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Abstract

We present a deep neural network to predict structural

similarity between 2D layouts by leveraging Graph Match-

ing Networks (GMN). Our network, coined LayoutGMN,

learns the layout metric via neural graph matching, using

an attention-based GMN designed under a triplet network

setting. To train our network, we utilize weak labels ob-

tained by pixel-wise Intersection-over-Union (IoUs) to de-

fine the triplet loss. Importantly, LayoutGMN is built with

a structural bias which can effectively compensate for the

lack of structure awareness in IoUs. We demonstrate this

on two prominent forms of layouts, viz., floorplans and UI

designs, via retrieval experiments on large-scale datasets.

In particular, retrieval results by our network better match

human judgement of structural layout similarity compared

to both IoUs and other baselines including a state-of-the-

art method based on graph neural networks and image con-

volution. In addition, LayoutGMN is the first deep model

to offer both metric learning of structural layout similarity

and structural matching between layout elements.

1. Introduction

Two-dimensional layouts are ubiquitous visual abstrac-

tions in graphic and architectural designs. They typically

represent blueprints or conceptual sketches for such data

as floorplans, documents, scene arrangements, and UI de-

signs. Recent advances in pattern analysis and synthesis

have propelled the development of generative models for

layouts [11, 25, 47, 15, 26] and led to a steady accumulation

of relevant datasets [48, 42, 10, 46]. Despite these develop-

ments however, there have been few attempts at employing

a deeply learned metric to reason about layout data, e.g.,

for retrieval, data embedding, and evaluation. For example,

current evaluation protocols for layout generation still rely

heavily on segmentation metrics such as intersection-over-

union (IoU) [15, 30] and human judgement [15, 26].

The ability to compare data effectively and efficiently is
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Figure 1. LayoutGMN learns a structural layout similarity metric

between floorplans and other 2D layouts, through attention-based

neural graph matching. The learned attention weights (numbers

shown in the boxes) can be used to match the structural elements.

arguably the most foundational task in data analysis. The

key challenge in comparing layouts is that it is not purely a

task of visual comparison — it depends critically on infer-

ence and reasoning about structures, which are expressed

by the semantics and organizational arrangements of the el-

ements or subdivisions which compose a layout. Hence,

none of the well-established image-space metrics, whether

model-driven, perceptual, or deeply learned, are best suited

to measure structural layout similarity. Frequently applied

similarity measures for image segmentation such as IoUs

and F1 scores all perform pixel-level matching “in place”

— they are not structural and can be sensitive to element

misalignments which are structure-preserving.

In this work, we develop a deep neural network to predict

structural similarity between two 2D layouts, e.g., floor-

plans or UI designs. We take a predominantly structural

view of layouts for both data representation and layout com-

parison. Specifically, we represent each layout using a di-

rected, fully connected graph over its semantic elements.

Our network learns structural layout similarity via neural

graph matching, where an attention-based graph matching

network [27] is designed under a triplet network setting.

The network, coined LayoutGMN, takes as input a triplet

of layout graphs, composed together by one pair of anchor-

positive and one pair of anchor-negative graphs, and per-

forms intra-graph message passing and cross-graph infor-

mation communication per pair, to learn a graph embedding
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Figure 2. Structure matching in LayoutGMN “neutralizes” IoU

feedback. In each example (left: floorplan; right: UI design), a

training sample N labeled as “Negative” by IoU is more struc-

turally similar to the anchor (A) than P , a “Positive” sample. With

structure matching, our network predicts a smaller A-to-N dis-

tance than A-to-P distance in each case, which contradicts IoU.

for layout similarity prediction. In addition to returning a

metric, the attention weights learned by our network can

also be used to match the layout elements; see Figure 1.

To train our triplet network, it is natural to consider hu-

man labeling of positive and negative samples. However, it

is well-known that subjective judgements by humans over

structured data such as layouts are often unreliable, espe-

cially with non-experts [45, 2]. When domain experts are

employed, the task becomes time-consuming and expen-

sive [45, 2, 14, 9, 20, 41], where discrepancies among even

these experts still remain [14]. In our work, we avoid this

issue by resorting to weakly supervised training of Layout-

GMN, which obtains positive and negative labels from the

training data through thresholding using layout IoUs [30].

