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Abstract

We address the problem of estimating depth with multi

modal audio visual data. Inspired by the ability of animals,

such as bats and dolphins, to infer distance of objects with

echolocation, some recent methods have utilized echoes for

depth estimation. We propose an end-to-end deep learn-

ing based pipeline utilizing RGB images, binaural echoes

and estimated material properties of various objects within

a scene. We argue that the relation between image, echoes

and depth, for different scene elements, is greatly influenced

by the properties of those elements, and a method designed

to leverage this information can lead to significantly im-

proved depth estimation from audio visual inputs. We pro-

pose a novel multi modal fusion technique, which incor-

porates the material properties explicitly while combining

audio (echoes) and visual modalities to predict the scene

depth. We show empirically, with experiments on Replica

dataset, that the proposed method obtains 28% improve-

ment in RMSE compared to the state-of-the-art audio-visual

depth prediction method. To demonstrate the effectiveness

of our method on larger dataset, we report competitive per-

formance on Matterport3D, proposing to use it as a multi-

modal depth prediction benchmark with echoes for the first

time. We also analyse the proposed method with exhaus-

tive ablation experiments and qualitative results. The code

and models are available at https://krantiparida.

github.io/projects/bimgdepth.html

1. Introduction

Humans perceive the surroundings using multiple sen-

sory inputs such as sound, sight, smell and touch, with dif-

ferent tasks involving different combinations of such inputs.

In computer vision, multimodal learning has also gained

interest. As one popular stream, researchers have leveraged

audio and visual inputs for addressing challenging prob-

lems. These problems can be broadly divided into three cat-

egories: (i) using audio modality only as the input, to learn

a seemingly visual task, e.g. using echo for depth predic-

tion [9], (ii) using visual modality as auxilliary information

for an audio task, e.g. using videos to convert mono audio to

Figure 1. We address the problem of depth prediction using mul-

timodal audio (binaural echo) and visual (monocular RGB) inputs.

We propose an attention based fusion mechanisms, where the at-

tention maps are influenced by automatically estimated material

properties of the scene objects. We argue that capturing the mate-

rial properties while fusing echo with images is beneficial as the

light and sound reflection characteristics depend not only on the

depth, but also on the material of the scene elements.

binaural audio [14], and (iii) using both audio visual modal-

ities together, e.g. for depth prediction [12]. Here, we fol-

low the third line of work, and address the problem of depth

map prediction using both audio and visual inputs. Stud-

ies in psychology and perception indicate that both sound

and vision complement each other, i.e. visual information

helps calibrate the auditory information [22] while auditory

grouping helps solve visual ambiguity [42]. Many animals,

like bats and dolphins, use echolocation to estimate the dis-

tances of objects from them. Visually impaired humans

have also been reported to use echolocation [1]. Motivated

by such cases, Christensen et. al [9, 10] recently showed

that depth maps can be predicted directly from stereo sound.

Gao et. al [12] showed that by fusing features from binaural

echoes with the monocular image features, depth estimation

can be improved. Inspired by these findings, we work with

similar reasoning, i.e. sound contains useful information to

predict depth, and that echoes, used along with monocular

images, improve depth estimation.

Going beyond the current methods which do simple

combinations of features from echoes and images [12], we
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Figure 2. Comparison of our method with the existing approaches

argue that the material properties of the objects in the scene

significantly inform the spatial fidelity of the two streams.

Some objects may lend better depth estimates with echoes,

while some may prefer the visual modality more. Deriv-

ing from this motivation, we propose a novel end-to-end

learnable network with a multimodal fusion module. This

novel module incorporates material properties of the scene

and fuses the two modalities with spatial attention maps in-

dicating the fidelity of the respective modality for different

spatial locations. The material properties are automatically

estimated using a sub-network initialized with training on

auxiliary data on materials. As the final depth prediction,

the method fuses the depth maps produced by the audio and

visual inputs, modulated by the predicted attention maps.

Fig. 1 illustrates the difference with a real output of an exist-

ing method and the proposed approach, showing qualitative

improvements.

