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Abstract

Current state-of-the-art approaches for Semi-supervised

Video Object Segmentation (Semi-VOS) propagates infor-

mation from previous frames to generate segmentation mask

for the current frame. This results in high-quality seg-

mentation across challenging scenarios such as changes

in appearance and occlusion. But it also leads to un-

necessary computations for stationary or slow-moving ob-

jects where the change across frames is minimal. In this

work, we exploit this observation by using temporal in-

formation to quickly identify frames with minimal change

and skip the heavyweight mask generation step. To re-

alize this efficiency, we propose a novel dynamic net-

work that estimates change across frames and decides

which path – computing a full network or reusing pre-

vious frame’s feature – to choose depending on the ex-

pected similarity. Experimental results show that our ap-

proach significantly improves inference speed without much

accuracy degradation on challenging Semi-VOS datasets

– DAVIS 16, DAVIS 17, and YouTube-VOS. Furthermore,

our approach can be applied to multiple Semi-VOS meth-

ods demonstrating its generality. The code is available in

https://github.com/HYOJINPARK/Reuse VOS .

1. Introduction

Semi-VOS tracks an object of interest across all the

frames in a video given the ground truth mask of the ini-

tial frame. VOS classifies each pixel as belonging to back-

ground or a tracked object. This task has wide applicability

to many real-world use cases including autonomous driving,

surveillance, video editing as well as to the emerging class

of augmented reality/mixed reality devices. VOS is a chal-

lenging task because it needs to distinguish the target object

from other similar objects in the scene even as target’s ap-

pearance changes over time as well as through occlusions.

A variety of methods have been proposed for solving
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Figure 1. (a) Histogram of a range of IoU between the previous and

the current ground truth masks. X-axis is a range of IoU and y-axis

denotes frequency corresponding to the range of IoU. (b) FPS and

accuracy (J&F ) comparison between the baseline model (FRTM

[30]) and ours on videos having high IoU between the previous

and current ground truth masks. The proposed method preserves

the original accuracy while improving the speed a lot.

video object segmentation including online learning [30,

19], mask propagation [17, 3], and template matching [40,

22]. A common theme across most of these previous meth-

ods is to use information from previous frames – either just

the first frame, some of the previous frames (first and last

being a popular option) or all the previous frames – to pro-

duce high quality segmentation mask.

In this work, we ask a different question

Q: Can we use temporal information to identify when

the object appearance and position has not changed

across frames?

The motivation for doing so would be to skip much of the

expensive computation needed to produce a high-quality

mask for the current frame if that mask is almost the same

as the mask we computed in the previous frame. Instead, we

can produce current frame’s mask using a cheap model that

just makes minor edits to the previous frame’s feature. As
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shown in Fig. 1(a), for a significant fraction of the frames

in the popular DAVIS and YouTube-VOS dataset, object

masks are very similar to their previous frame’s masks

(73.3% of consecutive frames in DAVIS 17 dataset have IoU

greater than 0.7).

We build on the above observation by constructing a

cheap temporal matching module to quickly quantify the

similarity of the current frame with the previous frame. We

use the similarity to gate the computation of high-quality

mask for the current frame – if the similarity is high we

reuse previous features with minor refinements and avoid

the expensive mask generation step. This allows us to avoid

majority of computations for the current frame without

compromising on accuracy.

Our approach compliments the existing video object seg-

mentation approaches and to demonstrate its generality, we

integrate our proposal into multiple prior video object seg-

mentation models – FRTM [30] and TTVOS [25]. To the

best of our knowledge, we are the first to propose skipping

computation of segmentation masks dynamically based on

the object movement. We believe this is a significant con-

tribution that will enable high-quality video object segmen-

tation models to run on mobile devices in real time with

minimal battery impact.

We make the following contributions in this paper:

• We make the case for exploiting temporal information

to skip mask generation for frames with little or no

movement.

• We develop a general framework to skip mask com-

putation consisting of sub-networks to estimate move-

ment across frames, dynamic selection between pro-

cessing full-network or reusing previous frame’s fea-

ture for generating mask and a novel loss function to

train this dynamic architecture.