The motivations behind our network training using IoUs

are three-fold, despite the IoU’s shortcomings for structural

matching. First, as one of the most widely-used layout sim-

ilarity measures [30, 15], IoU does have its merits. Sec-

ond, IoUs are objective and much easier to obtain than ex-

pert annotations. Finally and most importantly, our network

has a built-in inductive bias to enforce structural correspon-

dence, via inter-graph information exchange, when learning

the graph embeddings. The inductive bias results from an

attention-based graph matching mechanism, which learns

structural matching between two graphs at the node level

(Eq 3, 6). Such a structural bias can effectively compensate

for the lack of structure awareness in the IoU-based triplet

loss during training. In Figure 2, we illustrate the effect of

this structural bias on the metric learned by our network.

Observe that the last two layouts are more similar struc-

turally than the first two. This is agreed with by our metric

LayoutGMN, but not by IoU feedback.

We evaluate our network on retrieval tasks over large

datasets of floorplans and UI designs, via Precision@k

scores, and investigate the stability of the proposed met-

ric by checking retrieval consistency between a query and

its top-1 result, over many such pairs; see Sec. 5.2.Over-

all, retrieval results by LayoutGMN better match human

judgement of structural layout similarity compared to both

IoUs and other baselines including a state-of-the-art method

based on graph neural networks [30]. Finally, we show a la-

bel transfer application for floorplans enabled by the struc-

ture matching learned by our network (Sec 5.5).

2. Related Work

Layout analysis. Early works [18, 3] on document analy-

sis involved primitive heuristics to analyse document struc-

tures. Organizing a large collection of such structures into

meaningful clusters requires a distance measure between

layouts, which typically involved content-based heuristics

[34] for documents and constrained graph matching algo-

rithm for floorplans [40]. An improved distance measure

relied on rich layout representation obtained using autoen-

coders [7, 29], operating on an entire UI layout. Although

such models capture rich raster properties of layout images,

layout structures are not modeled, leading to noisy recom-

mendations in contextual search over layout datasets.

Layout generation. Early works on synthesizing 2D lay-

outs relied on exemplars [16, 23, 37] and rule-based heuris-

tics [33, 38], and were unable to capture complex element

distributions. The advent of deep learning led to generative

models of layouts of floorplans [42, 15, 5, 32], documents

[25, 11, 47], and UIs [7, 6]. Perceptual studies aside, evalu-

ation of generated layouts, in terms of diversity and general-

ization, has mostly revolved around IoUs of the constituent

semantic entities [25, 11, 15]. While IoU provides a visual

similarity measure, it is expensive to compute over a large

number of semantic entities, and is sensitive to element po-

sitions within a layout. Developing a tool for structural

comparison would perhaps complement visual features in

contextual similarity search. In particular, a learning-based

method that compares layouts structurally can prove useful

in tasks such as layout correspondence, component labeling

and layout retargeting. We present a Layout Graph Match-

ing Network, called LayoutGMN, for learning to compare

two graphical layouts in a structured manner.

Structural similarity in 3D. Fisher et al. [8] develop

Graph Kernels for characterizing structural relationships in

3D indoor scenes. Indoor scenes are represented as graphs,

and the Graph Kernel compares substructures in the graphs

to capture similarity between the corresponding scenes. A

challenging problem of organizing a heterogeneous collec-

tion of such 3D indoor scenes was accomplished in [43] by

focusing on a subscene, and using it as a reference point

for distance measures between two scenes. Shape Edit

Distance, SHED, [22] is another fine-grained sub-structure

similarity measure for comparing two 3D shapes. These

works provide valuable cues on developing an effective

structural metric for layout similarity. Graph Neural Net-

works (GNN) [28, 21, 4, 36] model node dependencies in

a graph via message passing, and are the perfect tool for

learning on structured data. GNNs provide coarse-level
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Figure 3. Given an input floorplan image with room segmentations

in (a), we abstract each room into a bounding box and obtain lay-

out features from the constituent semantic elements, as shown in

(b). These features form the initial node and edge features (Section

3.1) of the corresponding layout graph shown in (c).

graph embeddings, which, although useful for many tasks

[39, 1, 17, 19], can lose useful structural information in con-

textual search, if each graph is processed in isolation. We

make use of Graph Matching Network [27] to retain struc-

tural correspondence between layout elements.

GNNs for structural layout similarity. To the best of our

knowledge, the recent work by Manandhar et al. [30] is the

first to leverage GNNs to learn structural similarity of 2D

graphical layouts, focusing on UI layouts with rectangular

boundaries. They employ a GCN-CNN architecture on a

graph of UI layout images, also under an IoU-trained triplet

network [13], but obtain the graph embeddings for the an-

chor, positive, and negative graphs independently.