We demonstrate the advantages of the proposed method

with experiments on Replica [37] and Matterport3D [7]

datasets. We outperform the previous state-of-the-art on

Replica dataset by ∼ 28% RMSE. On Matterport3D, which

is more complex and larger (5x) than Replica, we provide

results on the multimodal depth prediction task for the first

time, and compare the proposed method with existing ap-

proaches and challenging baselines. We also show that the

proposed network can estimate better depth with low reso-

lution images. This is important in practical systems work-

ing on depth estimation from monocular images, as sensors

capturing echoes can be used along with cameras, to not

only enhance the performance of existing setup but also suf-

fer lesser degradation in depth prediction with the reduction

in the quality of images. Further, we give ablation experi-

ments to systematically evaluate the different aspects of the

proposed method.

In summary, we make the following contributions:

• We propose a novel end-to-end learnable deep neu-

ral network to estimate depth from binaural audio and

monocular images.

• We provide exhaustive quantitative and qualitative re-

sults on Replica and Matterport3D datasets. On Replica,

we outperform the previous state-of-the-art by ∼ 28%.

On Matterport3D, we provide results benchmarking ex-

isting methods. The proposed method achieves state-

of-the-art performance, outperforming the existing best

method on Matterport3D by ∼ 4%.

• We provide exhaustive ablation experiments on the de-

sign choices in the network, and validate our intuitions

with representative qualitative results.

2. Related Works

Audio-visual learning. Recently there has been a surge

in interest in audio-visual learning. In one line of work,

the correspondence between both the modalities are used to

learn the representation in each of the individual modality,

in a self-supervised manner [2, 3, 19, 27, 29]. In [2, 3],

the authors used an auxiliary task, of predicting whether the

audio and image pair correspond to each other, to learn rep-

resentations in each of the modalities. In [29], the authors

predicted if the audio and the video clip are temporally syn-

chronized to learn representations. In [19], the authors ad-

vanced a step further and localized sound generating objects

in the image by leveraging the correspondence between au-

dio and the image. In one of the recent approach, the authors

in [27], have used the spatial correspondence between 360◦

video and audio. In another line of work, the integration

of both audio and video modality was done to increase the

performance. Recently a variety of task such audio source

separation [49, 48, 11, 13, 15], zero-shot learning [30, 26],

saliency prediction [40], audio spatialization [14, 28] have

used the information from both audio and video modalities

to improve the performance cf. using single modality only.

Depth estimation without echoes. The depth estimation

methods span from only monocular image based meth-

ods to multi modal methods. Usually, the modalities are

sparse depth maps, LiDAR point clouds, bird’s eye views,

and normal maps. Monocular depth estimation methods

involve utilizing a single RGB image to estimate dense

depth [47, 6, 39]. Many methods directly utilize single im-

age [16, 23, 32] or estimate an intermediate 3D representa-

tions such as point clouds [43, 45] and bird’s eye views [35]

to estimate dense depth maps. A few other methods work

on combining RGB with sparse depth maps, normal maps

etc. [31, 25] to estimate dense depth maps.

Depth estimation with echoes. In [9, 10] depth of the

scene was estimated using only echoes received from a sin-

gle audio pulse. This approach completely ignored the vi-

sual modality while estimating the depth. On similar lines,

the authors in [41] estimated the depth of scene directly

from binaural audio of the object itself. They did not have

the ground truth depth map, and instead used a vision net-

work to predict the ground truth depth map. This method

although used the direct audio from the object but the per-

formance of the system was always upper bounded by the

predicted depth map from visual input. In all of the meth-

ods above, the authors used one modality in isolation and

did not fuse multi-modal information to improve the perfor-
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mance of the system. In [12] the authors used echolocation

as a pre-training task for learning a better visual representa-

tion. The authors also gave a case study, where they showed

that simply concatenating the audio features with the visual

features improves depth prediction. We explore the idea

further, of improving depth prediction by adding binaural

echoes to image input as well, and propose a novel multi-

modal fusion method which incorporates automatically es-

timated material properties in addition. We give the com-

parison with existing approach in Fig. 2.