• We evaluate our approach on multiple video object

segmentation models (FRTM, TTVOS) as well as

multiple challenging datasets (DAVIS 16, DAVIS 17,

Youtube-VOS) and demonstrate that we can save up to

47.5% computation and speedup FPS by 1.45× with

minimal accuracy impact on DAVIS 16 (within around

0.4 % of baseline).

2. Related Work

Online-learning: Online-learning algorithms learn to up-

date models from datastreams in sequential manners dur-

ing the inference stage [31, 47, 13]. In the semi-VOS task,

online learning takes place as fine-tuning the segmentation

model during the inference stage given the image and the

target mask of the first frame to inject the strong appear-

ance of the mask to the model [19, 27, 1]. However, the fine-

tuning step causes a significant bottleneck. FRTM [30] tack-

les this issue by splitting the model into two sub-networks:

a light-weight target appearance model trained online and a

segmentation network trained offline.

Mask Propagation: Mask propagation methods realigns

the given segmentation mask or features. Optical flow is

widely used to measure the changes in pixel-wise move-

ments of objects in VOS [11, 4, 35, 32]. Segflow [3] de-

signs two branches of image segmentation and optical flow,

and bidirectionally combines both information into a uni-

fied framework to estimate target masks. Similarly, FAVOS

[17] and CRN [7] utilize optical flow information to refine

a coarse segmentation mask into an accurate mask.

Template matching: Template matching is one of the com-

mon approaches in the semi-VOS domain. Models gener-

ate a target template and calculate similarity between the

template and given inputs. A-GAME [9] employs a mix-

ture of Gaussians to learn the target and background fea-

ture distributions. RANet [41] integrates a ranking system

to the template matching process and select feature maps

according to their rank. FEELVOS [38] calculates a dis-

tance map by local and global matching mechanism for

better robustness. Furthermore, SiamMask [40] exploits a

depth-wise operation to make the matching operation faster.

STM [22] and GC [15] integrate the memory network ap-

proach [12, 34, 42]. However, this approach requires lots

of resources in maintaining the memory. TTVOS [25] pro-

poses a light-weight template matching method for reduc-

ing the burden of computation and a temporal consistency

loss for endowing a correction power about the incorrectly

estimated mask without heavy optical flow.

Dynamic network: Dynamic networks perform efficient

inference by dynamically choosing a subset of networks

depending on the input. Constructing a dynamic inference

path by dropping sub-layers of a network using gating mod-

ules has been widely studied in image-level tasks [48, 21,

36, 14]. This approach has been applied to image segmen-

tation [45] and has been recently extended to the video do-

main as well [2, 6, 46, 16, 33]. [2, 46] adopt switching mod-

ules to Semi-VOS field, but they still requires the full com-

putation on the feature extraction and the mask refinement

for every frame.

We find two problems about applying dynamic network

approaches to Semi-VOS field. First, the gate function out-

puts a discrete decision which are hard to be integrated

with a convolutional network due to gradient calculation.

Gumbel-Softmax trick [8] is generally used to resolve the

problem by the softmax relaxation, but we empirically get

unstable training problem. The second issue is how to pe-

nalize the model. Usually, there is a target rate for training a

dynamic network. The target rate determines the fixed max-

imum number of layer blocks that can be used in the compu-

tation during training. We found that this constraint does not

work well in this task. Since the target rate drives a model
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Figure 2. Overall architecture of our dynamic model. Some parts of feature extraction and segmentation network are skipped when the

reuse gate is on. The delta-generator produces ∆t to convert the previous feature information to that of the current feature. Refine-translator

transforms the previous refined feature map into the current one with the help of ∆t to make the final mask. When the reuse gate is off, the

previous score map is updated to be used in next frames.

to concentrate on meeting the desired number of gates on,

the model tends to treat preserving the original accuracy as

a less important matter, resulting in a poor accuracy.

3. Method

We explain our dynamic architecture that estimates the

movement across frames and skip mask generation for the

VOS task. In Sec 3.1, we briefly summarize the baseline

model, FRTM[30], and introduce our method of converting

the baseline model into a dynamic architecture. Note that

our proposed dynamic inference architecture can be applied

to other VOS frameworks as well. In Sec 3.2, we explain our

template matching method for measuring dissimilarity. The

reuse gate function takes the dissimilarity information to

quantify movement across frames and selects between dif-

ferent paths for generating mask (processing full-network

when the reuse gate is off and reusing previous frame’s fea-

ture when the reuse gate is on). In the case of the reuse gate

being on, the model produces a difference map between ad-

jacent frames using the delta-generator. In Sec 3.3, we show

how the refine-translator adjusts the previous refined feature

map, Rt−n, to the current refined feature map, R̂t. Finally,

in Sec 3.4, we have empirically witnessed that when the

common constraint for the gate function [14, 36] is used,

the model experiences dramatic performance degradation.