In contrast, LayoutGMN learns the graph embeddings

in a dependent manner. Through cross-graph information

exchange, the embeddings are learned in the context of

the anchor-positive (respectively, the anchor-negative) pair.

This is a critical distinction to GCN-CNN [30], while both

train their triplet networks using IoUs. However, since IoU

does not involve structure matching, it is not a reliable mea-

sure of structural similarity, leading to labels which are con-

sidered “structurally incorrect”; see Figure 2.

In addition, our network does not perform any convolu-

tional processing over layout images; it only involves eight

MLPs, placing more emphasis on learning finer-scale struc-

tural variations for graph embedding, and less on image-

space features. We clearly observe that the cross-graph

communication module in our GMNs does help in learn-

ing finer graph embeddings than the GCN-CNN frame-

work [30]. Finally, another advantage of moving away from

any reliance on image alignment is that similarity predic-

tions by our network are more robust against highly varied,

non-rectangular layout boundaries, e.g., for floorplans.

3. Method

The Graph Matching Network (GMN) [27] consumes

a pair of graphs, processes the graph interactions via

an attention-based cross-graph communication mechanism

and results in graph embeddings for the two input graphs,

as shown in Fig 4. Our LayoutGMN plugs in the Graph

Figure 4. LayoutGMN takes two layout graphs as input, performs

intra-graph message passing (Eq. 2), along with cross-graph infor-

mation exchange (Eq. 3) via an attention mechanism (Eq. 5, also

visualized in Figure 1) to update node features, from which final

graph embeddings are obtained (Eq. 7).

Matching Network into a Triplet backbone architecture for

learning a (pseudo) metric-space for similarity on 2D lay-

outs such as floorplans, UIs and documents.

3.1. Layout Graphs

Given a layout image of height H and width W with se-

mantic annotations, we abstract each element into a bound-

ing box, which form the nodes of the resulting layout

graph. Specifically, for a layout image I1, its layout graph

Gl is given by Gl = (V,E), where the node set V =
{v1, v2, ..., vn} represents the semantic elements in the

layout, and E = {e12, ..., eij, .., en(n−1)}, the edge set,

represents the set of edges connecting the constituent ele-

ments. Our layout graphs are directed and fully-connected.

Initial Node Features. There exist a variety of visual and

content-based features that could be incorporated as the ini-

tial node features; ex. the text data/font size/font type of

an UI element or the image features of a room in a floor-

plan. For structured learning tasks as ours, we ignore such

content-based features and only focus on the box abstrac-

tions. Specifically, similar to [11, 12], the initial node fea-

tures contain semantic and geometric information of the

layout elements. As shown in Fig 3, for a layout element

k centered at (xk, yk), with dimensions (wk, hk), its geo-

metric information is:

gk =

[

xk

W
,
yk

H
,
wk

W
,
hk

H
,
wkhk√
WH

]

.

Instead of one-hot encoding of the semantics, we use a

learnable embedding layer to embed a semantic type into

a 128-D code, sk. A two-layer MLP embeds the 5×1 ge-

ometric vector gk into a 128-D code, and is concatenated

with the 128-D semantic embedding sk to form the initial

node features U = {u1, u2, ..., un}.

Initial Edge Features. In visual reasoning and relation-

ship detection tasks, edge features in a graph are designed

to capture relative difference of the abstracted semantic en-

tities (represented as nodes) [12, 44]. Thus, for an edge eij ,
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we capture the spatial relationship (see Fig 3) between the

semantic entities by a 8×1 vector:

eij =

[

∆xij√
Ai

,
∆yij√
Ai

,

√

Aj

Ai

, Uij ,
wi

hi

,
wj

hj

,

√

∆x2 +∆y2√
W 2 +H2

, θ

]

,

where Ai is the area of the element box i; Uij =
Bi∩Bj

Bi∪Bj
is

the IoU of the bounding boxes of the layout elements i, j;

θ = atan2(∆y
∆x

) is the relative angle between the two com-

ponents, θ ∈ [−π, π]; ∆xij = xj − xi and ∆yij = yj − yi.

This edge vector accounts for the translation between the

two layout elements, in addition to encoding their box IoUs,

individual aspect ratios and relative orientation.