3. Approach

We are interested in using echoes for predicting depth

map of a scene. There is a spatio-temporal relationship be-

tween the received echoes and the depth of the scene, i.e.

the echoes received at different instant of time directly re-

late to the different depths in the scene. Let x(t) be the

original audio signal and y(t) be the echo response of the

scene. Assuming we have di distinct depths of materials mi

in the scene (discretized and grouped for simplicity of dis-

cussion), the obtained echo response can be approximated

with a summation of time delayed original signal, reflect-

ing off the materials at different depths. The amplitudes of

the delayed signals will depend upon the material they hit

respectively. Considering only first order echoes, say every

distinct di object contributes to a time delay of ti, and the

corresponding material changes the amplitude of the signal

by a factor of ai on an average. The final response1 could

then be approximated as

y(t) = x(t) +

k∑

i=1

aix(t− ti). (1)

With vs denoting the speed of sound in the medium,

the time delay can be directly associated with depths as

ti =
2di

vs
. Further, the amplitudes, ai of each time-delayed

signal, are dependent on the acoustic absorption and reflec-

tion coefficient of the material.

Hence, the goal of making the network learn depth from

the received echo, is influenced by two factors, (i) the re-

lationship between the echoes and spatial depth variation

in the scene, and (ii) the different acoustic properties of

the scene objects. We propose a carefully tailored attention

mechanism (Sec. 3.6) between the image and audio modal-

ities for addressing the spatial variation aspect. In addition

we also propose to incorporate material property estimation

(Sec. 3.4) as a proxy, to account for different properties of

the scene elements which inform sound and light reflection

and absorption, and hence inform the final depth prediction.

1The final response will include the original signal as well, as the sound

emitter and recorder are both turned on together for a brief period of time

3.1. Overall architecture

We show the block diagram of the proposed network in

Fig. 3. The network consists of the following components:

(i) echo subnetwork, (ii) visual subnetwork, (iii) material

properties subnetwork, (iv) the multimodal fusion module

and finally (v) attention prediction subnetwork. The echo

and visual subnetworks consist of encoder-decoder pairs

which estimate depth maps of the scenes independently. We

input three feature maps coming from echo, visual and ma-

terial property subnetworks respectively to the multimodal

fusion network. The multimodal fusion module produces

the fused features which we then feed to the attention net-

work. We further use the attention network to predict two

attention maps, one each for the two depth maps obtained

from echo and visual decoder networks respectively. We

then combine the individual depth maps using these atten-

tion maps to output the final depth map of the scene. We

now give the details of the different components below.

Please also see the supplementary document for detailed

layer-wise architecture of the method.

3.2. Echo Net for Echo to Depth

The echo net is an encoder decoder network which pre-

dicts depth from binaural echo input. We convert the time-

domain echo response into a frequency domain spectrogram

representation, E ∈ R
2×P×Q, where P is the number of

discrete time steps and Q is the number of frequency bins.

We input the spectrogram to the encoder part of the network

to obtain the encoded representation fe ∈ R
N of the echo,

which is also one of the inputs to the multimodal fusion

module. We then reshape the encoded vector to N × 1× 1
and feed it to a series of fractionally strided convolution

layers to get the depth map, De ∈ R
W×H , where W , H

are the width and the height of the input image. While the

upsampling happens here from an extreme 1 × 1 feature,

i.e. there is practically no spatial information (except what

might get coded in the feature vector itself), such depth pre-

diction from audio has been reported by earlier works also

with fair success [12].

3.3. Visual Net for Image to Depth

The visual net is also an encoder decoder network which

predicts depth from monocular RGB image. The architec-

ture of this network is inspired from U-Net [33], and con-

sists of regular convolutional and fractionally strided con-

volutional layers with skip connections between them. We

give the image, I ∈ R
3×W×H as input to the network which

predicts the depth map, Di ∈ R
W×H . We also use it to ob-

tain the visual features from the intermediate layer (output

of last conv layer) of the network denoted, fi ∈ R
N×w×h.

