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Figure 1: AGORA dataset examples. Top row: images with different scenes. Middle: SMPL-X ground-truth bodies rendered

in the scene. Bottom: per-person segmentation masks including environmental occlusion (see bottom right image).

Abstract

While the accuracy of 3D human pose estimation from

images has steadily improved on benchmark datasets, the

best methods still fail in many real-world scenarios. This

suggests that there is a domain gap between current

datasets and common scenes containing people. To obtain

ground-truth 3D pose, current datasets limit the complex-

ity of clothing, environmental conditions, number of sub-

jects, and occlusion. Moreover, current datasets evalu-

ate sparse 3D joint locations corresponding to the major

joints of the body, ignoring the hand pose and the face

shape. To evaluate the current state-of-the-art methods on

more challenging images, and to drive the field to address

new problems, we introduce AGORA, a synthetic dataset

with high realism and highly accurate ground truth. Here

we use 4240 commercially-available, high-quality, textured

human scans in diverse poses and natural clothing; this

*This work was done while DTH was at MPI-IS.

includes 257 scans of children. We create reference 3D

poses and body shapes by fitting the SMPL-X body model

(with face and hands) to the 3D scans, taking into account

clothing. We create around 14K training and 3K test im-

ages by rendering between 5 and 15 people per image us-

ing either image-based lighting or rendered 3D environ-

ments, taking care to make the images physically plausi-

ble and photoreal. In total, AGORA consists of 173K in-

dividual person crops. We evaluate existing state-of-the-

art methods for 3D human pose estimation on this dataset.

and find that most methods perform poorly on images of

children. Hence, we extend the SMPL-X model to bet-

ter capture the shape of children. Additionally, we fine-

tune methods on AGORA and show improved performance

on both AGORA and 3DPW, confirming the realism of the

dataset. We provide all the registered 3D reference training

data, rendered images, and a web-based evaluation site at

https://agora.is.tue.mpg.de/.
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1. Introduction

The field of 3D human pose and shape (3DHPS) es-

timation from images has advanced rapidly with steadily

decreasing errors on standard benchmarks [17, 21, 26, 27,

36, 39, 47]. Large training datasets and benchmarks, with

ground truth, enable progress and quantitative evaluation.

These are difficult to obtain in the case of 3DHPS. Ex-

isting datasets have significant limitations and the rate of

progress now suggests that these benchmarks are becoming

saturated, making it difficult to evaluate how close the field

is to fully robust and general solutions. These datasets often

have limited clothing, focus on single subjects, have limited

occlusion, are captured in laboratory environments, or have

a limited range of ages and ethnicities. Additionally, ac-

curacy is evaluated based on a small number of 3D joints,

while the body is much more complex. To drive advances

in the field, we propose a novel dataset that includes chal-

lenging scenarios neglected by earlier datasets and a more

challenging evaluation protocol.

AGORA (Avatars in Geography Optimized for Regres-

sion Analysis) is a new publicly available dataset that in-

cludes high-resolution (4K) images with ground truth 3D

bodies. AGORA goes beyond previous datasets in impor-

tant ways. It includes accurate 3D body pose and shape of

people in varied and complex clothing. People with var-

ied poses, ages and ethnicities appear in complex natural

scenes with natural lighting. Additionally, the dataset in-

cludes person-person occlusion, environmental occlusion,

camera frame occlusion, crowds, children, face and hand

pose, large field of view images and people appearing at a

wide range of spatial scales. To the best of our knowledge,

AGORA is the only dataset that provides all these features

together with highly accurate 3D ground truth. Figure 1

shows a few representative examples from the dataset.

Since there is currently no technology to capture ground

truth body shape and pose for real images of this com-

plexity, we rely on synthetic data and a graphics rendering

pipeline. Specifically, we purchased 4240 high-quality tex-

tured scans of people, which include 257 child scans from

3DPeople [1], AXYZ [2], Human Alloy [4] and Render-

people [7]. These scans provide a rich variety of ethnic-

ity, age, pose, and clothing variation with realistic textures.

We also gathered a variety of scenes as HDRI panoramas

and 3D environments. We randomly sample 3D people and

place them in scenes at random distances and orientations.

We then render them realistically using a game engine opti-

mized for high-quality output [8].

For every scan, we fit the SMPL-X body model [37],

taking great care to accurately capture the correct body

shape, pose, hand shape, and facial shape; see Fig. 1 mid-

dle row. To generate the AGORA ground truth (or refer-

ence data), we take an optimization-based approach that fits

SMPL-X to each scan. Specifically, we estimate both the

pose and body shape under clothing, similar to [10, 56].

