
Rotation Coordinate Descent for Fast Globally Optimal Rotation Averaging

Álvaro Parra1
*

Shin-Fang Chng1*
Tat-Jun Chin1 Anders Eriksson2 Ian Reid1

1 School of Computer Science, The University of Adelaide
2 School of Information Technology and Electrical Engineering, University of Queensland

Abstract

Under mild conditions on the noise level of the measure-

ments, rotation averaging satisfies strong duality, which en-

ables global solutions to be obtained via semidefinite pro-

gramming (SDP) relaxation. However, generic solvers for

SDP are rather slow in practice, even on rotation averag-

ing instances of moderate size, thus developing specialised

algorithms is vital. In this paper, we present a fast algo-

rithm that achieves global optimality called rotation co-

ordinate descent (RCD). Unlike block coordinate descent

(BCD) which solves SDP by updating the semidefinite ma-

trix in a row-by-row fashion, RCD directly maintains and

updates all valid rotations throughout the iterations. This

obviates the need to store a large dense semidefinite matrix.

We mathematically prove the convergence of our algorithm

and empirically show its superior efficiency over state-of-

the-art global methods on a variety of problem configura-

tions. Maintaining valid rotations also facilitates incor-

porating local optimisation routines for further speed-ups.

Moreover, our algorithm is simple to implement 1.

1. Introduction

Rotation averaging, a.k.a. multiple rotation averag-

ing [17] or SO(3) synchronisation [4], is the problem of

estimating absolute rotations (orientations w.r.t. a common

coordinate system) from a set of relative rotation measure-

ments. In vision and robotics, rotation averaging plays a

crucial role in SfM [21, 25, 24, 8, 7, 20, 43, 36] and visual

SLAM [5, 29, 33, 26, 19], in particular for initialising bun-

dle adjustment. Fig. 1 illustrates the result of rotation aver-

aging. With the increase in the size of SfM problems and

continued emphasis on real-time visual SLAM, developing

efficient rotation averaging algorithms is an active research

area. In particular, real-world applications often give rise to

problem instances with thousands of cameras.

*equal contribution
1Source code is available at https://github.com/sfchng/

Rotation_Coordinate_Descent.

(a) Camera graph (b) Result

Figure 1. (a) Input camera graph from Orebro Castle [25] with

n = 761 views and 116, 589 connections (relative rotations; grey

lines). The initial absolute rotations (represented as black arrows)

were randomly chosen. For visualisation, the ground truth posi-

tions were used to locate the cameras (red points). (b) Globally

optimal absolute rotations computed from our RCD algorithm in

1.96 s (Shonan averaging [9] required 54.62 s on the same input).

Note the alignment of the arrows along the path of the camera (the

reconstructed point cloud is also plotted for visualisation).

The input to rotation averaging is a set of noisy relative

rotations {R̃ij}, where each R̃ij is a measurement of the

orientation difference between cameras i and j which over-

lap in view. From the relative rotations, rotation averaging

aims to recover the absolute rotations {Ri}
n
i=1 which repre-

sent the orientations of the cameras. In the ideal case where

there is no noise in the relative rotations {Rij},

Rij = RjR
T
i . (1)

The input relative rotations {R̃ij} define a camera graph

G = (V, E), where V = {1, . . . , n} is the set of cameras,

and (i, j) ∈ E is an edge in G if the relative rotation R̃ij be-

tween cameras i and j is measured. We assume a connected

undirected graph G, hence only R̃ij with i < j needs to be

considered. See Fig. 1(a) for an example camera graph.

Rotation averaging is usually posed as a nonlinear opti-

misation problem with nonconvex domain

min
R1,...,Rn∈SO(3)

∑

(i,j)∈E

d(RjR
T
i , R̃ij)

p, (2)

where d : SO(3) × SO(3) 7→ R is a distance function

that measures the deviation from the identity (1) based on

measured and estimated quantities. For example,

dchordal(R,S) = ‖R− S‖F , (3)

4298

https://github.com/sfchng/Rotation_Coordinate_Descent
https://github.com/sfchng/Rotation_Coordinate_Descent

which is known as the chordal distance, and

d∠(R,S) = ‖ log(RST)‖2 (4)

which is called the angular distance (log : SO(3) 7→ R
3 is

the logarithmic map in SO(3) [17]). Also, usually p = 1, 2.

The general form of (2) can be challenging to solve [17,

38]. Earlier efforts devised locally convergent methods [14,

23, 15, 16, 35, 6, 17], e.g., IRLS [6] and the Weiszfeld al-

gorithm [16], though most are not able to guarantee local

correctness [38]. In contrast with local methods, convex

relaxation methods which include linear method [22], spec-

tral decomposition methods [3, 2] and semidefinite method

[37, 31] solve a relaxed problem. However, their formu-

lations are either prone to suboptimal solution or the devi-

ation between the relaxed solution and the global solution

is unknown. Tron et al. [36] surveyed and benchmarked

approximate rotation averaging methods in the context of

SfM. Recently, learning-based approaches [27] that can ex-

ploit the statistics of camera graphs have been developed.

1.1. Strong duality

Building upon empirical observations (e.g., [13]), Eriks-

son et al. [11] proved that the specific version

min
R1,...,Rn∈SO(3)

∑

(i,j)∈E

dchordal(RjR
T
i , R̃ij)

2, (5)

which is a standard formulation in the literature [16, 17, 11,

6], satisfies strong duality [30] under mild conditions on the

noise of the input relative rotations (see [11, Eq. (22)] or the

supp. material for details). This means that the global solu-

tion to (5) can be obtained by solving its Langrangian dual,

which is a semidefinite program (SDP) (details in Sec. 2).