To resolve this problem, we introduce a new gating loss,

called gating probability loss, that takes the IoU between the

current and the previous masks into account as described.

3.1. Overall Architecture

Previous work: Online learning methods train models to

learn target-specific appearance during the inference stage.

This enhances the robustness of a model but it still suffers

from extensive latency due to the fine-tuning step. FRTM

[30] depicted in Fig. 2 (excluding the proposed template

matching and gate function modules) resolves this chronic

issue in the online-learning realm by splitting the model into

a light-weight score generator and a segmentation network.

The light-weight score generator simply consists of two lay-

ers for faster optimization during online learning, and it pro-

duces a coarse score map of an object. The segmentation

network is much more complex than the light-weight mod-

ule. Taking extracted feature maps as an extra input along

with the score map, the network refines the coarse score

map and generates high quality masks. The segmentation

network is trained offline to reduce the burden of online-

learning.

As shown in Fig. 2, a shared feature extractor produces

feature maps fNt from the current frame, where fNt de-

notes a feature map at frame t with an 1/N -sized width and

height of the input. f16t is forwarded to the light-weight

score generator to generate a target score map. Then, the

segmentation network gradually increases the spatial size

of the feature map from f32t using the score map in a U-

Net-like structure. f32t, f16t, f8t and f4t are enhanced for

generating a more accurate mask by the score map. The fi-

nal high resolution feature map is converted to a target seg-

mentation mask. The second layer in the score generator is

updated every eight frames to handle the changing of the

target appearance.

Our work: We analyze that a substantial amount of frames

in a video are similar to each others and for these redun-

dant frames, the model can reuse previous information in-

stead of full path calculation. Therefore, in our model, not

every layer need to be fully-forwarded to extract and re-

fine features. The template matching is applied to measure

movement from dissimilarity between current and previous

frames. The gate function decides whether to skip calcu-

lation or not from an output feature map of the template

matching module. Details are described in Sec 3.2.
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Our gate function consists of two convolution layers and

two max-pooling layers as follows:

Pgate = σ(w2 ∗ f(w1 ∗ f(x))), (1)

where w and f denotes convolution weights and max-

pooling in a layer, respectively and σ is a sigmoid func-

tion that returns the probability, Pgate, of the gate being

on (reuse). If Pgate is higher than a threshold τ 1, which

means the current and previous frames are similar enough,

the reuse gate is on as follows:

gt =

{

1 (reuse) if Pgate ≥ τ

0 (not reuse) otherwise
(2)

If the reuse gate is off (gt = 0), the model generates

a score map for the current frame following the original

FRTM method and the generated score map is stored to be

used as a previous score map for subsequent frames. On

the other hand, if the reuse gate is on, the model makes a

delta map, ∆t, through the delta-generator. The delta-map

contains information on pixel-wise foreground-background

conversion from the previous to the current frames. The

model adds the delta-map into the previous score to esti-

mate the current score map. Therefore, we can skip the re-

maining feature extraction process of calculating f16t and

f32t which need to get score map in baseline. In the seg-

mentation network, we cannot use the original network due

to missing f16t and f32t as shown in Fig. 2. RNt denotes

a refined feature map at frame t with an 1/N -sized width

and height of the input, and is produced from fN ′

t and St,

where N ′ = N/2. We estimate R̂8t by using the refine-

translator The previous refined feature map R8t−n, and ∆t

are passed on to the refine-translator, and refine-translator

consists of multiple size receptive fields to estimate R̂8t.
Therefore, the model can also skip stages of making R16t
and R8t. Details are described in Sec 3.3.

3.2. Template Matching for Quantifying Movement

In order to quantify the movements across frames, we

find dissimilarity information that is measured by utilizing

a simple module introduced in TTVOS [25]. They proposed

a light-weight template matching module, which generates

a similarity map, as an output, to focus on the target from

the input by comparing with a template. The template con-

tains the target appearance. Inspired by this light-weight

module, we integrate the template matching procedure into

our framework to generate the dissimilarity feature, Dt in

Fig. 3, with some modifications.