3.2. Graph Matching Network

The graph matching module employed in LayoutGMN

is made up of three parts: (1) node and edge encoders, (2)

message propagation layers and (3) an aggregator.

Node and Edge Encoders. We use two MLPs to embed

the initial node and edge features and compute their corre-

sponding code vectors:

hi
(0) = MLPnode(ui), ∀i ∈ U

rij = MLPedge(eij), ∀(i, j) ∈ E
(1)

The above MLPs map the initial node and edge features to

their 128-D code vectors.

Message Propagation Layers. The graph matching

framework hinges on coherent information exchange be-

tween graphs to compare two layouts in a structural manner.

The propagation layers update the node features by aggre-

gating messages along the edges within a graph, in addition

to relying on a graph matching vector that measures how

similar a node in one layout graph is to one or more nodes

in the other. Specifically, given two node embeddings h
(0)
i

and h(0)
p from two different layout graphs, the node updates

for the node i are given by:

mj→i = fintra

(

h
(t)
i ,h

(t)
j , rij

)

, ∀(i, j) ∈ E1 (2)

µp→i = fcross

(

h
(t)
i ,h(t)

p

)

, ∀i ∈ V1, p ∈ V2 (3)

h
(t+1)
i = fupdate



h
(t)
i ,
∑

j

mj→i,
∑

p

µp→i



 (4)

where fintra is an MLP on the initial node embedding

code that aggregates information from other nodes within

the same graph, fcross is a function that communicates

cross-graph information, and fupdate is an MLP used to

update the node features in the graph, whose input is the

concatenation of the current node features, the aggregated

information from within, and across the graphs. fcross is

designed as an Attention-based module:

ap→i =
exp(sh(h

(t)
i ,h(t)

p )
∑

p exp(sh(h
(t)
i ,h(t)

p )

µp→i = ap→i

(

h
(t)
i − h(t)

p

)

(5)

where ap→i is the attention value (scalar) between node p in

the second graph and node i in the first, and such attention

weights are calculated for every pair of nodes across the

two graphs; sh is implemented as the dot product of the

embedded code vectors. The interaction of all the nodes

p ∈ V2 with the node i in V1 is then given by:

∑

p

µp→i =
∑

p

ap→i

(

h
(t)
i − h(t)

p

)

= h
(t)
i −

∑

p

ap→ih
(t)
p

(6)

Intuitively,
∑

p µp→i measures the (dis)similarity be-

tween h
(t)
i and its nearest neighbor in the other graph. The

pairwise attention computation results in stronger structural

bonds between the two graphs, but requires additional com-

putation. We use five rounds of message propagation, then

the representation for each node is updated accordingly.

Aggregator. A 1024-D graph-level representation, hG, is

obtained via a feature aggregator MLP, fG, that takes as in-

put, the set of node representations {h(T )
i }, as given below:

hG = MLPG

(

∑

i∈V

σ(MLPgate(h
(T )
i ))⊙MLP (h

(T )
i )

)

(7)

Graph-level embeddings for the two layout graphs is

similarly computed.

hG1
= fG({h(T )

i }i∈V1
)

hG2
= fG({h(T )

p }p∈V2
)

3.3. Training

To learn a layout similarity metric, we borrow the Triplet

training framework [13]. Specifically, given two pairs of

layout graphs, i.e., anchor-positive and anchor-negative,

each pair is passed through the same GMN module to get

the graph embeddings in the context of the other graph, as

shown in Fig 5. A margin loss based on the L2 distance be-

tween the graph embeddings, as given in equation 8, is used

to backpropagate the gradients through GMN.

Ltri(a, p, n) = max(0, γ +
∥

∥hGa
− hGp

∥

∥

2

−‖h′

Ga
− hGn

‖2)
(8)

4. Datasets

We use two kinds of layout datasets in our experiments:

(1) UI layouts from the RICO dataset [7], and (2) floorplans
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Figure 5. Given a triplet of graphs Ga, Gp and Gn corresponding

to the anchor, positive and negative examples respectively, the an-

chor graph paired with each of other two graphs is passed through

a Graph Matching Network (Fig 4) to get two 1024-D embeddings.

Note that the anchor graph has different contextual embeddings

hGa and h
′

Ga. LayoutGMN is trained using the margin loss (mar-

gin=5) on the L2 distances of the two paired embeddings.

from the RPLAN dataset [42]. After some data filtering , the

size of the two datasets is respectively, 66261 and 77669.