The estimated SMPL-X fits have an average error of 5mm,

making them accurate enough to benchmark existing state-

of-the-art (SOTA) methods. For backward compatibility

with SMPL, we also provide ground truth in the gender-

neutral SMPL format1 [33] used by many current meth-

ods [25, 27, 47].

In addition to adults, the AGORA dataset contains im-

ages of children. It is probably the only dataset of chil-

dren with reference 3D pose and shape. Existing 3DHPS

methods focus on adult bodies and perform poorly on im-

ages of children. With AGORA, we evaluate this perfor-

mance, but go further and extend the SMPL-X shape space

to capture the variation in body shape beween infants and

adults. Specifically, we introduce a shape dimension that

interpolates between an adult SMPL-X body template and

the infant SMIL template [18], which we convert to SMPL-

X format. This results in an extra shape parameter that can

be optimized like any other SMPL-X shape parameter.

We make the SMPL-X fits available for all the 14529

training and 1225 validation images, enabling training with

AGORA. We withhold the ground truth bodies from the

3387 test images and instead provide an evaluation server.

While we cannot provide the commercial scans, we provide

a “shopping list” of the training and validation scans so that

others can purchase them. Purchasing the scans extends the

applications of AGORA to other problems such as 3D cloth-

ing modeling, neural avatars, and shape regression. We also

provide the test scripts for researchers to test their methods

on the validation set.

We use AGORA to evaluate SOTA 3DHPS methods with

a novel protocol. In addition to the common 3D joint-based

error measures, we provide a vertex-to-vertex error, and

evaluate body, hands and face pose and shape. We also

use 2D occlusion masks (Fig. 1 bottom row) to evaluate

the performance of methods at varying levels of occlusion.

Since our images contain multiple people, methods may de-

tect too few as well as too many people. Consequently,

we introduce an error measure that goes beyond the stan-

dard single-person measures and rewards methods for both

3DHPS and detection accuracy. We observe higher errors

for SOTA methods on AGORA than on other datasets, sug-

gesting that AGORA is more challenging. We also show

that our training set can be used to improve recent 3D pose

estimation methods [27] not only on AGORA but also on

3DPW [52]. This validates that the synthetic data is suffi-

ciently real to be useful.

In summary, we contribute a new, varied and challeng-

ing dataset to evaluate and improve the SOTA in 3D hu-

man pose and shape estimation and to push the field in new

1Given a SMPL-X mesh, we convert it to gender-neutral SMPL format

by fitting the gender-neutral SMPL template to it. In this work, SMPL fits

are always generated through this process unless otherwise stated.
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directions. The dataset is synthetic but diverse and realis-

tic. We use new evaluation metrics and provide detailed

analysis of limitations of current methods. We also in-

troduce a new child model to generate better ground truth

shape for children. We provide the training and valida-

tion set images with SMPL-X and SMPL ground truth and

2D masks. We also provide test images along with eval-

uation code and will maintain a web evaluation server:

https://agora.is.tue.mpg.de/.

2. Related Work

Many datasets have been proposed for 3DHPS estima-

tion, but each has limitations as summarized in Table 1.

While there are many 2D datasets, we focus on those with

3D ground truth of one form or another.

Datasets with real images. Unlike 2D annotation, 3D

body poses are difficult for humans to annotate since the

task is ambiguous and requires metric accuracy. Conse-

quently, existing benchmarks rely on multiple synchronized

cameras. For example, HumanEva [46] , Human3.6M [20],

and TotalCapture [48] synchronize video cameras with mo-

tion capture (mocap) systems that provide ground truth

through optical markers. While providing accurate 3D pose,

the image complexity is limited: lack of background vari-

ation in lab scenarios, only one subject in each image, no

scene occlusions, and little clothing variety due to the at-

tachment of markers, which, unfortunately are also visible

in the images. These methods typically evaluate accuracy

based on 3D joint locations. Note that, while the 3D joints

are commonly treated as “ground truth”, they are not di-

rectly observed, but rather are inferred by the mocap system

based on an approximate skeletal body structure.

Alternatively, several methods use marker-less motion

capture, e.g. MuPoTS-3D [35], PanopticStudio [24], MPI-

INF-3DHP-Test [34], and HUMBI [54]. Such methods are

typically less accurate than marker-based systems, but they

avoid intrusive markers, allow more varied clothing, and

sometimes are used in more realistic scenes e.g. outdoors.