In our work, we apply the property of template match-

ing to focus on the dissimilarity, as described in Fig 4. To

do this, we use current frame feature map, f8t, as current

1In the training stage, we set τ = 0.5.

Figure 3. Process of the template matching. The output feature

map of the template matching module, Dt, focuses on dissimilari-

ties between the current and the previous frames. Dt is forwarded

to the gate function and the delta-generator.

Figure 4. Example of template matching process. ‘Prev. info.’ is

represented by St−n. ‘Curr. info.’ is represented by f8t. FG and

BG denotes foreground and background, respectively. Transition

indicates change in class from t − n to t. We focus to correctly

identifying the dissimilar regions (A and C) between frames.

information, and the previous score map, St−n, which is

produced from score generator for the previous informa-

tion. Then, both feature maps are concatenated together and

provided as an input to the template matching module to be

compared with the template. The template matching module

produces dissimilarity feature map, Dt ∈ R
cf ,H,W , which

has the same resolution as f8t with a channel size of cf .

The Dt is forwarded to the reuse gate function for decid-

ing whether to skip the computation or not. If the reuse

gate is on, the delta-generator makes a delta map ∆t from

Dt, which represents which pixels are changed from back-

ground to foreground and vice versa. The delta-generator

consists of a single convolution layer, so the computation is

not heavy. The loss, Loss∆, accomplishes the above men-

tioned process by reducing the gap between y′t − St−n and

∆t as follows:

Loss∆ = L2(∆t, y
′

t − St−n). (3)

where y′t denotes the reduced sized ground truth mask at

frame t and St−n is the previous score map. L2 loss mini-

mizes the pixel-wise difference between ∆t and y′t − St−n.

In the initialization stage, the template is generated with

the given initial image I0 and the corresponding mask y0.

We reduce the resolution of the y0 and consider the down-

sampled mask as an initial score map S0, i.e. S0 = y′0. f80
is produced from I0 and concatenated with S0 to construct

the template as in TTVOS [25]. Unlike TTVOS where the

template is updated every frame, our model skips the updat-

ing process to increase the speed of inference.

Applying to general VOS frameworks: In general VOS

frameworks, the proposed method of template matching can
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Figure 5. (a) Refine-translator. Conv(c, c′, k, d) denotes a d dilated k × k convolution layer with an input channel of c and an output

channel of c′. (b)-(e) Example of goat. Top row : frame 24, Bottom row : frame 25. (b) Input frames overlapped with ground truth masks.

(c) S24 and Ŝ25. (d) Activation maps of R824 and R̂825. (e) Estimated masks. (f) Top: ∆25, Bottom: ground truth mask of frame 25.

be applied by concatenating the current feature map and the

estimated previous mask.

3.3. Estimation for Refined Feature Map

When the reuse gate is on, our model skips layers of a

segmentation network. The segmentation network generates

the final accurate mask with the coarse score map S along

with features from the feature extractor. Using the delta-

generator, our model can skip layers of feature extraction

step and generate Ŝt by adding ∆t to the previous score

map St−n. Therefore, our model is unable to use the same

segmentation network as the original FRTM. Here, we ex-

plain how to estimate R̂t using Rt−n and ∆t (See Fig. 2).

When the reuse gate is on, our model starts the segmen-

tation network from f8t. However, the original network in-

creases the resolution starting from f32t, which is a feature

map 32 times smaller than the original input image size.

Since we input different sized feature map to the network,

we design a refine-translator to estimate R̂8t using R8t−n

and ∆t. Many segmentation networks used multi-sized re-

ceptive fields to improve the accuracy [20, 26, 24]. We

adopt this method with different dilated ratios. As shown

in Fig 5(a), R8t−n and ∆t are concatenated and passed on

to different dilated convolutions. Each output feature map

has to embed features with different receptive fields to cope

with various object sizes. Finally, the entire information is

merged using a convolution layer and a ResBlock. After

the refine-translator, the remaining process is the same as

that of the original FRTM. Fig. 5(b)-(e) explains the overall

process with two consecutive frames, 24 and 25, in a goat

video. Fig. 5(d) shows R̂825 in the first row and R824 in the

second row. ∆24 is depicted in the first row of (f). The sec-

ond row of (e) shows the generated mask produced using

Ŝ25, f825, f425 and R̂825.