Our work focuses on solving the SDP relaxation of (5),

especially for large-scale problems. Although SDPs

are tractable, generic SDP solvers (e.g., conic optimisa-

tion [32]) can be slow on instances derived from rotation

averaging. Thus, exploiting the problem structure to con-

struct faster algorithms is an active research endeavour.

Eriksson et al. [11] presented a block coordinate descent

(BCD) algorithm to solve the SDP relaxation, which con-

sumed one order of magnitude less time than SeDuMi [32]

on small to moderately sized instances (n ≤ 300). The

BCD algorithm maintains and iteratively improves a dense

3n × 3n positive semidefinite (PSD) matrix by updating

3×3n submatrices (called “block rows”) until convergence.

At convergence, each block row contains rotation matrices

(up to correcting for reflection) which are the solution to (5)

(the solution of different block rows differ by a gauge free-

dom; see Sec. 2.3). However, recent results [34, 9] suggest

that BCD is still not practical for large-scale problems en-

countered in SfM and SLAM, where n ≥ 1000.

1.2. Riemannian staircase methods

The Riemannian staircase framework [1] has been ap-

plied successfully to pose graph optimisation (PGO) or

SE(3) synchronisation, which aim to recover absolute cam-

era poses (6 DOF) from measurements of relative rigid mo-

tion. Under this framework, Rosen et al. [28] presented

SE-Sync for PGO which guarantees global optimality for

moderate noise levels. Tian et al. [34] builds upon SE-Sync

to solve PGO in a distributed optimisation setting targetting

collaborative SLAM for multi-robot missions.

Recently, Dellaert et al. [9] adapted SE-Sync for rotation

averaging. Their algorithm, called Shonan rotation averag-

ing (henceforth, “Shonan”) can globally solve the SDP re-

laxation of (5) through a chain of sub-problems on increas-

ingly higher-dimensional domains SO(d), with d ≥ 3. A

certification mechanism checks if the solution of each sub-

problem has reached global optimality by computing the

minimum eigenvalue of a large 3n × 3n matrix. While op-

timality is ensured for d ≤ 3n+1, in practice the algorithm

only needs to expand d once or twice to reach optimality.

Results show that Shonan was an order of magnitude faster

than BCD on moderate size instances (n ≤ 200) and was

able to solve large-scale instances (n ≥ 1000) that were

not achievable by BCD with impressive runtimes (instances

with n = 5750 could be solved in 115 seconds).

1.3. Our contributions

We propose a novel algorithm called rotation coordinate

descent (RCD) to solve rotation averaging (5) globally opti-

mally. Unlike BCD, RCD neither maintains a 3n×3n dense

PSD matrix nor updates the matrix block row-by-block row.

Instead, the operation of RCD is equivalent to directly up-

dating the n rotation matrices R1, . . . , Rn, with provable

convergence to global optimality. Moreover, since RCD

maintains valid rotations at all times, local methods [6, 16]

can be employed for further speed-ups.

We will present results which show that RCD can be up

to two orders of magnitude faster than Shonan, depending

on the structure of the camera graph G. More specifically,

RCD is comparable to Shonan for sparse G (e.g., SLAM

camera graphs). However, RCD considerably outperforms

Shonan on denser graphs (e.g., SfM camera graphs). This

makes RCD a much more scalable algorithm.

On outliers An outlier in rotation averaging (2) is a mea-

sured relative rotation R̃ij that significantly deviates from

the true value. Note that formulation (5), i.e., least sum of

squared chordal distances, is non-robust. Thus, if there are

outliers in the input, BCD, Shonan and RCD will fail, in the

sense that they do not return results that closely resemble

the “desired” solutions. In practice, such negative outcomes

can be prevented by removing outliers with a preprocessing

step [41, 10, 25]. We also emphasise that the theoretical va-

4299

lidity of our work is not invalidated by the lack of robustness

in the standard formulation (5) [16, 17, 6, 11].

Yang and Carlone [40] proposed a robust SDP relaxation

for single rotation averaging, a special case where n = 1
(see [17]). The method has been demonstrated on relatively

small scale problems (less than 100 measurements). [39,

18] addressed outliers on SDP based PGO though without

providing global optimality guarantees.

2. Preliminaries

2.1. Notation

We operate on block matrices composed of 3× 3 blocks

(submatrices in R
3×3). A block matrix is represented with

a capital letter, e.g., A ∈ R
3m×3n, and element (i, j) of a

block matrix, denoted Ai,j , is the submatrix formed by rows

3(i − 1) + 1 to 3(i − 1) + 3 and columns 3(j − 1) + 1 to

3(j − 1) + 3 of A. Thus, Ai,i are diagonal blocks.

We also define the k-th “row” of A as the submatrix

Ak,: = [Ak,1Ak,2 · · ·Ak,n] ∈ R
3×3n (6)

and similarly for the k-th “column” of A. If A has a single

block column, we call it a “vector”. We use the notation

A(a:b);(c:d) =






Aa,c · · · Aa,d

...
...

Ab,c · · · Ab,d




 ∈ R

3m×3n (7)

for the submatrix of A from rows a to b and columns c to

d. If A is a vector we use the notation Ak = Ak,1 and

Aa:b = A(a:1);(b:1).

We denote the 3× 3 identity and zero matrices as I3 and

03, and the trace and Moore–Penrose pseudoinverse of a

matrix M as tr(M) and M†, respectively.

2.2. SDP relaxation

We first present the SDP relaxation of (5) following [11].