IMU sensors provide another way to measure 3D poses,

which is less intrusive than mocap markers but also less

accurate due to yaw drift. Von Marcard et al. [52] explic-

itly account for this by combining IMU data with monocu-

lar video, enabling in-the-wild capture. We consider these

datasets as reference data rather than “ground truth” be-

cause the accuracy of the method is evaluated in a separate

process (e.g. using mocap data) and not on the image data

in the benchmark. In contrast, for AGORA we report how

close the SMPL-X meshes are to these reference scans, di-

rectly indicating the fidelity of our pseudo ground truth.

All the above are limited in the complexity of the cloth-

ing, occlusions, scene variety, ethnicity, etc. Of the above

only PanopticStudio [24] and HUMBI [54] consider the

face and hands together with bodies.

Synthetic datasets. Computer graphics has the poten-

tial to synthesize large-scale image datasets, where ground

truth is generated by animating parametric 3D human mod-

els such as SMPL [33], MakeHuman [5], or Mixamo [6].

The main challenge for such methods lies in creating data

that is sufficiently realistic in terms of body shape, ethnicity,

motion, cloth deformation, texture, and interaction with en-

vironments. In several datasets, images are created by com-

positing 3D people on image backgrounds. MHOF [40],

LTSH [19], 3DPeople [38], and SURREAL [50] render 3D

people on the background image, while MPI-INF-3DHP-

Train [34] and MuCo-3DHP [35] paste a segmented real

human foreground on top of the background. Such compo-

sition does not faithfully reflect the local statistics of pixel

intensity in real images and does not support methods that

learn how humans interact with scenes. Most similar to us

is SimPose [60], which poses 17 rigged commercial scans

[7] and SURREAL data rendered in a 3D scene. The 3D

scenes are simplistic, the scans lack diversity, there is no

evaluation site, and the dataset is not public.

A recent promising direction synthesizes realistic look-

ing people in images [55, 59]. Zanfir et al. [55] use a learned

human synthesis method to insert generated people in im-

ages such that they make sense relative to the scene geom-

etry and lighting. While they can condition the generated

person on pose and shape, the resulting images contain ar-

tifacts that are common to generative models, making the

results unsuitable as ground truth.

Other human-related datasets. There are many other

datasets of real humans in images that do not contain 3D

ground truth. For example, OCHuman [57] focuses on oc-

clusion in real single-view images and provides 2D joint

landmarks and human segmentation masks. Early mul-

tiview sequences e.g. Adobe data [51], MVIC [32], and

MARCOnI [14] also consider 2D landmarks and silhou-

ettes as evaluation measures. The hunger for large train-

ing corpora for deep learning motivates self-supervised

strategies [25, 26, 49] that leverage 2D landmark annota-

tions in LSP-Extended [22], COCO [31], and MPII [9].

Several recent datasets, e.g. EFT [23], STRAPS [44] and

3DOH50K [58], are generated by fitting a body model to the

images, while others fit to videos of complex scenes with

“frozen” people [30] using structure from motion [28] or

multi-view matching [45]. Methods like EFT and SMPLy

[28] provide image variety, which is good for robustness,

but with unknown accuracy in body shape and pose.

In summary, no single dataset can address all needs of

the community. AGORA provides realistic textures, com-

plex body shapes and clothing, complex varied scenes and

lighting, high-resolution (4K) imagery, varied occlusion, all

with high-quality 3D ground truth. This new benchmark

reveals limitations of current approaches while providing

novel, high-quality training data for multiple applications.
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Dataset Sub. # Image Complexity Clothing Body anno. Ground truth format

HumanEva [46] 4 lab 1 subject, no occlusion limited B 3D joint locations

Human3.6M [20] 11 lab 1 subject, minor occlusion limited B 3D joint locations

TotalCapture [48] 5 lab 1 subject, no occlusion mocap suit B 3D joint locations

PanopticStudio [24] ∼100 lab multiple subjects & furniture varied BFH 3D joint locations

HUMBI [54] 772 lab 1 subject, no occlusion rich BFH meshes, SMPL

3DPW [52] 18 natural multiple subjects in the wild varied B SMPL

MuPoTS-3D [35] 8 natural multiple subjects in the wild varied B 3D joint locations

MPI-INF-3DHP-Train [34] 14 both 1 subject, minor occlusion varied B 3D joint locations

3DOH50K [58] n/a lab 1 subject, object occlusion limited B SMPL

EFT [23] > 1000 natural multiple subjects, in the wild varied B SMPL

STRAPS [44] 62 natural 1 subject, in the wild limited B SMPL

SMPLy [28] 742 natural multiple subjects, in the wild, frequent occlusion rich B SMPL