3.4. Gate Probability Loss

This section explains how we train our dynamic network.

The challenge is twofold: Firstly, we need to train multi-

ple network paths as well as the gating logic (reuse gate).

For example, the quantity of target’s movement varies de-

pending on consecutive input frames in the training stage.

Therefore, the optimal number of selection for reuse gate

is diverse for each interaction. We desire that if the quan-

tity is significant, model learns not to select the reuse gate,

while if the quantity is trivial, model learns to select the

reuse gate. The second challenge is to encourage the net-

work to achieve high segmentation accuracy while choosing

the cheaper computation path as often as possible.

To accomplish this, we use the following training recipe

– when the model training begins, we train the reuse gate

function to predict the IoU of the current frame’s ground

truth mask with respect to that of the previous frame. Based

on Pgate, as mentioned in Eq. (1) of Sec 3.1, we train the

different paths for mask generation. As the training pro-

gresses, we want to avoid the situation where the network

predicts a low value for Pgate to select the more expensive

full mask generation path for achieving a higher IoU score.

We accomplish this by artificially boosting the IoU between

the current and the previous frame’s mask introducing a

margin which is gradually increased until it reaches m1

from 0. By doing so, we direct the network to select the

skip path more often and achieve higher accuracy even with

the reduced computation.

To realize the above training schedule, we propose a

novel gate probability loss that is based on IoU as follows:

m = m1 ∗ (epc/epT ),

Ptarget = Max(m, IoU t−n
t ),

(4)

Lossgp = Max(m2, |Pgate − Ptarget|)
2 (5)

where IoU t−n
t is IoU between the ground truth mask

frames at time t − n and t, and epc is the current epoch

and epT is the target epoch at which time m reaches to

m1. We set 120 for epT . A gate probability loss, denoted

by Lossgp, penalizes the model proportionally to the dif-

ference between Pgate and Ptarget, when the difference is

larger than the margin m2. The final loss becomes:

Loss = Lossgp + Loss∆ +BCE(yt, ŷt), (6)

where BCE is the binary cross entropy loss between the

pixel-wise ground truth yt at frame t and its estimation ŷt.
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4. Experiment

In this section, we prove the efficacy of the proposed

method using the official benchmark code of DAVIS [28,

29] and the official evaluation server of YouTube-VOS

2018 [43]. DAVIS 16 is a single object task that consists of

30 training videos and 20 validation videos, while DAVIS

17 is a multiple object task with 60 training videos and 30
validation videos. The average of mean Jaccard index J and

F-measure F are used to report the model accuracy in the

DAVIS benchmark. J index measures the overall similar-

ity by comparing estimated masks with ground truth masks

and F score focuses on the boundary by delimiting the spa-

tial extent of the mask. YouTube-VOS is the largest VOS

dataset that consists of 3,471 training videos and 474 vali-

dation videos (in total 4,453 videos). The validation set is

split into seen (65 categories) and unseen (26 categories) to

evaluate the generalization ability.

We compare our model with other state-of-the-art mod-

els by extending it to two VOS models: FRTM and TTVOS.

Our ablation study shows that the refine-translator and the

gate probability loss are important factors in preserving the

original accuracy and in activating gate properly. We mea-

sure detailed performance degradation with and without the

refine-translator using different values of τ in Eq. (2). Fur-

thermore, we report performance changes depending on the

different setting of margins, m1 and m2, in Eq. (4).

Implementation Details: We implement our method with

the FRTM official code. FRTM consists of two versions:

FRTM and FRTM-fast. FRTM uses ResNet101 and FRTM-

fast uses ResNet18 for feature extraction, and different

numbers of iterations are used for fine-tuning the score gen-

erator. We follow their training scheme with the following

modifications to better fit out dynamic architecture training.

We change batch size from 16 to 8 and increase the number

of sequences from 3 to 6 to train with greater temporal his-

tory within the same memory budget. The learning rate is

decreased from 1e−3 to 5e−4 and we use the total training

epoch of 260. Following the setting of AIG [36], we initial-

ize the reuse gates to be on with the probability of 15%.