By rewriting the chordal distance using trace, (5) becomes

min
R1,...,Rn∈SO(3)

−
∑

(i,j)∈E

tr(RT
j R̃ijRi). (8)

This can be further written more compactly as

min
R∈SO(3)n

− tr(RT R̃R) (P)

using matrix notations, where

R =
[
RT

1 RT
2 · · ·R

T
n

]T
∈ SO(3)n (9)

contains the target variables, and R̃ is the 3n × 3n block

symmetric matrix with upper-triangle elements (i, j) equal

to R̃T
ij if (i, j) ∈ E and 03 otherwise (diagonal elements are

03’s). Problem (P) is called the primal problem.

Algorithm 1 Block coordinate descent (BCD) for (DD).

Require: R̃ and Y (0) � 0.

1: t← 0.

2: repeat

3: Select an integer k in the interval [1, n].
4: W ←the k-th column of R̃.

5: Z ← Y (t)W .

6: S ← Z
[(
WTZ

) 1
2

]†

.

7: Y (t+1) ←






Y
(t)
(1:k−1);(1:k−1) S1:(k−1) Y

(t)
(1:k−1);(k+1:n)

ST
1:(k−1) I3 ST

(k+1):n

Y
(t)
(k+1:n);(1:k−1) S(k+1):n Y

(t)
(k+1:n);(k+1:n)






8: t← t+ 1.

9: until convergence

10: return Y ∗ = Y (t).

As derived in Eriksson et al. [11], the dual of the La-

grangian dual of (P) is the SDP relaxation

min
Y ∈R3n×3n

− tr(R̃Y) (DD)

s.t. Yi,i = I3, i = 1, . . . , n. (10a)

Y � 0, (10b)

where Y is a 3n×3n PSD matrix, and Yi,i is the i-th diago-

nal block of Y . The interested reader is referred to Eriksson

et al. for the detailed derivations. It is proven that, under

mild conditions (see supp. material), that

−tr(R̃Y ∗) = − tr(R∗T R̃R∗), (11)

where R∗ and Y ∗ are respectively the optimisers of (P)

and (DD), i.e., zero duality gap between (P) and (DD).

Output rotations Note that constraint (10a) in (DD)

merely enforces orthogonality in each diagonal block.

Hence, in general a feasible Y for (DD) is not factoris-

able as the product of two rotation matrices RRT . It can

be shown, however, that the optimiser Y ∗ of (DD) is rank-

3 [11], which admits the factorisation

Y ∗ = Q∗Q∗T , (12)

where Q∗ ∈ O(3)n contains n 3 × 3 orthogonal matrices.

To obtain R∗, first Q∗ is obtained via SVD on Y ∗, then for

each Q∗
i whose determinant is negative, the sign of the Q∗

i

is flipped to positive to yield a valid rotation.

2.3. Block coordinate descent

Algorithm 1 presents BCD [11] for (DD) using our nota-

tion, which also includes a minor improvement to the origi-

nal. Specifically, instead of working on an auxiliary square

matrix obtained by removing the k-th row and column from

4300

Y (t) (see [11, Step 3 of Algorithm 1]), we directly operate

over Y (t) and create a temporary block vector Z (Line 5).

Since Z is smaller than the auxiliary square matrix, the ef-

ficiency of Line 6 which requires operating over Z twice is

marginally improved. We emphasise that Algorithm 1 is in-

trinsically the same as the original (see supp. material for

details and validity of the improvement).

The PSD matrix Y can be initialised as an arbitrary PSD

matrix. A simple choice is setting Ri = I3 for all i in R
and initialising Y (0) = RRT . However, we remind again

that the subsequent Y (t) are not factorisable as the product

of rotations R(t)R(t)T in general; see Sec 2.2.

Gauge freedom Note that the factorisation (12) is up to

an arbitrary orthogonal transformation G ∈ O(3), i.e.,

Y ∗ = Q∗Q∗T = (Q∗G)(Q∗G)T . (13)

We say that G represents a “gauge freedom” in the solu-

tion. This leads to another approach to retrieve R∗ from

Y ∗, which recognises that the columns (and rows) of Y ∗ are

related by orthogonal transformations as Y ∗ is rank-3 with

diagonal elements equal to I3. Thus, for any two columns

k and k′ in Y ∗, there exists an orthogonal transformation

Gk,k′ ∈ O(3) such that

Y ∗
:,k′ = Y ∗

:,k Gk,k′ . (14)

Hence, Gk,k′ must transform the k′-th element of Y ∗
:,k to I3

(i.e., Y ∗
k′,kGk,k′ = I3). Therefore

Gk,k′ = (Y ∗
k′,k)

T = Y ∗
k,k′ (15)

as columns in Y ∗ are orthogonal and Y ∗ is symmetric.

The set of transformations relating columns (15)

G = {Gk,k′ , for all k, k′ = 1, . . . , n} ⊂ O(3) (16)

corresponds to an special case of gauge freedom. Since all

columns in Y ∗ are up to some transformation in G to an-

other column, we can take any as R∗; the choice will depend

on selecting one of the cameras as the reference frame, i.e.,

which camera takes R∗
i = I3.

3. Rotation coordinate descent

In this section, we will describe our novel method called

rotation coordinate descent (RCD), summarised in Algo-

rithm 2. While seemingly a minor modification to BCD,

RCD is based on nontrivial insights (Sec. 3.1). More impor-

tantly, a major contribution is to mathematically prove the

global convergence of RCD (Sec. 3.2). Another fundamen-

tal advantage is that since RCD maintains valid rotations

throughout the iterations (in contrast to BCD; see Sec. 2.3),

it can exploit local optimisation routines for (P) to speed-up

convergence (Sec. 4). As the results will show (Sec. 5), our

approach can be up to two orders of magnitude faster than

Shonan [9], which is the state of the art for (DD).