We use this feature as one of the inputs to the multimodal

fusion module as well.
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Figure 3. Block diagram showing the overall architecture of the proposed method. The network predicts depth independently from

binaural echoes and image using Echo Net and Visual Net respectively. The Material Net gives the material features and the multimodal

fusion block takes the image feature (fi), material feature (fm) and echo feature (fe) as input and fuses them into a combined feature

(f∗). The combined feature (f∗) is then input to attention network to get point-wise attention maps for the echo and image based depths,

respectively. The final depth is predicted by taking a weighted combination of echo and image depth with attention maps as the weights.

3.4. Material Net for Material Properties

We use this network to extract the material properties of

the objects present in the scene. We use a ResNet-18 ar-

chitecture [18] and feed the RGB image, I ∈ R
3×W×H as

the input. We obtain a feature map, fm ∈ R
N×w×h which

encodes the material properties over the spatial locations in

the scene image. This feature is the third input to the mul-

timodal fusion module. We initialize the material network

with pretraining on a large materials dataset [4] with classes

such as fabric, brick, asphalt, wood, metal, and then train it

end to end with the rest of the network. We expect this

initial material encoding capability of the network to be a

proxy for encoding properties related to sound and light ab-

sorption and reflection, which affect depth prediction. Al-

though the network evolves with the end to end training, the

attention maps obtained qualitatively validate our assump-

tions (Sec. 4.5).

3.5. Multimodal Fusion Module

The multimodal fusion module combines features from

the three sources discussed above, i.e. echo fe ∈ R
N , visual

fi ∈ R
N×w×h and material fm ∈ R

N×w×h. Given the mo-

tivation, discussed in Sec. 1, that different object might give

different depth prediction performances with audio or vi-

sual modalities respectively, the multimodal fusion module

helps us combine the modalities to provide as input to the

attention prediction network (Sec. 3.6).

We perform two bilinear transforms on the features

to obtain two fusion maps, f
j
img and f

j
mat, where j =

1, 2, ...K is the number of output channels in the bilinear

transformation,

f
j
img(p, q) = fT

e A
j
imgfi(p, q) + b

j
img, ∀p, q (2)

f
j
mat(p, q) = fT

e A
j
matfm(p, q) + b

j
mat, ∀p, q (3)

where, (p, q) indexes the spatial coordinates, A
j
img , A

j
mat

are learnable weights of dimension N ×N and b
j
img , b

j
mat

are scalar biases.

We finally concatenate the fusion maps fimg ∈
R

N×w×h and fmat ∈ R
N×w×h along the first dimension

to get the final fusion map f∗ = concat(fimg, fmat) to be

fed into the per-pixel attention network.

3.6. Attention Network

The attention network is the final part of the network

which we use to predict the per-pixel attention map given

the concatenated fusion maps obtained in the previous step.

The network consists of a series of fractionally strided con-

volutional layers with a final Sigmoid layer to normalize

the values in the range [0, 1].

The output of the network is an attention map α ∈
R

1×W×H . We use the attention map α for weighting the

echo predicted depth map De and 1− α for the image pre-

dicted depth map Di. The final depth map D̂ is thus,

D̂ = α⊙De + (1− α)⊙Di (4)

where, ⊙ denotes pointwise multiplication.
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3.7. Loss Function and Training

We train the network following [20], and use the loga-

rithm of depth errors. The loss is given as,

L(D̂,D) =
1

WH

W∑

p=1

H∑

q=1

ln(1 + ‖D(p, q)− D̂(p, q)‖1),

(5)

where D is the ground truth depth map.

The full optimization problem is given by

θ∗e , θ
∗

i , θ
∗

a, θ
∗

f , θ
∗

m = argmin
θe,θi,θa,θf ,θm

L(D̂,D). (6)

where, θe, θi, θa, θf , θm are the parameters for echo to

depth network, image to depth network, attention network,

fusion module and material property network respectively.

We ignore the undefined regions in the ground truth depth

maps, and therefore, such regions do not contribute to the

learning. Adding smoothness constraints [23] can poten-

tially further improve the quality of generated depth, how-

ever we obtain good results without using them here. We

train the full network in an end to end fashion using stan-

dard backpropagation for neural networks.