MuCo-3DHP [35] 8 composite† multiple subjects in the lab limited B 3D joint locations

MPI-INF-3DHP-Test [34] 14 composite† 1 subject, minor occlusion varied B 3D joint locations

SURREAL [50] 145 composite† 1 subject, no occlusion texture¶ B SMPL

3DPeople [38] 80 composite† 1 subject, no occlusion synthetic‡ B 3D joint locations

AGORA (ours) >350 realistic†† multiple subjects in the wild, frequent occlusion rich BFH SMPL-X, SMPL, masks

Table 1: Comparison of datasets that provide images and 3D human pose annotations. Body annotation type B, F, and H

correspond to body, face, and hands respectively. †: 2D foreground layers pasted on background images. ††: 3D models

positioned in 3D with panoramic background or full 3D scenes. ¶: unclothed human body with clothing texture. ‡: clothed

human body with texture.

3. Method: Obtaining reference data

To construct AGORA, we purchased high-quality tex-

tured 3D scans from 3DPeople [1], AXYZ [2], Human Al-

loy [4] and Renderpeople [7]. We selected 4240 scans for

inclusion in the dataset spanning more than 350 unique sub-

jects. A scan S comprises a set of 3D points S ⊂ R
3 and

their connectivity FS , S = {S, FS}. To each scan S we fit

a parametric SMPL-X body model M = {M,FM}, whose

vertex locations M(θ, β, ψ) ⊂ R
3 are controlled by param-

eters for pose θ, shape β, and facial expression ψ [37]. θ
consists of body pose θb and hand pose θh. Hand pose θh is

a function θh(Zh) of a PCA latent vector Zh ∈ R
6.

Fitting a SMPL-X mesh M to a scan S amounts to solv-

ing for the optimal parameters (θ, β, ψ) such that M resem-

bles S . The fitting process takes into account that SMPL-X

explains the body in minimal clothing while the scans are

typically clothed. In this process we exploit the fact that a

person may appear in multiple scans and their shape param-

eter, β, should be the same across scans.

We first initialize the parameters by an approach that ex-

tends the single-view SMPLify-X fitting [37] to multi-view

images rendered using C pre-defined virtual cameras. The

initial mesh, M , obtained by multi-view SMPLify-X fitting

is only approximately aligned with S. While sparse 2D

landmarks constrain the 3D pose, they provide little infor-

mation about body shape. To refine the shape and pose, we

fit SMPL-X to the 3D scan surface. However, this is chal-

lenging because SMPL-X cannot model things like hair and

clothing that are present in the scans. To address this, we

use the idea of fitting body shape under clothing [10, 56].

Similar to [56], we define energy terms Eskin and Ecloth

for skin and clothing, respectively. Both aim to bring the

model surface close to the scan, whereas Ecloth additionally

penalizes body vertices being outside the clothing. In other

words, our objective function tries to move the model as

close as possible to the scan near the visible skin while dis-

couraging the clothing vertices from penetrating the model.

We label skin and cloth vertices on scan using Graphonomy

[15]. We keep the 2D landmark data term Ec
J that penalizes

differences between projected and observed keypoints from

multi-view fitting, as they provide information complemen-

tary to Eskin and Ecloth. See Sup. Mat. for more details.

We fit each model Mi(βi, θi, ψi) to the corresponding

scan Si in parallel, for scans, i, of the same identity. We op-

timize jointly for θi, ψi and βi while minimizing the shape

(inter-beta) distance Eib between scans of the same identity.

The objective function is:

E(β1, . . . , βN , θ1, . . . , θN , ψ1, . . . , ψN ) =

N
∑

i=1

(

λJ

C
∑

c=1

Ec,i
J + λsE

i
skin + λcE

i
cloth + Ei

reg

)

+ λibEib,

Eib =

N
∑

i=1

N
∑

j=i+1

‖βi − βj‖
2

2
,

Ereg = λθbEθb(θb) + λθhEθh(θh) + λβEβ(β) + λEEE(ψ),

where Ereg contains L2 priors used to constrain the body

shape, pose and expression, as defined in [37]. Different

weights denoted by λ are used for each term.

This approach exploits semantic information (2D land-

marks, skin/clothing segmentation) as well as geometry (3D

shapes) to obtain accurate fits as demonstrated in Sec. 4.1.

