]. Some

recent works explored the use of a non-autoregressive model

[32, 45]. We choose to use a non-autoregressive model

(MLP) considering its efficiency and the avoidance of expo-

sure bias inherent in autoregressive models. The potential

issue of using an non-autoregressive model is that it might

fail to capture the dependency among different time steps.

However, this is a lesser issue since the proposed LB-EBM

is expressive and multi-modal and might be able to model

the dependency across multiple time steps. Furthermore,

the trajectory prediction is based on a plan over the whole

forecasting time horizon, making an auto-regressive model

further unnecessary.

The dimension of LB-EBM is 16 and is implemented with

3-layer MLP with an hidden dimension of 200. We always

use 20 steps for Langevin sampling from LB-EBM in both

training and inference. It is possible to amortize the sampling

on the learned cost function by learning an auxiliary latent

generator such as using noise contrastive estimation [16].

However, due to the low dimensionality of the latent space,

20 steps are highly affordable. We thus prefer keeping our

model and learning method pure and simple.

In both benchmarks, the model aims to predict the future

12 time steps. The plan is extracted by taking the positions

at the 3rd, 6th, 9th, and 12th time steps.

All other modules in our model are also implemented with

MLPs. The batch size is 512 for the Stanford Drone dataset

and is 70 for all the ETH-UCY datasets. The model is trained

end-to-end with an Adam optimizer with an learning rate

of 0.0003. The model is implemented in Pytorch [43]. Our

code is released at https://github.com/bpucla/

lbebm.

4.2. Datasets

Stanford Drone Dataset. Stanford Drone Dataset [48]

is a large-scale pedestrian crowd dataset in bird’s eye view.

It consists of 20 scenes captured using a drone in top down

view around the university campus containing several mov-

ing agents such as humans bicyclists, skateboarders and

vehicles. It consists of over 11, 000 unique pedestrians cap-

turing over 185, 000 interactions between agents and over

40, 000 interactions between the agent and scene [48]. We

use the standard train-test split which is widely used in prior

works such as [50, 15, 32].

ETH-UCY. It is a collection of relatively small bench-

mark pedestrian crowd datasets. It consists of five different

scenes: ETH and HOTEL (from ETH) and UNIV, ZARA1,

and ZARA2 (from UCY). The positions of pedestrians are

in world-coordinates and hence the results are reported in

meters. We use the leave-one-out strategy for training and

testing, that is, training on four scenes and testing on the
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fifth one, as done in previous works [15, 26, 32]. We split

the trajectories into segments of 8s and use 3.2s of trajectory

history and a 4.8s prediction horizon, with each time step of

0.4s.

4.3. Baseline Models

We compare the proposed approach based on LB-EBM to

a wide range of baseline models and state-of-the-art works.

The compared work covers very different learning regimes

for modeling human trajectory and accounting for multi-

modality and social interaction. We briefly describe below

the representative baselines.

• S-LSTM [1] is the simplest deterministic baseline based

on social pooling on LSTM states.

• S-GAN-P [15] is a stochastic GAN-based simple base-

line extended from S-LSTM.

• MATF [64] is a GAN-based convolutional network built

upon feature maps of agents and context.

• Desire [25] is an VAE-based sophisticated stochastic

model.

• Sophie [50] is a complex attentive GAN modeling both

social interactions and scene context.

• CGNS [26] uses conditional latent space learning with

variational divergence minimization.

• P2TIRL [7] is learned by maximum entropy inverse

reinforcement learning policy.

• SimAug [28] uses additional 3D multi-view simulation

data adversarially.

• PECNet [32] is a VAE based state-of-the-art model with

goal conditioning predictions.

4.4. Quantitative Results

In this section, we compare and discuss our method’s

performance against the aforementioned baselines based on

the Average Displacement Error (ADE) and Final Displace-

ment Error (FDE) with respect to each time-step t within the

prediction horizon.

ADEi =
1

Tpred

Tpred∑

t=1

dl2(ŷ
t
i , y

t
i)

ADE =
1

n

∑

i

ADEi

FDEi = dl2(ŷ
Tpred

i , y
Tpred

i )

FDE =
1

n

∑

i

FDEi

(17)

where dl2 indicates the Euclidean distance. Following the

evaluation protocol of the prior work [15, 23, 32, 64], we use

Best-of-K evaluation. In particular, the minimum ADE and

FDE from K randomly sampled trajectories are considered

as the model evaluation metrics. And K = 20 is used in

our experiments. Recently, some researchers [22, 52, 55]

propose to use kernel density estimate-based negative log

likelihood (KDE NLL) for evaluation. Since only few papers

reported NLL results on our considered benchmarks and

thus it might not be easy to have a fair comparison with

most baselines, we choose to focus on the widely-adopted

ADE and FDE. Please see the supplementary for the NLL

evaluation of our model.