4.1. DAVIS Benchmark Result

We compare our method with other state-of-the-art mod-

els, as shown in Tab. 1 and Fig. 6. We report a model used

for feature extraction and training datasets for clarification,

since each model has a different setting. Furthermore, we

also show additional results on TTVOS to claim the general-

ity of our method. Our method improves the inference speed

without any significant accuracy degradation. In Tab. 1, a

prefix of G- denotes the implementation of the proposed

method on the baseline models, FRTM and TTVOS. In the

slowest case of τ = 1, the model uses every layer of the

network, which is equivalent to using the original baseline

model. Our model reports slightly higher performance when

Figure 6. FPS vs J&F score on the DAVIS validation sets. △,

�, and ⋄ denotes experiments based on FRTM-fast, FRTM, and

TTVOS, respectively. G- indicates using the proposed method and

fastF denotes experiments based on FRTM-fast with the fusion

method and FRTM-fastR is result of reducing a channel size from

multiple layers in original FRTM-fast as shown on Tab. 2.

Train Dataset DAVIS

Method Feature Ytb Seg Syn 17 16 FPS

OnAVOS [39] VGG16 - o - 67.9 85.5 0.08

OSVOS-S [19] VGG16 - o - 68.0 86.5 0.22

STM [22] RN50 o - o 81.8 89.3 6.25

GC [15] RN50 o - o 71.4 86.6 25.0

OSMN [44] VGG16 - o - 54.8 73.5 7.69

RANet [41] RN101 - - o 65.7 85.5 30.3

A-GAME [9] RN101 o - o 70 82.1 14.3

FEELVOS [38] XC65 o o - 71.5 81.7 2.22

SiamMask [40] RN50 o o - 56.4 69.8 55.0

DTN [46] RN50 - o - 67.4 83.6 14.3

FRTM [30] RN101 o - - 76.7 83.5 21.9

FRTM-fast [30] RN18 o - - 70.2 78.5 41.3

TTVOS [25] RN50 o - o 67.8 83.8 39.6

G-FRTM (τ = 1) RN101 o - - 76.4 84.3 18.2

G-FRTM (τ = 0.7) RN101 o - - 74.3 82.3 28.1

G-FRTM-fast (τ = 1) RN18 o - - 71.7 80.9 37.6

G-FRTM-fast (τ = 0.7) RN18 o - - 69.9 80.5 58.0

G-TTVOS (τ = 0.7) RN50 o - o 66.5 83.5 49.1

Table 1. Quantitative comparison on the DAVIS benchmark vali-

dation set. Ytb represents using Youtube-VOS for training. Seg is a

segmentation dataset for pre-training by Pascal [5] or COCO [18].

Syn is using a saliency dataset for making synthetic video clip

by affine transformation. RN, and XC denotes ResNet and Xcep-

tion for feature extraction, respectively. G- indicates using the

proposed method based on FRTM and TTVOS. Similar to other

works, we measure FPS on DAVIS 16. Note that performances

and speed on baseline models are taken from original papers.

applied to FRTM with τ = 1 than the original FRTM. We

assume that the difference comes from the different number

of training sequences used, as in our implementation 6 is

used instead of 3. In case of τ = 0.7, the average reuse rate

in the model is 0.402 for DAVIS 17 and 0.475 for DAVIS

16 with marginal performance degradation of 1.8 and 0.4.

FPS improves from 24.6 to 37.8 and 37.6 to 58.0 on each

dataset, which are 1.5 times faster than the slowest case of

τ = 1. We also apply our method into TTVOS to prove that

our method can be used for other VOS models regardless
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Figure 7. Ablation study about different method for reusing previ-

ous information, when the reuse gate is on by comparison of accu-

racy and FPS on DAVIS with different τ . Ours is our method based

on FRTM-fast. Copy simply copies the previous mask for the cur-

rent frame, without using the refine-translator. Fusion copies the

previous mask if the similarity of consecutive frames is extremely

large. Otherwise, original method of the refine-translator is used.