3.1. Fitting child scans

AGORA also contains 257 child scans. Fitting SMPL-X

directly to these scans results in distorted fits as shown in
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Figure 2: Fitting child scans using an adult template

(TA), a scaled adult template (αTA), and our proposed ap-

proach, which interpolates between adult and infant tem-

plates (αTA + (1− α)TC).

the 2nd column of Fig. 2, because SMPL-X cannot repre-

sent children. Naively scaling the adult SMPL-X template,

i.e. αTA, by optimizing for a global scale parameter α is

better but still unnatural since children have different pro-

portions than adults. To solve this problem, we take the

mean infant body template from SMIL [18] and convert it

to SMPL-X topology, TC . We find that interpolating be-

tween the adult SMPL-X template TA and the SMIL infant

template TC approximately captures the shape of children.

See Sup. Mat. Note that, while not perfect, we use the adult

shape space for children and only vary the template shape.

Incorporating children then involves only a minor change

to the fitting process. In addition to optimizing the shape

parameters, β, we also optimize for a weight, α ∈ [0, 1],
the linearly interpolates the templates. This produces more

accurate body shapes for children, as shown in Fig. 2.

4. AGORA Dataset

AGORA consists of 4240 scans spanning more than 350

unique subjects, all paired with SMPL-X fits (we also sup-

ply SMPL fits for backward compatibility). While generally

robust, the fitting approach fails sometimes for hands and

faces. This typically happens when the hands are grasping

objects. Since we want high-quality ground truth, we man-

ually curate the results of the automatic process and create

two different sets: (1) those with well aligned body, face and

hands (3161, BFH); and (2) those only with well aligned

bodies (1079, B). When evaluating algorithms for 3DHPS

estimation, only body joints and vertices are considered for

B scans, while body, hand and face joints and vertices are

evaluated for BFH scans.

We sample 1051 scans to create the test set; for these, the

SMPL-X fits are withheld from public release. We make

sure there are no overlapping scans between these 1051

scans and the rest, and no selected scans have been included

to train previous work [43]. Our test set spans 105 sub-

jects. We create approximately 3387 images from the test

scans, including many challenging scenarios, with the goal

of making them photorealistic. From the remaining scans,

we sample 2930 scans as a training set and 259 scans as

a validation set and create 14529 training and 1225 valida-

tion images, whose ground-truth SMPL-X parameters and

2D segmentation masks are included in the released dataset.

Since the ground truth 3D scans are commercially available,

it is possible for people to cheat by using test scans for train-

ing. We have also built in several countermeasures to detect

cheating that we do not describe in this paper.

AGORA images are rendered using perspective cameras

with focal lengths 18mm, 28mm and 50mm. All images are

rendered using Unreal Engine [8] on a single Windows 10

PC with NVIDIA RTX 2080 graphics hardware. Render-

ings are generated either with image-based lighting using

freely available HDR backgrounds [3] or with free and com-

mercial 3D environments obtained from the Unreal Mar-

ketplace. The image-based lighting scenes used hardware-

accelerated ray-tracing for accurate ground plane shadows.

For scans in seated poses, we insert random chairs at the

appropriate height so that the scans appear naturally sup-

ported. See Sup. Mat. for details of the rendering process.

4.1. Fitting Accuracy

To evaluate the accuracy of results on AGORA, and to

know whether improvements are significant, we first need to

know the accuracy of our ground truth2. We define accuracy

relative to the high-quality 3D scans in the following ways:

1. Skin error. For the visible skin vertices on the scan,

we compute the Euclidean distance of the nearest point

on the triangle of the reconstructed model M . An accu-

rate model fit should fit closely to the skin. We report the

weighted mean distance as our final error value where the

weight is the probability of the scan vertex belonging to skin

calculated using Graphonomy [15].

2. Penetrating clothing error. The SMPL-X fits are

supposed to be fully inside the clothing. We report two val-

ues for clothing vertices on the scans: (1) the percentage of

them that penetrate the body model. (2) for those penetrat-

ing vertices, we calculate their distance to the closest point

on the model surface and compute the weighted avg. error.

We consider only the scans without any large objects for

the error calculation and report an average skin error of ap-

proximately 4.73mm. Only 16% of cloth vertices are inside

the body with an average distance of 4.63mm. An error

of approximately 5mm is significantly below any industry

standards for the measurement of live humans and is less

than the soft-tissue motion of mocap markers on the body

[11]. Thus, we believe that the SMPL-X fits provide valid

pseudo ground truth.