Algorithm 2 Rotation coordinate descent (RCD) for (DD).

Require: R̃ and R(0).

1: t← 0.

2: repeat

3: Select an integer k in the interval [1, n].
4: W ←the k-th column of R̃.

5: Z ← R(t)(R(t)TW).

6: S ← Z
[(
WTZ

) 1
2

]†

.

7: Q(t+1) ←
[
(S1:(k−1))

T I3 (S(k+1):n)
T
]T

.

8: R(t+1) ← Flip determinants over Q(t+1) (if needed)

to ensure rotations.

9: t← t+ 1.

10: until convergence

11: return Y ∗ = R(t)R(t)T .

3.1. Main ideas

As summarised in Algorithm 1, BCD requires to main-

tain and operate on a large dense PSD matrix Y ∈ R
3n×3n.

While the values of each update can be computed in con-

stant time (specifically, SVD of a 3 × 3 matrix; Line 6),

manipulating Y is unwieldy. Specifically, Line 5 performs

Z = Y (t)W (17)

to obtain temporary vector Z ∈ R
3n×3 from a subset of the

measurements W ∈ R
3n×3, which costs

27n2 multiplications ≡ O(n2). (18)

This quadratic dependence on n makes BCD slow on large-

scale SfM or SLAM problems [34], e.g., where n ≥ 1000,

as will be demonstrated in Sec. 5.

Although the PSD matrix Y of (DD) has size 3n × 3n,

the “effective” variables are only 3n given that Y ∗ is rank-

3. Our key insight comes from the gauge freedom of Y ∗

(Sec. 2.3) implying that any row of Y ∗ provides a valid so-

lution for R∗. Choosing the k-th row implies choosing the

k-th camera as the reference frame, i.e., Rk = I3. Based

on this insight, we devised RCD to maintain only the effec-

tive variables R(t). Each iteration executes what amounts

to updating a single column of Y ; specifically, in Line 3, a

camera k is chosen as the reference frame then set the k-th

element of Q(t+1) as I3 in Line 7 (Q(t) contains orthogonal

matrices). Then, in Line 6 the other elements of Q(t+1) are

updated via the same explicit form of BCD. To ensure keep-

ing rotations elements during iterations, the sign of the or-

thogonal elements in Q(t+1) is flipped if negative in Line 9

to produce R(t+1).

Maintaining and updating only R(t) provides immediate

computational savings; in Line (5) obtaining the intermedi-

4301

ate vector Z is now accomplished as

Z = R(t) (R(t)TW)
︸ ︷︷ ︸

Compute this first

, (19)

which costs

27n+ 27n multiplications ≡ O(n) (20)

and has only linear dependence on n. The next section

proves the important result that this computational savings

does not come at the expense of global optimality.

3.2. Global convergence of RCD

As proven in [11, 12], Algorithm 1 monotonically de-

creases the objective − tr(R̃Y) at each iteration from any

feasible initialisation. Our strategy for proving the global

convergence of RCD is to show that updating the variables

at each iteration t of Algorithm 2, i.e.,

R(t) → R(t+1), (21)

has an effect on− tr(R̃Y) that is equivalent to one iteration

of Algorithm 1 initialised with

Y (0) = R(t)R(t)T . (22)

If this equivalence can be established, Algorithm 2 also

provably monotonically decreases − tr(R̃Y) and will con-

verge to the optimiser Y ∗ of (DD).

To this end, we will first show (Corollary 3.2.1) that one

iteration of Algorithm 1 initialised with (22) produces a

PSD matrix Y (1) that is factorisable as

Y (1) = R(1)R(1)T . (23)

Without loss of generality, we take k = 1 (the updated

row and column in BCD during the iteration) and define

R
(1)
BCD as the first column of Y (1), i.e.,

R
(1)
BCD = Y

(1)
:,1 . (24)

Then, we will prove that R(t+1) = R
(1)
BCD (Theorem 3.3).

From Line 7 in Algorithm 1, Y (1) can be written as

Y (1) =

[

I3 X∗T

X∗ B

]

, (25)

where B = Y
(0)
(2:n);(2:n) is the unchanged sub-matrix during

the iteration Y (0) → Y (1), and X∗ ∈ R
3(n−1)×3 contains

the updated values. From [11, 12], X∗ is the optimiser of

the following SDP problem:

min
X∈R3(n−1)×3

− tr(CTX) (26a)

s.t.

[
I3 XT

X B

]

� 0, (26b)

where C ∈ R
3(n−1)×3 is equal to W as in Line 4 in Algo-

rithm 1 but without the k-th element (which is zero).

Note that the optimal PSD matrix in Problem (26) is Y (1)

(25). The goal of Problem (26) is to find the optimal update

X∗ to produce Y (1) that remains feasible (constraint (26b)).

Theorem 3.1. Problem (26) is a special case of (DD).

Proof. Consider the instance of Problem (DD) with

R̃ =

[
03 CT

C 0

]

. (27)

We first show that a feasible PSD matrix in Problem (26)

Y =

[
I3 XT

X B

]

(28)

is a feasible solution in (DD). From the initialisation of Y (0)

in (22), B = R
(t)
2:n R

(t)
2:n

T

; hence, all diagonal elements in

Y (28) are identities which fulfill the first constraint (10a)

in (DD). From (26b), Y � 0, which is the second con-

straint (10b) in (DD).