Figure 8. Ablation study about Pgateby comparison of accuracy

and reuse rate on DAVIS 16 with different setting of τ . Ours esti-

mates the similarity by gate function for deciding gate being on or

off. gIoU is using ground truth IoU between adjacent frames as a

similarity for deciding gate.

of whether a model produces the score map or not. Suc-

cessfully, our method can bring improvement of speed over

the baseline model, and details of the architecture are ex-

plained in the supplementary material. Moreover, our dy-

namic method is much faster than DTN [46], a dynamic

network with switching modules, with better accuracy on

DAVIS 17 and comparable accuracy on DAVIS 16.

4.2. Ablation Study

In this section, we analyze our modules to show the im-

portance of using 1) the refine-translator, 2) the gate prob-

ability loss and 3) the margin in gate probability loss for

preserving original accuracy.

Tab. 2 and Fig. 7 demonstrate the effect of the refine-

translator. Originally, the refine-translator takes the previ-

ous refined feature map and estimates a feature map cor-

responding to the current stage. To validate the importance

Lossgp D/R dv17 dv16 FPS

FRTM-fast x x 70.2 78.5 41.3

FRTM-fast* x x 71.7 81.3 40.1

FRTM-fastR x x 66.1 78.6 48.6

LossNgate x o 61.3 76.5 37.8

Ours-copy (τ = 0.7) o x 63.3 72.4 75.6

Ours-copy (τ = 0.5) o x 52.6 60.3 100.8

Ours-copy (τ = 0.1) o x 31.2 34.8 150.2

Ours-fusion (τ = 0.7) o △ 69.0 79.6 61.8

Ours-fusion (τ = 0.5) o △ 63.7 75.0 77.7

Ours (τ = 1) o o 71.7 80.9 37.8

Ours (τ = 0.7) o o 69.6 80.5 58.0

Ours (τ = 0.5) o o 66.5 78.7 68.2

Ours (τ = 0.1) o o 56.5 72.0 78.1

Table 2. Ablation study on the proposed modules and the loss

function. LossNgate means training the gate function using the

constraint of the number of gates being on. D/R means using the

delta-generator and the refine-translator. △ indicates using one of

copy, ours, and the full path calculation based on the value of the

estimated similarity. FRTM-fast* is our implementation with the

same training schemes as our gate function. FRTM-fastR is our

implementation of reducing the number of channels in multiple

layers to make its inference speed similar to ours.

of the refine-translator, we implement other methods to re-

place original method with copy and fusion. copy indi-

cates that the model simply copies the previous mask as a

result of the current frame when the reuse gate is set on.

Therefore, these models do not use the refine-translator. fu-

sion is a mixed method between the copy and the original

method with additional threshold of τ2 which is greater than

τ . When the reuse gate is on and the probability value is

greater than τ2, the model copies the previous mask for the

current frame due to extreme similarity. As shown in Fig.

7, models that use copy method experience significant per-

formance degradation, while models with our method man-

age to preserve the original accuracy. In our method, when

τ = 0.1, the reuse rate becomes 95.4% on DAVIS 16, with

minimal 9% of performance degradation and the inference

speed becomes twice faster than when τ = 1. However, in

case of the copy method, the accuracy decreases by 46%.

The fusion method takes both advantages from the original

and copy methods. The performance and speed of fusion

are drawn in the middle of the our method and the copy

method. It suggests an adequate alternative to the proposed

method when greater increase in inference speed is needed.

Tab. 2 shows the importance of using the gate probability

loss function for preserving original accuracy. The experi-

ment of LossNgate is the result of using a fixed constraint

on the number of gates that can be used in the computa-

tion as in [14, 36]. Using LossNgate shows huge degrada-

tion, even when the module does not reuse any of the pre-

vious features. Furthermore, our method with τ = 0.7, 0.5
shows better performance and FPS compared to the case of

FRTM-fastR, where channels of multiple layers in FRTM-

fast, except a feature extractor, are reduced to meet the
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Figure 9. Comparison of accuracy and reuse rate on DAVIS with

different settings of margin in the gate probability loss.

similar inference speed as ours. Fig. 8 demonstrates that

our gate function is working properly following the ground

truth similarity (IoU) between the current and the previ-

ous masks. giou uses ground truth IoU instead of the esti-

mated similarity probability from the gate function to de-

cide whether to turn the reuse gate on or not. Our results on

reuse rate and accuracy coincide with when giou is used.