4.2. Evaluation metrics

A common practice in evaluating 3DHPS methods is ap-

plying Procrustes alignment [16] before computing the er-

2Note that with traditional mocap ground truth, only the accuracy of

the markers is known – the accuracy of the 3D joints is actually unknown.
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Method
MPJPE ↓ MVE ↓ NMJE ↓ NMVE ↓

F1 score↑
B LH/RH F FB B LH/RH F FB B FB B FB

S
M

P
L

HMR [25] 180.5 N/A N/A N/A 173.6 N/A N/A N/A 226.0 N/A 217.0 N/A 0.80

CenterHMR [47] 168.1 N/A N/A N/A 161.4 N/A N/A N/A 242.3 N/A 233.9 N/A 0.69

EFT [23] 165.4 N/A N/A N/A 159.0 N/A N/A N/A 203.6 N/A 196.3 N/A 0.81

SPIN [27] 175.1 N/A N/A N/A 168.7 N/A N/A N/A 223.1 N/A 216.3 N/A 0.78

SPIN-ft (ours) 153.4 N/A N/A N/A 148.9 N/A N/A N/A 199.2 N/A 193.4 N/A 0.77

S
M

P
L

-X SMPLify-X [37] 182.1 46.5/49.6 52.9 231.8 187.0 48.3/51.4 48.9 236.5 256.5 326.5 263.3 333.1 0.71

ExPose [13] 150.4 72.5/68.8 55.2 215.9 151.5 74.9/71.3 51.1 217.3 183.4 263.3 184.8 265.0 0.82

Frankmocap [42] 165.2 52.3/53.1 N/A N/A 168.3 54.7/55.7 N/A N/A 204.0 N/A 207.8 N/A 0.81

Table 2: Comparison of SOTA 3DHPS methods on the AGORA testset. SPIN-ft is SPIN after finetuning on the AGORA

training set described in Sec. 5.2. SMPL-based methods are evaluated on B+BFH and SMPL-X-based methods are evaluated

on the BFH subset of AGORA. Error metrics are described in Sec. 4.2. All numbers are in millimeters.

ror. Doing so eliminates discrepancies in scale, translation

and rotation, measuring only the error in poses (PA-MPJPE)

and shapes (PA-MVE/V2V). This convention is largely due

to the fact that existing HPS datasets, e.g. [23, 52], contain

only pose and shape annotations, and HPS methods esti-

mate the body relative to the camera. In contrast, AGORA

provides complete 3D pseudo ground truth: body parame-

ters of each person and their spatial arrangement in the 3D

scene, enabling a more comprehensive error measure.

Consequently, we do not apply Procrustes alignment but

only align at the pelvis, i.e. MPJPE and MVE/V2V, because

estimating absolute depth is ambiguous. Furthermore, since

AGORA has 5-15 people per image, methods may not de-

tect every person leading to misses, i.e. false negatives. Due

to occlusions, methods may also detect bodies where there

are actually no people, i.e. false positives. Accuracy on

AGORA means high detection performance and low error

for every correct detection; consequently, we must penalize

false negatives and false positives. Thus, we normalize the

MPJPE and MVE/V2V error by the standard detection met-

ric, F1 score (the harmonic mean of recall and precision),

and refer to this as Normalized Mean Joint Error (NMJE)

and Normalized Mean Vertex Error (NMVE). F1 score pun-

ishes both misses and false alarms so NMJE/NMVE in-

crease the reported error for methods that make either type

of mistake in detection. As a result, to reduce the overall

NMJE/NMVE, the method needs to miss no one, detect no

spurious bodies, and estimate accurate poses and shapes for

each correct detection, making NMJE/NMVE more chal-

lenging and comprehensive than other metrics.

We evaluate 3DHPS methods along different dimensions

and also provide a combined score. For SMPL-based meth-

ods, we just evaluate on body joints and vertices using both

B and BFH scans. For SMPL-X-based methods, we eval-

uate separately on the body, hands and face and also pro-

vide a weighted sum of the three as a full body (FB) error.

SMPL-X-based methods are evaluated only for BFH scans.

B-MPJPE is evaluated on 24 body joints of SMPL and

22 body joints of SMPL-X after aligning the pelvis. LH-

MPJPE, RH-MPJPE are evaluated on 15 hands joints on

the left and right hands, respectively, after aligning the wrist

joint. F-MPJPE is evaluated on 51 facial landmarks after

aligning the neck joint. FB-MPJPE is a weighted sum of

the above 4 errors. Since the number of hand joints and face

landmarks outweigh the number of body joints, we define

the FB error as FB = B + (LH+RH+F)/3.