4. Experiments

4.1. Implementation Details

Datasets. We perform experiments on Replica [37] and

Matterport3D [7] datasets. Both the datasets contain in-

door scenes. Replica has a total of 18 scenes covering ho-

tels, apartments, rooms and offices. Matterport3D contains

90 scenes. On Replica, we follow [12] and use 15 scenes

for training and 3 for testing. On Matterport3D, we use 77
scenes for evaluation, out of which 59, 10 and 8 scenes are

used as train, validation and test respectively. We simulate

echoes on these datasets by using the precomputed room

impulse response (RIR) provided by [8] using 3D simulator

Habitat [34] which takes into consideration the scene ge-

ometry and the materials present in the scene. We obtain

the echoes by convolving input audio signal with the RIR.

We use the material recognition dataset MINC [4] for pre-

training the material net.

Network Architecture. We use the same architecture for

echo encoder, and image to depth encoder and decoder (Vi-

sual Net) as [12], for fair comparison and demonstrating

the effectiveness of the proposed material and attention net-

works. We use the first four convolutional layers of ResNet-

18 for the material property network. We initialize them

with pretraining on ImageNet and MINC dataset.

Input Representation. The input to Visual Net and Mate-

rial Net is a 128× 128 RGB image. For input to Echo Net,

we use the spectrogram of 60ms echo signal. For training on

Replica, we use a sampling frequency of 44.1 kHz and for

Matterport3D, we use a sampling frequency of 16 kHz. We

use Hanning window of length 64 and 32 to compute spec-

trogram for Replica and Matterport3D respectively. We use

FFT size of 512 for both the cases.

Metrics. Following earlier works in depth estimation, we

report results on root mean squared error (RMSE), mean

relative error (REL), mean log10 error, and the percentage

δt of pixels with both the relative error and its inverse under

threshold t where t ∈ {1.25, 1.252, 1.253}.

Due to space constraints, we provide more details on the

datasets, network architecture, parameter settings and eval-

uation metrics in the supplementary material.

4.2. Experiment Design

We design the experiments below to demonstrate the fol-

lowing points. (i) Using audio and visual modalities to-

gether improves performance over either of them. (ii) Using

material properties in addition improves further. (ii) Among

the different ways to combine the three, i.e. visual, audio

and material properties, the proposed attention based fu-

sion performs the best. We demonstrate the first two points

with ablation experiments where we combine the inputs

by simple concatenation, followed by a decoder to predict

the depth map (Sec. 4.3 first part). Further, we demon-

strate the third point by comparing combination methods

and showing that attention based combination performs the

best (Sec. 4.3 second part).

We then compare our full method with existing state of

the art approaches (Sec. 4.4). We also show experiments on

degrading resolution of image (Sec. 4.6).

4.3. Ablation Study

Combination of echo, image and material properties.

We show the results of combining the three inputs with sim-

ple concatenation in Tab. 1. With only binaural echo as in-

put, the RMSE is 0.995, which improves to 0.673 when im-

age is added as well. When material property features are

used with echo, the RMSE improves to 0.523 i.e. an im-

provement of ∼ 47% over echo only input and ∼ 22% over

image+echo input.

Lastly, when image and material property features are

concatenated with echo features (all), the RMSE value fur-

ther improves to 0.491 i.e. ∼ 50% over echo only input and

∼ 27% over echo+image input.

These experiments validate that even with simple fusion,

material properties improve the performance of the system.

We attribute the improvement to our intuition that adding

material properties explicitly allows the network to inter-

nally module the audio and visual features.

In the following we demonstrate the proposed explicit

multimodal fusion followed by attention based weighting

performs much better than the simple concatenation.
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Modality RMSE (↓) REL (↓) log10 (↓) δ1.25(↑) δ1.252(↑) δ1.253(↑)

echo 0.995 0.638 0.208 0.388 0.599 0.742

echo+img 0.673 0.451 0.146 0.534 0.734 0.845

echo+mat. 0.523 0.282 0.103 0.652 0.839 0.920

all 0.491 0.276 0.098 0.667 0.846 0.924

Table 1. Depth estimation by combining different modal-

ities Using echoes only (echo), echoes with image features

(echo+img.), echoes with material features (echo+mat.) and com-

bination of echo, image and material features (all). ↓ indicates

lower is better and ↑ indicates higher is better.