Finally, Fig. 9 describes the effect of different settings

of margin M(m1,m2) in the gate probability loss as men-

tioned in Sec. 3.4. We conduct experiments on various set-

tings, m1 = 0.35, 0.7, 1.0, and m2 = 0.0, 0.2, 0.4. M(1,0)

is used in our setting. When the value of τ is large, the

performance of each experiment shows similar trend. How-

ever, when the value approaches to 0, which forces the

model to reuse the previous information more, the accu-

racy of M(1, 0) is much higher than others. M(1, 0.2)
and M(0.7, 0.2) have similar accuracy and reuse rate.

M(0.35, 0.4) works improperly. When τ changes from 0.6
to 0.5, the model suddenly decides to reuse 80% of the

frames. Therefore, we think m2, which is a margin for the

gap between Pgate and Ptarget, is a more important factor

for preserving the accuracy.

4.3. YouTube­VOS Result

Tab. 3 shows our result on YouTube-VOS dataset.

FRTM-fast* is a result of our implementation on baseline

models, and we experience performance degradation com-

pared to the original implementation due to difference in a

training scheme. In our model, when τ = 0.6 is used, the

accuracy difference is 0.6% compared to when τ = 1, and

the reuse rate is 25%. The reuse rate is lower than the rate in

DAVIS datasets for the same τ . We assume this is partially

due to the fact that Youtube-VOS dataset contains faster

moving objects compared to DAVIS datasets. As shown in

Fig. 1, fewer consecutive frames are similar to each other

than DAVIS datasets.

Dataset G J F

Method Ft seg syn All S Us S Us

onAVOS[39] VG o - 55.2 60.1 46.1 62.7 51.4

OSVOS[30] VG o - 58.8 59.8 54.2 60.5 60.7

S2S [43] VG - - 64.4 71.0 55.5 70.0 61.2

PreMVOS [10] RN* o o 66.9 71.4 56.5 - -

STM [22] R50 - o 79.4 79.7 72.8 84.2 80.9

GC [15] R50 - o 73.2 72.6 68.9 75.6 75.7

A-GAME [9] R101 - o 66.1 67.8 60.8 69.5 66.2

RVOS [37] R101 - - 56.8 63.6 45.5 67.2 51.0

FRTM-fast [30] R18 - - 65.7 68.6 58.4 71.3 64.5

FRTM-fast* R18 - o 61.9 67.0 52.6 69.5 58.6

G-FRTM-fast (τ = 1) R18 - o 60.9 65.1 53.0 66.7 58.8

G-FRTM-fast (τ = 0.6) R18 - o 60.3 64.3 53.1 65.2 58.6

G-FRTM-fast* (τ = 0.6) R18 - o 62.3 66.7 55.3 67.2 60.0

Table 3. Quantitative comparison on YouTube-VOS benchmark

validation set. Seg is a segmentation dataset for pre-training by

Pascal [5] or COCO [18]. Syn is saliency datasets for making syn-

thetic video clips by affine transformation. S and Us are seen and

unseen categories. VG is VGG16 and R is ResNet. RN* is a vari-

ation of ResNet proposed in [23]. FRTM-fast* is our implementa-

tion with the same training schemes as our gate function. G- indi-

cates using proposed method based on FRTM-fast. G-FRTM-fast*

is result of changed training schemes. The details are described in

supplementary material. Note that performances on baseline mod-

els are taken from original papers.

5. Conclusion

Semi-VOS is a task where models generate a target mask

for every single frame of videos given the ground truth

mask of the first frame. Previous works on semi-VOS have

treated every frame with the same importance, and this in-

curs redundant computation when the target object is slow-

moving. In this paper, we propose a general dynamic net-

work that skips sub-network by quantifying the movement

of targets across frames. To do this, we estimate movement

by calculating the dissimilarity between consecutive video

frames using a template matching module. Then, we train

the model to learn when to skip layers of the network using

a reuse gate function. We also propose a novel gate proba-

bility loss that takes IoU into between the previous and the

current ground truth masks into account. This loss forces

the model to learn when to turn the reuse gate on, based on

how similar the consecutive frames with preserving origi-

nal accuracy. Our model achieves a boosted inference speed

compared to multiple baseline architectures without signif-

icant accuracy degradation on standard semi-VOS bench-

mark datasets. We hope that this work casts a new perspec-

tive of applying dynamic inference on not only the semi-

VOS task, but also on other video-level tasks.
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