While 3D joint error evaluates pose, it does not provide

evaluation of shape, for which we have ground truth. To en-

courage research on body shape estimation, we also evalu-

ate the methods on vertices. We segment the body, left hand,

right hand and face vertices using SMPL [33], MANO [41]

and FLAME [29] vertex indices of the SMPL-X template

and calculate B-MVE, LH-MVE, RH-MVE and F-MVE

respectively. FB-MVE uses the same weighted combina-

tion as joint error, FB-MPJPE. We also calculate B-NMJE,

B-NMVE, FB-NMJE, FB-NMVE and penalize the meth-

ods for missed detections and false positives.

4.3. Evaluation protocol

When a method estimates a body, the matching ground

truth body in AGORA is not known. Therefore, to match

the predicted person with the ground truth, we project the

estimated 3D keypoints to the image plane and find the clos-

est ground-truth subject in terms of 2D joint error. If there

is no match found for a particular ground truth body, we

count it as a miss (see Sup. Mat. for details). Similarly, if

a detection does not match any ground truth, we count it

as false positive. For the correctly matched predictions, we

calculate all the errors as described in Sec. 4.2.

5. Experiments

We evaluate existing methods on AGORA to determine

whether the dataset provides new insights about the current

SOTA. We also evaluate whether the AGORA training set

can help improve the accuracy of SOTA methods by using

it to fine-tune SPIN [27].

5.1. Baseline Evaluation.

The evaluation protocol for existing methods is shown

in Fig. 3. Most current methods assume that the input im-
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Method
MPJPE (mm) ↓ MVE (mm) ↓

B B
S

M
P

L

HMR [25] 219.4 209.3

CenterHMR [47] 207.4 198.5

EFT [23] 202.7 193.5

SPIN [27] 203.7 193.2

SPIN-ft 191.7 186.7

S
M

P
L

-X SMPLify-X [37] 208.3 213.3

ExPose [13] 176.6 174.0

Frankmocap [42] 203.7 204.2

Table 3: Performance of SOTA methods on “AGORA kids.”

Figure 3: Baseline Evaluation. Given a test image, we de-

tect keypoints with [12] to obtain bounding boxes centered

at each detected person, followed by network inference to

reconstruct a human mesh for each cropped image. We

identify true positives (to compute pose error), false neg-

atives (misses) and false positives by matching predictions

and ground truth. See Sec. 4.3 for details.

age is tightly cropped around the person [13, 23, 25, 27, 42]

or require 2D keypoint detections [37]. Therefore, to fairly

test prior methods on AGORA with the same input, we use

OpenPose [12] to detect people and their respective key-

points and construct tight bounding boxes based on these

detections. For single-stage approaches e.g. [47] we di-

rectly use the entire image as input without any cropping.

Table 2 reports results for multiple baselines on the

AGORA testset using the evaluation metrics described in

Sec. 4.2. To compare our new metrics with metrics used in

earlier work, we also report MPJPE and MVE without pe-

nalizing for missed detections and false positives. See Fig. 7

in Sup. Mat. for qualitative results. While SPIN fine-tuned

on the AGORA training set (Sec. 5.2) outperforms other

SMPL-based SOTA methods by a large margin in terms of

MPJPE and MVE error, its error increases under our new

NMJE and NMVE metrics because of misses and false pos-

itives. This shows that MPJPE alone is not enough to evalu-

ate performance on multi-person images. We hope AGORA

will drive research on multi-person pose estimation.

We notice that among SMPL-X based methods, Ex-

Pose [13] performs best for the body while the optimization-

based method SMPLify-X [37] beats regression based

Models 3DPW (14) 3DPW (24) AGORA (24)

MPJPE PA-MPJPE MPJPE PA-MPJPE MPJPE

SPIN-pt [27] 96.9 59.3 95.5 65.5 175.1

SPIN-ft-EFT [23] 97.4 59.7 95.3 66.1 173.7

SPIN-ft (ours) 85.7 55.3 83.7 61.8 153.4

Table 4: Pretrained SPIN vs. SPIN finetuned with AGORA

and EFT([MPII+LSPet+COCO]). Parens.: (#joints).

methods in hand and face estimation. These errors are

further analysed w.r.t. different parameters like occlusion,

child shape, distance to the center of the image and orienta-

tion (Sup. Mat. for orientation).

Occlusion. Using the ground-truth segmentation masks,

Fig. 4 plots the error of SOTA methods vs. the percentage

of occlusion. Since this is analyzed on ground-truth bodies

in which false positives are not included, we normalize the

MPJPE by recall (correctly detected and matched bodies di-

vided by total number of bodies), denoted as recall-NMJE

and we also plot it for different ranges of occlusion. As

expected, the MPJPE for correct detections increases with

increasing occlusion and the percentage of misses also in-

creases as shown in the left and middle plots in Fig. 4. We

observe that CenterHMR performs well for high occlusion

but suffers from many misses, particularly with small peo-

ple. See Fig. 7 in Sup. Mat. This shows that bottom-up

methods that work on the full image are good in dealing

with images of multiple people but need to improve their

detection accuracy. FrankMocap and SPIN are highly sen-

sitive to occlusion, leading to large errors as occlusion in-

creases. We also notice that fine-tuning with AGORA im-

proves the performance of SPIN for high occlusion cases.