Method RMSE (↓) REL (↓) log10 (↓) δ1.25(↑) δ1.252(↑) δ1.253(↑)

VisualEchoes [12] 0.346 0.172 0.068 0.798 0.905 0.950

concat 0.259 0.122 0.048 0.867 0.939 0.968

dot 0.262 0.133 0.050 0.853 0.943 0.974

bilinear 0.249 0.118 0.046 0.869 0.943 0.970

Table 2. Performance of different fusion strategies. concat

refers to the concatenation of all the inputs, dot to fusion by dot

product, and bilinear to fusion by bilinear transformation (see

Sec. 4.3).

Impact of multimodal fusion and attention. We now val-

idate the efficacy of our audio visual fusion method, which

uses a multimodal fusion module to predict attention over

the modalities to combine them. We compare the proposed

fusion method, denoted bilinear with two alternatives,

i.e. a simple concatenation of features denoted concat,

and a dot product based fusion denoted dot. All these

methods fuse the features and use them to estimate atten-

tion weights. We also compare by the fusion method of

VisualEchoes [12], which fuses features with concatenation

and uses them with a decoder to predict depth map, i.e. it

has no attention based fusion.

We show the results in Tab. 2. We observe that

bilinear, with an RMSE of 0.249, performs best among

the compared methods, highlighting that the proposed fu-

sion is better than the simple concatenation or dot product

based fusion. We also observe that concat performs bet-

ter than VisualEchoes i.e. 0.259 cf. 0.346 RMSE. This in-

dicates that attention maps (which are present in concat

but absent in VisualEchoes) are important for better perfor-

mance.

Fig. 4 further shows the training loss (left) and validation

RMSE (right) plots. We observe that VisualEchoes suffers

from severe overfitting (much higher val RMSE), which is

mitigated on adding the material features (i.e. concat).

This further reinforces the hypothesis that material proper-

ties play an important role in depth prediction.

To conclude, we demonstrated from the ablation experi-

ments that, (i) adding material properties explicitly is help-

ful for audio visual depth prediction, (ii) the proposed fu-

sion strategy is better than simpler alternatives, and (iii)

attention based combination of depth maps is better than

simple concatenation as used in previous methods, e.g. Vi-

sualEchoes.

4.4. Comparison to state­of­the­art

Baselines. We compare on Replica and Matterport3D

against VisualEchoes [12] and competitive baselines. The

Figure 4. Training loss and validation RMSE on Replica

dataset. In VisualEchoes [12] depth prediction is performed di-

rectly from concatenated features. dot, concat and bilinear

are the three different fusion strategies for proposed attention

based prediction.

baseline methods are AVERAGE, ECHO2DEPTH and

RGB2DEPTH. AVERAGE refers to average depth value of

all the samples in training set. ECHO2DEPTH refers to

the depth estimation using only Echo Net (Sec. 3.2) and

RGB2DEPTH refers to depth estimation using only Visual

Net (Sec. 3.3).

Comparison on Replica dataset. We report results in

Tab. 3. The proposed method outperforms all the com-

pared methods on all the metrics. Specifically, it outper-

forms VisualEchoes by ∼ 28% on RMSE. We also ob-

serve that while the improvement of VisualEchoes w.r.t.

RGB2DEPTH is marginal (0.346 cf. 0.374 i.e. 7.4%), the

proposed method is able to achieve an improvement of

∼ 33% (0.249 cf. 0.374 RMSE). Both the methods perform

significantly better than AVERAGE and ECHO2DEPTH

baselines.

Comparison on Matterport3D dataset. We report results

in Tab. 4. We outperform echo only (ECHO2DEPTH), im-

age only (RGB2DEPTH) and AVERAGE baselines on all

the five metrics. Our method also outperforms the existing

VisualEchoes method by ∼ 4% on RMSE and on all the

metric after training the method for 300 epochs. Further,

better results on δ indicate that the proposed method has

lower pixel wise relative error cf. VisualEchoes which are

manifested in form of better depth estimation around edges

(Sec. 4.5).