ADE FDE

S-LSTM [1] 31.19 56.97

S-GAN-P [15] 27.23 41.44

MATF [64] 22.59 33.53

Desire [25] 19.25 34.05

SoPhie [50] 16.27 29.38

CF-VAE [3] 12.60 22.30

P2TIRL [7] 12.58 22.07

SimAug [28] 10.27 19.71

PECNet [32] 9.96 15.88

Ours 8.87 15.61
Table 1. ADE / FDE metrics on Stanford Drone for LB-EBM

compared to baselines are shown. All models use 8 frames as

history and predict the next 12 frames. The lower the better.

Stanford Drone Dataset: Table 1 summarizes the

results of our proposed method against the baselines and

state-of-the-art methods. Our proposed method achieves a

superior performance compared to the previous state-of-

the-art models [3, 7, 32] on ADE by a significant margin

of 10.9%. While our improvement over other baselines

on FDE is clear, the improvement over the PECNet is not

significant. This might be because the PECNet focuses on

optimizing the goal or the final step.

ETH-UCY: Table 2 shows the results for the evaluation

of our proposed method on the ETH/UCY scenes. We use

the leave-one-out evaluation protocol following CGNS [26]

and Social-GAN [15]. We observe that the proposed LB-

EBM outperforms prior methods, including the previous

state-of-the-art [26]. We improve over the state-of-the-art on

the average ADE by 27.6% with the effect being the most on

ETH (44.4%) and least on ZARA1 (9.1%). We also observe

a clear improvement on the FDE.

4.5. Qualitative Results

In this section, we present qualitative results of our pro-

posed method on the Stanford Drone dataset. In Figure 2,

we inspect the results under three different setups across 4
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Figure 2. Qualitative results of our proposed method across 4 different scenarios in the Stanford Drone. First row: The best prediction result

sampled from 20 trials from LB-EBM. Second row: The 20 predicted trajectories sampled from LB-EBM. Third row: prediction results of

agent pairs that has social interactions. The observed trajectories, ground truth predictions and our model’s predictions are displayed in

terms of white, blue and red dots respectively.

different scenarios. Those scenarios are selected involving

various road conditions including crossing, sidewalk and

roundabout. The first row presents the best prediction result,

among 20 random samples drawn from the LB-EBM with

respect to the ADE criterion, for each scenario. Our model is

able to produce predictions that are close to the ground-truth

trajectories in these scenarios. The second row illustrates

the 20 predicted trajectories sampled from our method. By

711820



ETH HOTEL UNIV ZARA1 ZARA2 AVG

Linear * [1] 1.33 / 2.94 0.39 / 0.72 0.82 / 1.59 0.62 / 1.21 0.77 / 1.48 0.79 / 1.59

SR-LSTM-2 * [63] 0.63 / 1.25 0.37 / 0.74 0.51 / 1.10 0.41 / 0.90 0.32 / 0.70 0.45 / 0.94

S-LSTM [1] 1.09 / 2.35 0.79 / 1.76 0.67 / 1.40 0.47 / 1.00 0.56 / 1.17 0.72 / 1.54

S-GAN-P [15] 0.87 / 1.62 0.67 / 1.37 0.76 / 1.52 0.35 / 0.68 0.42 / 0.84 0.61 / 1.21

SoPhie [50] 0.70 / 1.43 0.76 / 1.67 0.54 / 1.24 0.30 / 0.63 0.38 / 0.78 0.54 / 1.15