Distance from center. Most methods rely on a weak

perspective camera assumption, which breaks when people

occur off-center in images, as also pointed out by [53]. The

large field-of-view images in AGORA facilitate the analysis

of this error. We plot the B-MPJPE error of the selected

SOTA methods vs. horizontal distance from the center of

the image in Fig. 5. We find that error consistently increases

for all methods as the distance from the center increases.

This effect is less significant for CenterHMR [47], the only

method that works on full images instead of crops.

Child Shape. AGORA contains child scans with pseudo

ground truth shape generated as described in Sec. 3.1. We

calculate body joint and vertex error for the SOTA on a

“kids” subset of AGORA. We find that performance is sig-

nificantly worse for predicting child shape compared to

adult shape as shown in Table 3. We hope that this, to-

gether with the child shape representation we provide, will

encourage work in this direction.
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Figure 4: SOTA evaluation: B-MPJPE for the correct predictions (left), percentage of misses (center) and B-recall-NMJE for

the correct predictions (right). Evaluated on BFH subset of AGORA for 22 SMPL-X and 24 SMPL joints.

5.2. Baseline Improvement.

To evaluate the efficacy of the AGORA training set, we

fine-tune a pretrained SPIN model (SPIN-pt) using only

crops from AGORA training images and refer to the fine-

tuned model as SPIN-ft. We chose SPIN for the fine-tuning

experiment as it uses HMR as a backbone, which is a base

for many 3DHPS methods, e.g. EFT [23], VIBE [26] and

FrankMocap [41]. For fair comparison, we use the same

hyperparameters and loss functions as SPIN. However, un-

like SPIN, we do not use SMPLify in loop, replacing that

supervision with AGORA ground truth.

While AGORA images are rendered using perspective

cameras, SPIN assumes a weak perspective camera, which

is unable to capture perspective warping, especially when

people occur off-center in images (see Sec. 5.1). This makes

the global orientation of the ground-truth 3D joints and ver-

tices in AGORA inconsistent with SPIN predictions. Dur-

ing SPIN fine-tuning, we therefore set global orientation

to zero before calculating all 3D losses, such that informa-

tion about global orientation comes only from the 2D key-

point loss. We note that this is required only due to the

weak perspective camera assumption in SPIN and we hope

AGORA will encourage research with more realistic per-

spective camera models.

Since SPIN reports Procrustes aligned MPJPE (PA-

MPJPE) on 3DPW, we compare SPIN-pt and SPIN-

ft on both MPJPE and PA-MPJPE. We also com-

pare the AGORA training set with the EFT dataset,

[MPII+LSPet+COCO]EFT, We call fine-tuning on EFT,

SPIN-ft-EFT. We evaluate SPIN-pt, SPIN-ft-EFT and

SPIN-ft on the 3DPW testset with known association and

on AGORA testset without known association. Training

with AGORA leads to significant improvement in perfor-

mance on both datasets, with MPJPE improving by ∼12%

for 3DPW and ∼13% for AGORA; see Table 4. Higher

MPJPE on AGORA compared to 3DPW also shows that

AGORA is more challenging than 3DPW. Note that we cal-

culate the error using 14 joints to compare with original

SPIN-pt results.

Figure 5: Horizontal distance from center of the image: B-

MPJPE for selected SOTA baselines. Evaluated on the BFH

subset of AGORA for 22 SMPL-X and 24 SMPL joints.

6. Conclusions and Future Work

We have presented AGORA, a new dataset that goes be-

yond current datasets to include challenging cases of envi-

ronmental occlusion, person-person occlusion, scale vari-

ation, children, crowds, etc. AGORA is challenging and

reveals limitations of existing methods. Despite being syn-

thetic, fine-tuning on AGORA improves performance of a

SOTA method on the natural 3DPW dataset. We introduce

a new metric to include misses and false positives and facil-

itate analysis of the SOTA methods on images with multiple

people. We also introduce a simple child body model and

provide better 3D ground truth for images with children.

Future work should include adding images of varied cam-

era height, indoor scenes, multi-view images, larger crowds,

animals, and movement.
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