In the absence of a ground truth label set and the need

for obtaining the triplets in a consistent manner, we resort

to using IoU values of two layouts, represented as multi-

channel images, to ascertain their closeness. Given an an-

chor layout, the threshold on IoU values to classify another

layout as positive, from observations, is 0.6 for both UIs

and floorplans. Negative examples are those that have a

threshold value of at least 0.1 less than the positive ones,

avoiding some incorrect ”negatives” during training. The

train-test sizes for the aforementioned datasets are respec-

tively: 7,700-1,588, 25,000-7,204. In the filtered floorplan

training dataset [42], the distinct number of semantic cat-

egories/rooms across the dataset is nine and the maximum

number of rooms per floorplan is eight. Similarly, for the

filtered UI layout dataset [7], the number of distinct seman-

tic categories is twenty-five and the number of elements per

UI layout across the dataset is at most hundred.

5. Results and Evaluation

We evaluate LayoutGMN by comparing its retrieval re-

sults to those of several baselines, evaluated using human

judgements. Similarity prediction by our network is effi-

cient: taking 33 milliseconds per layout pair on a CPU.

With our learning framework, we can efficiently retrieve

multiple, sorted results by batching the database samples.

5.1. Baselines

Graph Kernel (GK) [8]. GK is one of the earliest struc-

tural similarity metrics, initially developed to compare in-

door 3D scenes. We adopt it to 2D layouts of floorplans and

UI designs. We input the same layout graphs to GK to get

retrievals from the two databases, and use the best setting

based on result quality/computation cost trade-off.

Method
Precision@k (%)

k=1 (↑) k=5 (↑) k=10 (↑)

Graph Kernel [8] 33.33 15.83 11.46

U-Net Triplet [35] 27.08 10.83 7.92

IoU Metric 43.75 22.92 14.38

GCN-CNN Triplet [30] 39.6 17.1 13.33

LayoutGMN 47.91 22.92 15.83

Graph Kernel [8] 27.27 15.15 12.42

U-Net Triplet [35] 28.28 18.18 15.05

IoU Metric 33.84 24.04 17.48

GCN-CNN Triplet [30] 37.37 22.02 17.02

LayoutGMN 38.38 25.35 21.21

Table 1. Precision scores for the top-k retrieved results obtained

using different methods, on a set of randomly chosen UI and floor-

plan queries. The first set of five comparisons is for UI layouts,

followed by floorplans.

U-Net [35]. As one of the best segmentation networks, we

use U-Net in a triplet network setting to auto-encode layout

images. The input to the network is a multi-channel image

with semantic segmentations. The network is trained on the

same set of triplets as LayoutGMN until convergence.

IoU Metric. Given two multi-channel images, we use the

IoU values between two layout images to get their IoU

score, and use this score to sort the examples in the datasets

to rank the retrievals for a given query.

GCN-CNN [30]. The state-of-the-art network for struc-

tural similarity on UI layouts is a hybrid network comprised

of an attention-based GCN, similar to the gating mechanism

in [28], coupled with a CNN. In this original GCN-CNN,

the training triplets are randomly sampled every epoch,

leading to better training due to diverse training data. In

our work, for a fair comparison over all the aforementioned

networks, we sample a fixed set of triplets in every epoch

of training. The GCN-CNN network is trained on the two

datasets of our interest, using the same training data as ours.

Qualitative retrieval results for GCN-CNN, IoU metric

and LayoutGMN for a given query are shown in Figure 6.

5.2. Evaluation Metrics

Precision@k scores. To validate the correctness of Lay-

outGMN as a tool for measuring layout similarity, we start

by evaluating layout retrieval from a large database. A stan-

dard evaluation protocol for the relevance of ranked lists

is the Precision@k scores [31], or P@k, for short. Given

a query qi from the query set Q = {q1, q2, q3, ..., qn},

we measure the relevance of the ranked lists L(qi) =
[li1, li2, ...., lik, ....] using the precision score,

P@k(Q, L) =
1

k|Q|
∑

qi∈Q

k
∑

j=1

rel(Lij , qi), (9)
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Figure 6. Top-5 retrieved results for an input query based on IoU metric, GCN-CNN Triplet [30] and LayoutGMN. We observe that

the ranked results returned by LayoutGMN are closer to the input query than the other two methods, although it was trained on triplets

computed using the IoU metric. Attention weights for understanding structural correspondence in LayoutGMN are shown in Figure 1 and

also provided in the supplementary material. UI and floorplan IDs from the RICO dataset [7] and RPLAN dataset [42], respectively, are

indicated on top of each result. More results can be found in the supplementary material.

where rel(Lij , qi) is a binary indicator of the relevance of

the returned element Lij for query qi. In our evaluation,

due to the lack of a labeled and exhaustive recommendation

set for any query over the layout datasets employed, such a

binary indicator is determined by human subjects.