Since Matterport3D is a popular benchmark for depth

estimation, we also compare our method with the state-of-

the-art methods on sparse to dense depth map estimation.

These methods use sparse depth maps as inputs, while we

have no explicit depth information in the inputs. We also

use a slightly smaller subset of Matterport3D, i.e. 77 cf. 90
scenes for other. The results are shown in Tab. 5 where we

obtain better results than four out of five compared meth-

ods. While the performances are not directly comparable, it

supports the argument that echo can be a viable modality for

estimating depth from RGB and can potentially provide ad-

ditional information that are usually obtained from explicit

3D representations such as sparse depth maps.
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Method RMSE (↓) REL (↓) log10 (↓) δ1.25 (↑) δ1.252 (↑) δ1.253 (↑)

AVERAGE 1.070 0.791 0.230 0.235 0.509 0.750

ECHO2DEPTH 0.713 0.347 0.134 0.580 0.772 0.868

RGB2DEPTH 0.374 0.202 0.076 0.749 0.883 0.945

VisualEchoes [12] 0.346 0.172 0.068 0.798 0.905 0.950

Proposed Method 0.249 0.118 0.046 0.869 0.943 0.970

Table 3. Comparison with existing methods on Replica dataset.

We report the results for the baseline and existing methods directly

from [12].

Method RMSE (↓) REL (↓) log10 (↓) δ1.25 (↑) δ1.252 (↑) δ1.253 (↑)

AVERAGE 1.913 0.714 0.237 0.264 0.538 0.697

ECHO2DEPTH 1.778 0.507 0.192 0.464 0.642 0.759

RGB2DEPTH 1.090 0.260 0.111 0.592 0.802 0.910

VisualEchoes [12] 0.998 0.193 0.083 0.711 0.878 0.945

Proposed Method 0.950 0.175 0.079 0.733 0.886 0.948

Table 4. Comparison with existing methods on Matterport3D

dataset.

Method RMS (↓) MAE (↓)

AD [24] 1.653 0.610

MRF [17] 1.675 0.618

Zhang et al. [46] 1.316 0.461

Huang et al. [21] 1.092 0.342

Xiong et al. [44] 0.860 0.462

Proposed Method∗ 1.008 0.570

Table 5. Comparison

on Matterport3D.
∗The compared meth-

ods use sparse depth

maps as inputs, while

we do not.

Figure 5. Visualizing attention map. We show attention maps for

echo and image. First two columns are examples from Replica

dataset and last two columns are examples from Matterport3D

dataset. We observe that the echo modality, in general, produces

high attention value for far away solid structure whereas the im-

age modality attends more to nearby points (sofa in first and third

example). See supplementary material for more qualitative results.

4.5. Qualitative Results

We give qualitative results of both (i) depth prediction,

and (ii) attention maps in this section. We first provide

few qualitative examples for attention map of echo and im-

age respectively in Fig. 5. We provide the attention maps

for two examples each from Replica and Matterport3D. We

make a general observation from these results that the echo

attention map mostly looks into the far off regular regions

but completely ignores the finer structures in them. It gives

higher weight to the walls in the scenes but ignores any ob-

jects present on it (e.g. monitor on third example and wall

Method

Scale
1x 1

2
x 1

4
x 1

8
x 1

16
x 1

32
x

Img Only 0.374 0.362 0.375 0.398 0.440 0.550

VisualEchoes[12] 0.346 0.354 0.357 0.392 0.471 0.593

Proposed Method 0.249 0.244 0.249 0.281 0.342 0.446

Table 6. Performance on varying input image resolution. The

metric is RMSE (lower is better).

painting on fourth). It also ignores the chairs and sofa which

are present on relatively lower depth values.