MATF [64] 0.81 / 1.52 0.67 / 1.37 0.60 / 1.26 0.34 / 0.68 0.42 / 0.84 0.57 / 1.13

CGNS [26] 0.62 / 1.40 0.70 / 0.93 0.48 / 1.22 0.32 / 0.59 0.35 / 0.71 0.49 / 0.97

PIF [30] 0.73 / 1.65 0.30 / 0.59 0.60 / 1.27 0.38 / 0.81 0.31 / 0.68 0.46 / 1.00

STSGN [62] 0.75 / 1.63 0.63 / 1.01 0.48 / 1.08 0.30 / 0.65 0.26 / 0.57 0.48 / 0.99

GAT [23] 0.68 / 1.29 0.68 / 1.40 0.57 / 1.29 0.29 / 0.60 0.37 / 0.75 0.52 / 1.07

Social-BiGAT [23] 0.69 / 1.29 0.49 / 1.01 0.55 / 1.32 0.30 / 0.62 0.36 / 0.75 0.48 / 1.00

Social-STGCNN [34] 0.64 / 1.11 0.49 / 0.85 0.44 / 0.79 0.34 / 0.53 0.30 / 0.48 0.44 / 0.75

PECNet [32] 0.54 / 0.87 0.18 / 0.24 0.35 / 0.60 0.22 / 0.39 0.17 / 0.30 0.29 / 0.48

Ours 0.30 / 0.52 0.13 / 0.20 0.27 / 0.52 0.20 / 0.37 0.15 / 0.29 0.21 / 0.38
Table 2. ADE / FDE metrics on ETH-UCY for the proposed LB-EBM and baselines are shown. The models with * mark are non-probabilistic.

All models use 8 frames as history and predict the next 12 frames. Our model achieves the best average error on both ADE and FDE metrics.

The lower the better.

visualizing the results, we can see that LB-EBM is able to

generate multi-modal and diverse predictions. Further, we

display the prediction results of a pair of agents with so-

cial interactions in the third row. Interaction details such as

“straight going together”, “turning together”, “yielding” and

“collision avoidance” are captured by our proposed model. It

demonstrates the effectiveness of our LB-EBM to model the

agent-wise interactions for trajectory predictions.

4.6. Ablation Study

We conduct ablation studies to examine the important

components of our model. In particular, we ablate each

component of the overall learning objective as specified

in Equation 11 - 14. The results are summarized in Ta-

ble 3. Equation 11 is the basic reconstruction term and has

to be kept. But we can replace Equation 11 and 12 with

Eqφ(ZZZ|YYY ,XXX) log p(YYY |ZZZ,XXX). That is, the model predicts the

full trajectory directly without generating a plan first. It is

corresponding to EBM without Plan in Table 3. Equation 13

and 14 together are the KL divergence between the varia-

tional posterior qφ(ZZZ|PPP ,XXX) and the EBM prior pα(ZZZ|XXX)
(note that p0(ZZZ) is the base distribution for the EBM). We

can replace pα(ZZZ|XXX) with a Gaussian distribution condi-

tional on XXX , corresponding to the Gaussian with Plan condi-

tion. The previous two changes together lead to the Gaussian

without Plan condition. The ablation results indicate the ef-

fectiveness of the latent belief EBM and two-step approach.

In addition, we evaluate the model without the social

pooling such that LB-EBM makes predictions only based on

an agent’s own action history (see the EBM with Plan without

Social condition in Table 3). The decreased performance in

ADE and FDE of this condition indicates that LB-EBM is

effective to take into account social cues when provided.

Time Steps ADE FDE

Gaussian without Plan 18.61 27.55

EBM without Plan 10.28 18.60

Gaussian with Plan 9.53 16.32

EBM with Plan without Social 9.23 16.57

EBM with Plan 8.87 15.61
Table 3. ADE / FDE metrics on Stanford Drone for different abla-

tion conditions. The lower the better.

5. Conclusion

In this work, we present the LB-EBM for diverse human

trajectory forecast. LB-EBM is a probabilistic cost function

in the latent space accounting for movement history and so-

cial context. The low-dimensionality of the latent space and

the high expressivity of the EBM make it easy for the model

to capture the multimodality of pedestrian trajectory distribu-

tions. LB-EBM is learned from expert demonstrations (i.e.,

human trajectories) projected into the latent space. Sampling

from or optimizing the learned LB-EBM is able to yield a

social-aware belief vector which is used to make a path plan.

It then helps to predict a long-range trajectory. The effective-

ness of LB-EBM and the two-step approach are supported

by strong empirical results. Our model is able to make accu-

rate, multimodal, and social compliant trajectory predictions

and improves over prior state-of-the-arts performance on the

Stanford Drone trajectory prediction benchmark by 10.9%
and on the ETH-UCY benchmark by 27.6%.
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