Table 1 shows the P@k scores for different networks de-

scribed in Section 5.1 employed for the layout retrieval task.

To get the precision scores, similar to [30], we conducted

a crowd-sourced annotation study via Amazon Mechani-

cal Turk (AMT) on the top-10 retrievals per query, for N

(N = 50 for UIs and 100 for floorplans) randomly chosen

queries outside the training set. 10 turkers were asked to in-

dicate the structural relevance of each of the top-10 results

per query, without any specific instructions on what a struc-

tural comparison means. A result was considered relevant

if at least 6 turkers agreed. For details on the AMT study,

please see the supplementary material.

We observe that LayoutGMN better matches humans’

notion of structural similarity. [30] performs better than the

IoU metric on floorplan data (+3.5%) on the top-1 retrievals

and is comparable to IoU metric on top-5 and top-10 results.

On UI layouts, the IoU metric is judged better by turkers

than [30]. U-Net fails to retrieve structurally similar results

as it overfits on the small amount of training data, and re-

lies more on image pixels due to its convolutional structure.

LayoutGMN outperforms other methods by at least 1% for

all k, on both datasets. The precision scores on floorplans

(bottom-set) are lower than on UI layouts perhaps because

they are easier to compare owing to smaller set of semantic

elements than UIs and turkers tend to focus more on the size

and boundary of the floorplans in additional to the struc-

tural arrangements. We believe that when a lot of semantics

are present in the layouts and are scattered (as in UIs), the

users tend to look at the overall structure instead of trying

to match every single element owing to reduced attention-

span, which likely explains higher scores for UIs.

Overlap@k score. We propose another measure to quan-

tify the stability of retrieved results: the Overlap@k score,

or Ov@k for short. The intuition behind Ov@k is to quan-

tify the consistency of retrievals for any similarity metric,
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Method
Overlap@k (%)

k=5 (↑) k=10 (↑)

IoU Metric 50.6 49.4

GCN-CNN Triplet [30] 46.8 45.6

LayoutGMN 49.8 49.8

IoU Metric 30.42 30.8

GCN-CNN Triplet [30] 43.2 46.8

LayoutGMN 47.6 50.8

Table 2. Overlap scores for checking the consistency of retrievals

for a query and its top-1 retrieved result, over 50 such pairs. The

first set of three rows are for UI layouts, followed by floorplans.

by checking the number of similarly retrieved results for a

query and its top-1 result. The higher this score, the better

the retrieval consistency, and thus, higher the retrieval sta-

bility. Specifically, if Q1 is a set of queries and Q
top1
1 the

set of top-1 retrieved results for every query in Q1, then

Ov@k(Q1, Q
top1
1 ) =

1

k|Q1|
∑

qm∈Q1

qp=top1(qm)

k
∑

j=1

(Lmj ∧ Lpj),

(10)

where Lij is the jth ranked result for the query qi, and ∧ is

the logical AND. Thus, (Lmj ∧ Lpj) is 1 if the jth result

for query qm ∈Q1 and query qp = top1(Q1)∈Q
top1
1 are the

same. Ov@k measures the ability of the layout similarity

metric to replicate the distance field implied by a query by

its top-ranked retrieved result. The score makes sense only

when the ranked results returned by a layout similarity tool

are deemed reasonable, as assessed by the P@k scores.

Table 2 shows the Ov@k scores with k = 5, 10 for

IoU, GCN-CNN [30], and LayoutGMN on 50 such pairs.

On UIs (first three rows), IoU metric has a slightly higher

Ov@5 score (+0.6%) than LayoutGMN. Also, it shares the

largest P@5 score with LayoutGMN, indicating that IoU

metric has slightly better retrieval stability for the top-5 re-

sults. However, in the case of Ov@10, LayoutGMN has

a higher score (+0.4%) than the IoU metric and also has a

higher P@10 score than the other two methods, indicating

that when top-10 retrievals are considered, LayoutGMN has

slightly better consistency on the retrievals.