The image attention map, being complementary to the

echo attention, gives higher weights to nearby objects such

as the sofa, chair etc., but ignores the far off wall in all the

examples. This could be mainly due to two reasons (i) the

echoes from the nearby regions are observed almost instan-

taneously which is hard to distinguish from the original sig-

nal (ii) most of the nearby objects (e.g. sofa) are made up

of sound absorbing materials which do not reflect audio sig-

nals strongly. This results suggest that our network tries to

leverage the best of both worlds, to get the final depth map.

We give a few examples of reconstructed depth using our

approach and also compare it with an existing approach in

Fig. 6. We observe that our approach is quite robust to fine

grained structure in the scene cf. VisualEchoes [12]. In the

first example, VisualEchoes misses the small chairs in the

scene while our method gives an idea of the structure. Again

the boundaries in the first example are not very clearly iden-

tified by VisualEchoes, but are estimated almost perfectly

in our case. We also observe similar trends in other three

examples as well. The results from the individual modal-

ities (image and echo) are not satisfactory, but do capture

the overall structure of the scene. These results suggests

that the networks are not individually powerful but their per-

formance improves significantly when we effectively com-

bine the information from both of them. We encourage the

readers to look at the supplementary material for more such

qualitative results.

4.6. Experiments with varying image resolutions

As discussed in Sec. 4.3, the network can better exploit

the combination of echo and image due to attention based

integration. This motivates us to study the effect of reso-

lution degradation. This is similar to the case where hu-

man vision degrades and the brain learns to compensate and

adapt based on the auditory input [5, 38]. We evaluate the

proposed method by progressively degrading the image res-

olution. We give the results in Tab. 6 by gradually reducing

the resolution to 1

2
, 1

4
, 1
8

, 1

16
and 1

32
times the original image.

We observe that the proposed approach is more robust

to reduction in resolution of the images than the compared

methods. The performance of image only method degrades

significantly when the downscaling factor is 1

8
of the orig-

inal image size, while the proposed method still performs

better than image only method with original resolution i.e.

0.281 RMSE for proposed method at 1

8
x scale cf. 0.374 with
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Figure 6. Qualitative comparisons for depth estimation on Replica (first two rows) and Matterport3D (last two rows) datasets. We

observe that the proposed approach is able to preserve fine structures, and has better depth estimation at the boundaries when compared to

the existing approach. See supplementary material for more qualitative results.

image only at 1x. Further, we observe that even with very

high downscaling of 1

32
x, we obtain a better RMSE as com-

pared to VisualEchoes (0.446 cf. 0.593). In fact, VisualE-

choes performs worse than even the image only method.

Similar observations can be made at 1

16
x. We can also ob-

serve that the rate of decrease in RMSE from 1x to 1

4
x is

more in VisualEchoes cf. the image only and the proposed

method. This further highlights the efficacy of the proposed

method.

5. Conclusion

We presented a novel method for estimating depth by

combining audio and visual modalities. We hypothesised

that material properties play a significant role in the task,

and proposed to use automatic material property estimation

to predict spatial attention maps which modulate and com-

bine the outputs of audio and image based depth prediction.

We showed with quantitative experiments on challenging

benchmark datasets, that (i) adding material properties ex-

plicitly improves the depth prediction over audio and visual

prediction, (ii) having an attention mechanism based fusion

method is better than other simpler existing approaches for

audio visual fusion. We also demonstrated qualitatively that

the attention maps focus on interpretable areas for the two

modalities. While audio attention maps tended to ignore

materials which would diffuse or absorb the audio wave,

the image based attention included those areas. We also

demonstrated qualitatively that the proposed method per-

forms better than existing method, especially near the depth

edges and brings out the finer structures in the scene.

We further showed experiments with reduced image res-

olution where our method degraded gracefully, while the

compared methods loses performances significantly. We

even compared our method with existing methods for sparse

to dense depth prediction, and obtained encouraging com-

petitive results, while not using sparse dense data as input

for our method. We would like to explore such multimodal

fusion with other modalities like sparse point clouds in the

future to obtain even higher quality depth predictions. Fur-

ther, geometric prior [36] can also be leveraged to improve

the results.

In conclusion, we believe that using echo for depth pre-

diction, especially in combination with other modalities is a

promising direction, especially given the low cost and wide

availability of audio sensors.
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