We now show the objective of (DD) with R̃ from (27) is

equivalent to the objective in Problem (26). The objective

of (DD) becomes

− tr(R̃Y) =− tr

([
CTX CTB
C CXT

])

(29a)

=− tr
(
CTX

)
− tr

(
CXT

)
(29b)

=− 2 tr
(
CTX

)
(29c)

which is twice to the objective of (26). Thus, Problem (26)

is a special case of (DD) since any feasible solution of (26)

is also feasible in (DD), and both objectives are equivalent.

Lemma 3.2. The optimal PSD matrix of Problem (26) ad-

mits the factorisation

Y ∗(1) = R∗(1)R∗(1)T . (30)

Proof. Problem (26) is a special case of (DD) (Theo-

rem 3.1) =⇒ the optimal PSD matrix of Problem (26)

also admits the factorisation (30).

Corollary 3.2.1. Lemma 3.2 validates (23) as BCD opti-

mally solves Problem (26) (Lines 5–7 in Algorithm 1) [11,

12]. Thus, Algorithm 2 preserves the rank-3 factorisation

during iterations, and also Algorithm 1 if initialised with a

rank-3 SDP matrix R(0)R(0)T with R(0) ∈ SO(3)n.

Theorem 3.3. R(t+1) = R
(1)
BCD

Proof. The equality is by construction of Algorithm 2.

From the definition of R
(1)
BCD in (22), R

(1)
BCD is the first col-

umn in Y (1) (25), i.e., R
(1)
BCD =

[

I3 X∗T
]T

, where X∗ is

4302

S (in Line 6, Algorithm 1) without the k-th element (see

sup. material for details). Lines 3–6 in Algorithm 1 are the

same as Lines 3–6 in Algorithm 2 except on obtaining Z,

which takes the same value since from the initialisation (22)

of Y (0) in Algorithm 1, Z = Y (0)W = R(t)(R(t)TW)
is equal to Z as obtained in Algorithm 2 =⇒ also

R(t+1) =
[

I3 X∗T
]T

.

4. Speeding up RCD with local optimisation

Since Algorithm 2 iterates over SO(3)n, local meth-

ods for (P) can be directly used to speedup convergence of

Algorithm 2. Contrast this to BCD that updates a PSD ma-

trix from where, in general, valid rotations can be retrieved

only at convergence. Algorithm 3 integrates a local method

(Line 13) that we design from experimental observations:

1. Substantial reductions in the objective often occur after n
iterations. We call it an epoch and we ensure we sample

all k’s during each epoch (Line 4).

2. In practice, one iteration of Algorithm 2 takes ≈ 0.02%
of the runtime of solving a local optimisation instance.

Thus, Algorithm 3 invokes local optimisation and check

for convergence only after completing epochs.

3. Local optimisation produces more drastic “jumps” in the

objective at earlier iterations. Thus, Algorithm 3 delays

local optimisation when the local method fails on reduc-

ing the objective (Line 17).

To demonstrate the effect of local optimisation on the

convergence of RCD, Fig. 2 plots the objective value for

RCD and RCDL at increasing epochs on the input graph

torus [5] with n = 5000 cameras (see Table 1 in Sec. 5

for more details). During the 1st epoch, the local algo-

rithm drastically reduced the objective (from stage in green

to stage in magenta). This “jump” of the objective value re-

veals the collaborative strength of global and local methods,

which enabled RCDL to converge in much fewer epochs

(red stage) compared to RCD (blue stage).

5. Experiments

We benchmarked the following algorithms over a vari-

ety of synthetic and real-world camera graph inputs: Algo-

rithm 1 (BCD), Algorithm 2 (RCD), Algorithm 3 (RCDL)

with local optimisation routine adapted from [26], and

Shonan [9] (SA). We implemented all the optimisation rou-

tines in C++ except for SA for which we used the author’s

implementation (which also has optimisation routines in

C++ 2). As we measured runtime as the total algorithm

time, we include the certification times in SA. All exper-

iments are executed on a standard machine with an Intel

Core i5 2.3 GHz CPU and 8 GB RAM.

2https://github.com/dellaert/ShonanAveraging

Algorithm 3 RCD with local optimisation (RCDL).

Require: R̃ and R(0).

1: t← 0, e← 0, s← 0
2: repeat

3: for i = 1, . . . , n do

4: Select an integer k in the interval [1, n] w/o rep.

5: W ←the k-th column of R̃.

6: Z ← R(t)(R(t)TW).

7: S ← Z
[(
WTZ

) 1
2

]†

.

8: R(t+1) ←
[
(S1:(k−1))

T I3 (S(k+1):n)
T
]T

.

9: t← t+ 1.

10: end for

11: if (s = 0 or MOD(e, s) = 0) then

12: R(t) ← Flip determinants over R(t) (if needed) to

ensure rotations.

13: R̂← local method with initial estimate R(t).

14: if − tr(R̂T R̃R̂) < − tr(R(t)T R̃R(t)) then

15: R(t) ← R̂.

16: else

17: s← s+ 2
18: end if

19: end if

20: e← e+ 1.

21: until convergence

Init

Local update

RCD

RCDL

Epoch (log-scale)

Objective (log-scale)

 RCDL Converges
RCD Converges

1st epoch

(a)

Init

 1st 	
epoch	

 Local

update

(b)

Figure 2. Evolution of RCD and RCDL on the large-scale SLAM

instance torus [5] with n = 5000 cameras. (a) Evolution of the

objectives. (b) Camera poses from RCDL. A single local update

was able to produce a visually correct solution.

Graph density Consider a connected graph G = (V, E)
with n = |V| vertices and m = |E| edges. Define

dG := (|E| − |Emin|)/(|Emax| − |Emin|) , (31)

as the density of graph G, where Emax and Emin denote the

set of edges of the complete (V, Emax) and the cycle graph

(V, Emin). Excluding graphs with n − 1 edges3, dG takes

3Rotation averaging instances are typically overdetermined, i.e., prob-

lems with |E| > n− 1 edges.