As for floorplans (last three rows), Table 1 already shows

that LayoutGMN has the best P@k scores. This, coupled

with a higher Ov@k scores, indicate that on floorplans, Lay-

outGMN has better retrieval stability. In the supplementary

material, we show qualitative results on the stability of re-

trievals for the three methods.

Classification accuracy. We also measure the classifica-

tion accuracy of test-triplets as a sanity check. However,

such a measure alone is not a sufficient one for correct-

ness of a similarity metric employed in information retrieval

tasks [31]. We present it alongside P@k and Ov@k scores

Method
Test Accuracy on Triplets

IoU-based (↑) User-based (↑)

Graph Kernel [8] 90.09 90.73

U-Net Triplet [35] 96.67 93.38

GCN-CNN Triplet [30] 96.45 94.48

LayoutGMN 98.96 95.80

Graph Kernel [8] 92.07 95.60

U-Net Triplet [35] 93.01 91.00

GCN-CNN Triplet [30] 92.50 91.8

LayoutGMN 97.54 97.60

Table 3. Classification accuracy on test triplets obtained using IoU

metric (IoU-based) and annotated by users (User-based). The first

set of comparisons is for UI layouts, followed by floorplans.

Figure 7. Retrieval results for the bottom-left query in Fig 6, when

adjacency graphs are used. We observe, on most of the queries,

that the performance of LayoutGMN improves, but degrades in

the case of GCN-CNN [30] on floorplan data.

for a broader, informed evaluation, in Table 3. Since user

annotations are expensive and time consuming (and hence

the motivation to use IoU metric to get weak training la-

bels), we only get user annotations on 452 triplets for both

UIs and floorplans, and the last column of Table 3 reflects

the accuracy on such triplets. LayoutGMN outperforms all

the baselines by atleast 1.32%, on triplets obtained using

both, IoU metric and user annotations.

5.3. Fullyconnected vs. Adjacency Graphs

Following [30], we employed fully connected graphs for

our experiments until now and observed that such graphs

are a good design for training graph neural networks for

learning structural similarity. We also performed experi-

ments using adjacency graphs on GCN-CNN [30] and Lay-

outGMN, and observed that, for floorplans (where the graph

node count is small), the quality of retrievals improved in

the case of LayoutGMN, but degraded for GCN-CNN. This

is mainly because GCN-CNN obtains independent graph

embeddings for each input graph and when the graphs are

built only on adjacency connections, some amount of global

structural prior is lost. On the other hand, GMNs obtain bet-

ter contextual embeddings by now matching the sparsely

connected adjacency graphs, as a result of narrower search

space; for a qualitative result using adjacency graphs, see

Figure 7. However, for UIs (where the graph node count
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Structure encoding with
Precision@k (%)

k=1 (↑) k=5 (↑) k=10 (↑)

No edges 30 16.39 11.3

No box positions 15 7.2 5.4

No node semantics 24 11.2 8.4
Table 4. Precision@K scores for ablation studies on structural en-

coding of floorplan graphs. The setup for crowd-sourced relevance

judgements via AMT is the same as in Table 1, on the same set of

100 randomly chosen queries.

is large), the elements are scattered all over the layout, and

no one heuristic is able to capture adjacency relations per-

fectly. The quality of retrievals for both the networks de-

graded when using adjacency graphs on UIs. More results

can be found in the supplementary material.

5.4. Ablation Studies on Structural Representation

To evaluate how the node and edge features in our layout

representation contribute to network performance, we con-

duct an ablation study by gradually removing these features.

Our design of the initial representation of the layout graphs

(Sec 3.1) are well studied in prior works on layout gener-

ation [11, 26], visual reasoning, and relationship detection

tasks [12, 44, 30]. As such, we focus on analyzing Lay-

outGMN’s behavior when strong structural priors viz., the

edges, box positions, and element semantics, are ablated.

Graph edges. Removing graph edges results in loss of

structural information, with only the attention-weighted

node update (Eq. 4) taking place. When the number of

graph nodes is small, e.g., for floorplans, edge removal does

not lead to random retrievals, but the retrieved results are

poorer compared to when edges are present; see Table 4.

Effect of box positions. The nodes of the layout graphs

encode both the absolute box positions and the element se-

mantics. When the position encoding information is with-

drawn, arguably, the most important cue is lost. The result-

ing retrievals from such a poorly trained model, as seen in

the second row of Table 4, are noisy as semantics alone do

not provide enough structural priors.