4303

https://github.com/dellaert/ShonanAveraging

n = 100 n = 200 n = 1000

S
fM

0 2 4 6 8 10 12 14 16 18 20 40 60 80 100
10
-2

10
0

10
2

0 2 4 6 8 10 12 14 16 18 20 40 60 80 100
10
-2

10
-1

10
0

10
1

10
2

0 2 4 6 8 10 12 14 16 18 20 40 60 80 100
10
-1

10
0

10
1

10
2

10
3

S
L

A
M

0 2 4 6 8 10 12 14 16 18 20 40 60 80 100
10
-2

10
0

10
2

0 2 4 6 8 10 12 14 16 18 20 40 60 80 100
10
-2

10
-1

10
0

10
1

10
2

0 2 4 6 8 10 12 14 16 18 20 40 60 80 100
10
0

10
1

10
2

10
3

Figure 3. Runtime [s] (y-axis in log-scale) at varying graph densities dG (x-axis in ×10−2) for SfM and SLAM graphs with n =
100, 200, 1000 cameras. We denser sampled the interval [0, 0.2].

values in [0, 1]. Thus, by definition (31), dG = 0 for a cycle

graph and dG = 1 for a complete graph.

5.1. Synthetic Data

To test RCD over a variety of graph configurations, we

synthesised graphs with varying densities to simulate SfM

and SLAM problems. As SfM often solves reconstruction

from views with large baselines, we generated random cam-

era positions and random connections in the SfM setting. In

contrast, for the SLAM setting, we simulated views with a

smooth trajectory and connect only nearby views. We cre-

ated measurements of relative rotations (1) by multiplying

the ground truth relative rotations with rotations with ran-

dom axes and angles normally distributed with σ = 0.1 rad.

For a fair comparison, we initialised all methods with the

same initial random absolute rotations.

Varying graph densities Fig. 3 shows the runtimes aver-

aged over 10 runs for all methods. RCD significantly out-

performed SA for dG > 0.1. In general, camera graphs

from real-world SfM datasets are often dense. See for ex-

ample dG values for the real-world instances in Table 2 with

average dG ≈ 0.53. For larger problems, BCD was not able

to terminate within reasonable time (≤ 1000s); we did not

report results for BCD for n > 100. Although RCD was not

considerably faster than SA when dG < 0.04, the conver-

gence rate can be accelerated by using a local optimisation

routine as we show in Sec. 5.2.

Varying noise levels and number of cameras In Fig. 4,

we plotted the runtimes of RCD and SA on SfM camera

graphs with varying noise levels σ, number of cameras n,

but with fixed dG = 0.4. We omitted the comparison

0.1 0.2 0.3 0.4 0.5

Noise Sigma [rad]

10
0

10
1

10
2

T
im

e
[s

]
(l

o
g

 s
ca

le
)

(a)

10
0

10
2

10 11 12 13 14 15 16 17 18

n x 10
2

(b)

Figure 4. Runtime [s] (in log-scale) for SfM camera graphs with

dG = 0.4. (a) Varying σ in [0.1, 0.5] rad. and n = 1000. (b)

Varying n in [1000, 1800] with σ = 0.1 rad.

against BCD as it did not converge within a sensible time for

large problems, as demonstrated in Fig. 3. Fig. 4(a) shows

that runtimes for RCD and SA were marginally affected by

noise. Fig. 4(b) shows that RCD outperformed SA by two

orders of magnitude (1.5s vs 312.9s at n = 1, 800) — this

further demonstrates the superior scalability of RCD.

We repeated the above experiment with dG = 0.2 which

simulates SLAM graphs; see supp. material for the results.

5.2. SLAM benchmark dataset

We compared runtimes on large-scale problems from the

SLAM dataset in [5]. Table 1 reports the input character-

istics of each benchmarking instance and the results for all

methods. Here, we initialised all algorithms with the same

initial rotations from a random spanning tree. Note that ini-

tialisation does not affect the global optimality of tested al-

gorithms. The spanning tree initialisation is fast and practi-

cal. We remark that in real-world applications it is unnec-

4304

Dataset characteristics Error [%] Efficiency

|V| |E| # Epoch Time [s] Speedup

Name n m dG Init. RCD RCDL SA RCD RCDL RCD RCDL SA

smallgrid 125 297 0.02200 -16.13 0 -4.77E-09 -8.38E-05 46 10 0.07 0.02 0.06 2.7

garage 1661 6275 0.00340 -7.29E-05 -3.63E-06 0 -1.40E-07 29 2 3.74 0.28 4.76 17.1

sphere 2500 4949 0.00078 -1.70 -6.24E-06 0 -7.84E-07 352 2 105.70 0.66 17.07 25.7

torus 5000 9898 0.00039 -20.95 -2.55E-05 0 -1.73E-06 1620 4 1808.86 4.86 15.76 3.2

grid3D 8000 22819 0.00046 -15.41 -4.54E-06 0 -2.14E-06 409 4 1199.30 14.78 23.93 1.6

Table 1. Quantitative results for the SLAM Benchmark dataset [5]. Error of the initial solution (Init.) and each method is the % of its

objective w.r.t. the lowest obtained objective among all methods. One epoch is equivalent to n iterations as described in Sec. 4. Speedup

is presented for the best result of RCD and RCDL against SA.