Effect of node semantics. Next, when the box positions

are preserved but the element semantics are not encoded,

we observe that the network slowly begins to understand

element comparison guided by the position info, but falls

short of understanding the overall structure information, see

Table 4. LayoutGMN takes into account all the above infor-

mation returning structurally sound results (Table 1), even

relative to the IoU metric.

5.5. Attentionbased Layout Label Transfer

We present layout label transfer, via attention-based

structural element matching, as a natural application of Lay-

outGMN. Given a source layout image I1 with known la-

bels, the goal is to transfer the labels to a target layout I2.

Figure 8. Element-level label transfer results from a source image

I1 to a target image I2, using a pretrained LayoutGMN vs. maxi-

mum pixel-overlap matching. LayoutGMN predicts correct labels

via attention-based element matching.

A straight-forward approach to establishing element cor-

respondence is via maximum area/pixel-overlap matching

for every element in I2 with respect to all the elements

in I1. However, this scheme is highly sensitive to ele-

ment positions within the two layouts. Moreover, raster-

alignment (via translations) of layouts is non-trivial to for-

mulate when the two layout images have different bound-

aries and structures. LayoutGMN, on the other hand, is ro-

bust to such boundary variations, and can be directly used

to obtain element-level correspondences using the built-in

attention mechanism that provides an attention score for ev-

ery element-level match. Specifically, we use a pretrained

LayoutGMN which is fed with two layout graphs, where the

semantic encoding of all nodes is set to a vector of ones.

As shown in Figure 8, the pretrained LayoutGMN is able

to find the correct labels despite masking the semantic infor-

mation at the input. Note that when semantic information

is masked at the input, such a transfer can not be applied to

any two layouts. It is limited by a weak/floating alignment

of I1 and I2, as seen in Figure 8.

6. Conclusion, limitation, and future work

We present the first deep neural network to offer both

metric learning of structural layout similarity and structural

matching between layout elements. Extensive experiments

demonstrate that our metric best matches human judgement

of structural similarity for both floorplans and UI designs,

compared to all well-known baselines.

The main limitation of our current learning framework

is the requirement for strong supervision, which justifies, in

part, the use of the less-than-ideal IoU metric for network

training. An interesting future direction is to combine few-

shot or active learning with our GMN-based triplet network,

e.g., by finding ways to obtain small sets of training triplets

that are both informative and diverse [24]. Another limita-

tion of our current network is that it does not learn hierar-

chical graph representations or structural matching, which

would have been desirable when handling large graphs.
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[40] Raoul Wessel, Ina Blümel, and Reinhard Klein. The room

connectivity graph: Shape retrieval in the architectural do-

main. 2008. 2

[41] W John Wilbur, Andrey Rzhetsky, and Hagit Shatkay. New

directions in biomedical text annotation: definitions, guide-

lines and corpus construction. BMC bioinformatics, 7(1):1–

10, 2006. 2

[42] Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-

Hao Qi, and Ligang Liu. Data-driven interior plan genera-

tion for residential buildings. ACM Transactions on Graph-

ics (TOG), 38(6):1–12, 2019. 1, 2, 5, 6

[43] Kai Xu, Rui Ma, Hao Zhang, Chenyang Zhu, Ariel Shamir,

Daniel Cohen-Or, and Hui Huang. Organizing hetero-

geneous scene collections through contextual focal points.

ACM Transactions on Graphics (TOG), 33(4):1–12, 2014. 2

[44] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring

visual relationship for image captioning. In Proceedings of

the European conference on computer vision (ECCV), pages

684–699, 2018. 3, 8

[45] Ziqi Zhang, Sam Chapman, and Fabio Ciravegna. A method-

ology towards effective and efficient manual document an-

notation: addressing annotator discrepancy and annotation

quality. In International Conference on Knowledge En-

gineering and Knowledge Management, pages 301–315.

Springer, 2010. 2

[46] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao,

and Zihan Zhou. Structured3D: A Large Photo-realistic

Dataset for Structured 3D Modeling. In Eur. Conf. Comput.

Vis., 2020. 1

[47] Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson WH

Lau. Content-aware generative modeling of graphic design

layouts. ACM Transactions on Graphics (TOG), 38(4):1–15,

2019. 1, 2

[48] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Pub-

laynet: largest dataset ever for document layout analysis. In

2019 International Conference on Document Analysis and

Recognition (ICDAR), pages 1015–1022. IEEE, 2019. 1

11057