Dataset characteristics Error [%] Efficiency

|V| |E| # Epoch Time [s] Speedup

Name n m dG Init. RCD RCDL SA RCD RCDL RCD RCDL SA

Alcatraz Tower 172 14706 1.00 -0.66 -8.66E-10 0 -4.64E-08 4 2 0.03 0.12 0.63 25.3

Doge Palace 241 19753 0.68 -0.89 -1.16E-08 0 -1.04E-07 8 2 0.09 0.21 1.00 11.1

King’s College 328 41995 0.78 -1.57 -5.01E-10 0 -3.81E-08 7 2 0.11 0.60 2.37 21.5

Alcatraz Garden 419 51635 0.59 -1.29 -7.70E-09 0 -5.57E-08 11 2 0.24 0.89 3.24 13.5

Linkoping 538 34462 0.24 -1.22 -3.62E-07 0 -4.03E-06 37 2 0.90 0.43 6.44 15.0

UWO 692 80301 0.33 -1.26 -1.38E-07 0 -7.88E-07 20 2 0.85 1.65 11.12 13.1

Orebro Castle 761 116589 0.40 -1.19 -9.40E-08 0 -1.04E-06 20 2 1.10 4.01 26.17 23.8

Spilled Blood 781 117814 0.39 -2.81 -3.20E-08 0 -6.61E-07 14 2 0.79 4.32 37.64 47.6

Lund Cathedral 1207 177289 0.24 -1.16 -9.62E-07 0 -1.91E-06 78 2 8.45 7.03 41.08 5.8

San Marco 1498 757037 0.67 -0.74 -6.60E-09 0 -8.97E-09 6 2 1.61 145.46 110.07 68.4

Table 2. Quantitative results for the SfM large scale real-world dataset [25]. See Table 1 for the description of each column.

essary to solve camera orientations from random rotations.

We provided the errors (in %) of resulting objective (includ-

ing the initialisation) relative to the lowest objective value

reported among all methods.

Camera graphs are very sparse for the SLAM Bench-

mark in Table 1 (dG ≤ 0.022). Although RCD was not

as fast as SA on sphere, torus and grid3D (note that dG ≤
0.0007 in those instances), the use of a local optimisation in

RCDL permitted to outperform SA; see also Fig. 2.

5.3. Real­world SfM dataset

Table 2 presents runtimes over real-world SfM

datasets [25] where RCD outperformed SA; see the supp.

material for errors in ◦. We remark that RCDL took substan-

tially fewer epochs compared to RCD to converge. How-

ever, RCDL did not achieve a better runtime as local opti-

misation consumed on average ≈ 90% of the total runtime,

especially for large graph densities. Fig. 5 shows the recon-

structed Spilled Blood using the estimated camera orienta-

tions of RCDL after running for one epoch in 4.2s.

Acknowledgements

This research was supported by the Australian Re-

search Council through the grants ARC DP200101675,

Figure 5. Reconstruction of the Spilled Blood Cathedral by solving

the known-rotation-problem [42]. Left: Initial camera orientations.

Right: Result from RCDL after 1 epoch.

ARC FT170100072, and the ARC Centre of Excellence for

Robotic Vision CE140100016.

6. Conclusions

We present RCD, a fast rotation averaging algorithm that

finds the globally optimal rotations under mild conditions

on the noise level of the measurements. Our insights on

gauge freedom has circumvented the quadratic computa-

tional burden of BCD, which is an established method for

global rotation averaging. Also, since RCD maintains valid

rotations instead of a dense PSD matrix, local optimisation

routines can be beneficially integrated. Experimental results

demonstrated the superior efficiency of RCD, which signifi-

cantly outperformed state-of-the-art algorithms on a variety

of problem configurations.

4305

References

[1] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Opti-

mization algorithms on matrix manifolds. Princeton Univer-

sity Press, 2009. 2

[2] Federica Arrigoni, Beatrice Rossi, Pasqualina Fragneto, and

Andrea Fusiello. Robust synchronization in so (3) and se

(3) via low-rank and sparse matrix decomposition. CVIU,

174:95–113, 2018. 2

[3] Federica Arrigoni, Beatrice Rossi, and Andrea Fusiello.

Spectral synchronization of multiple views in SE(3). SIAM

SIMAX, 9(4):1963–1990, 2016. 2

[4] Nicolas Boumal, Amit Singer, P-A Absil, and Vincent D

Blondel. Cramér-Rao bounds for synchronization of rota-

tions. Information and Inference: A Journal of the IMA,

3(1):1–39, 2014. 1

[5] Luca Carlone, Roberto Tron, Kostas Daniilidis, and Frank

Dellaert. Initialization techniques for 3D SLAM: a survey on

rotation estimation and its use in pose graph optimization. In

IEEE ICRA, 2015. 1, 6, 7, 8

[6] Avishek Chatterjee and Venu Madhav Govindu. Efficient and

robust large-scale rotation averaging. In ICCV, 2013. 2, 3

[7] Hainan Cui, Xiang Gao, Shuhan Shen, and Zhanyi Hu.

HSfM: hybrid structure-from-motion. In CVPR, 2017. 1

[8] Zhaopeng Cui and Ping Tan. Global structure-from-motion

by similarity averaging. In ICCV, 2015. 1

[9] Frank Dellaert, David M Rosen, Jing Wu, Robert Mahony,

and Luca Carlone. Shonan rotation averaging: Global opti-

mality by surfing SO(p)n. In ECCV, 2020. 1, 2, 4, 6

[10] Olof Enqvist, Fredrik Kahl, and Carl Olsson. Non-sequential

structure from motion. In ICCVW, 2011. 2

[11] Anders Eriksson, Carl Olsson, Fredrik Kahl, and Tat-Jun

Chin. Rotation averaging and strong duality. In CVPR, 2018.

2, 3, 4, 5

[12] Anders Eriksson, Carl Olsson, Fredrik Kahl, and Tat-Jun

Chin. Rotation averaging with the chordal distance: Global

minimizers and strong duality. IEEE TPAMI, 2019. 5

[13] Johan Fredriksson and Carl Olsson. Simultaneous multiple

rotation averaging using Lagrangian duality. In ACCV, 2012.

2

[14] Venu Madhav Govindu. Combining two-view constraints for

motion estimation. In CVPR, 2001. 2

[15] Venu Madhav Govindu. Lie-algebraic averaging for globally

consistent motion estimation. In CVPR, 2004. 2

[16] Richard Hartley, Khurrum Aftab, and Jochen Trumpf. L1

rotation averaging using the Weiszfeld algorithm. In CVPR,

2011. 2, 3

[17] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong

Li. Rotation averaging. IJCV, 103(3):267–305, 2013. 1, 2, 3

[18] Pierre-Yves Lajoie, Siyi Hu, Giovanni Beltrame, and Luca

Carlone. Modeling perceptual aliasing in slam via discrete–

continuous graphical models. IEEE RAL, 4(2):1232–1239,

2019. 3

[19] Xinyi Li and Haibin Ling. Hybrid camera pose estimation

with online partitioning for SLAM. IEEE RAL, 5(2):1453–

1460, 2020. 1

[20] Alex Locher, Michal Havlena, and Luc Van Gool. Progres-

sive structure from motion. In ECCV, 2018. 1

[21] Daniel Martinec and Tomas Pajdla. Robust rotation and

translation estimation in multiview reconstruction. In CVPR,

2007. 1

[22] Daniel Martinec and Tomas Pajdla. Robust rotation and

translation estimation in multiview reconstruction. In CVPR,

2007. 2

[23] Maher Moakher. Means and averaging in the group of rota-

tions. SIAM SIMAX, 24(1):1–16, 2002. 2

[24] Pierre Moulon, Pascal Monasse, and Renaud Marlet. Global

fusion of relative motions for robust, accurate and scalable

structure from motion. In ICCV, 2013. 1

[25] Carl Olsson and Olof Enqvist. Stable structure from motion

for unordered image collections. In Springer SCIA, 2011. 1,

2, 8

[26] Álvaro Parra, Tat-Jun Chin, Anders Eriksson, and Ian Reid.

Visual SLAM: Why bundle adjust? In IEEE ICRA, 2019. 1,

6

[27] Pulak Purkait, Tat-Jun Chin, and Ian Reid. NeuRoRA: Neu-

ral robust rotation averaging. In ECCV, 2020. 2

[28] David M Rosen, Luca Carlone, Afonso S Bandeira, and

John J Leonard. SE-Sync: A certifiably correct algorithm

for synchronization over the special Euclidean group. IJRR,

38(2-3):95–125, 2019. 2

[29] David M Rosen, Charles DuHadway, and John J Leonard. A

convex relaxation for approximate global optimization in si-

multaneous localization and mapping. In IEEE ICRA, 2015.

1

[30] Andrzej Ruszczynski. Nonlinear optimization. Princeton

university press, 2011. 2

[31] Amit Singer. Angular synchronization by eigenvectors and

semidefinite programming. ACHA, 30(1):20–36, 2011. 2

[32] Jos F Sturm. Using SeDuMi 1.02, a MATLAB toolbox for

optimization over symmetric cones. Optimization methods

and software, 11(1-4):625–653, 1999. 2

[33] Chengzhou Tang, Oliver Wang, and Ping Tan. GSLAM:

Initialization-robust monocular visual SLAM via global

structure-from-motion. In IEEE 3DV, 2017. 1

[34] Yulun Tian, Kasra Khosoussi, David M Rosen, and

Jonathan P How. Distributed certifiably correct pose-graph

optimization. arXiv preprint arXiv:1911.03721, 2019. 2, 4

[35] Roberto Tron, Bijan Afsari, and René Vidal. Intrinsic con-

sensus on SO(3) with almost-global convergence. In IEEE

CDC, 2012. 2

[36] Roberto Tron, Xiaowei Zhou, and Kostas Daniilidis. A sur-

vey on rotation optimization in structure from motion. In

CVPRW, 2016. 1, 2

[37] Lanhui Wang and Amit Singer. Exact and stable recovery of

rotations for robust synchronization. Information and Infer-

ence: A Journal of the IMA, 2(2):145–193, 2013. 2

[38] Kyle Wilson, David Bindel, and Noah Snavely. When is ro-

tations averaging hard? In ECCV, 2016. 2

[39] Heng Yang, Pasquale Antonante, Vasileios Tzoumas, and

Luca Carlone. Graduated non-convexity for robust spatial

perception: From non-minimal solvers to global outlier re-

jection. IEEE RAL, 5(2):1127–1134, 2020. 3

[40] Heng Yang and Luca Carlone. One ring to rule them all:

Certifiably robust geometric perception with outliers. In

NeurIPS, 2020. 3

4306

[41] Christopher Zach, Manfred Klopschitz, and Marc Pollefeys.

Disambiguating visual relations using loop constraints. In

CVPR, 2010. 2

[42] Qianggong Zhang, Tat-Jun Chin, and Huu Minh Le. A fast

resection-intersection method for the known rotation prob-

lem. In CVPR, 2018. 8

[43] Siyu Zhu, Runze Zhang, Lei Zhou, Tianwei Shen, Tian Fang,

Ping Tan, and Long Quan. Very large-scale global SfM by

distributed motion averaging. In CVPR, 2018. 1

4307

