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Abstract

Compared to feature point detection and description, de-

tecting and matching line segments offer additional chal-

lenges. Yet, line features represent a promising complement

to points for multi-view tasks. Lines are indeed well-defined

by the image gradient, frequently appear even in poorly tex-

tured areas and offer robust structural cues. We thus hereby

introduce the first joint detection and description of line seg-

ments in a single deep network. Thanks to a self-supervised

training, our method does not require any annotated line

labels and can therefore generalize to any dataset. Our

detector offers repeatable and accurate localization of line

segments in images, departing from the wireframe parsing

approach. Leveraging the recent progresses in descriptor

learning, our proposed line descriptor is highly discrimi-

native, while remaining robust to viewpoint changes and

occlusions. We evaluate our approach against previous line

detection and description methods on several multi-view

datasets created with homographic warps as well as real-

world viewpoint changes. Our full pipeline yields higher

repeatability, localization accuracy and matching metrics,

and thus represents a first step to bridge the gap with learned

feature points methods. Code and trained weights are avail-

able at https://github.com/cvg/SOLD2.

1. Introduction

Feature points are at the core of many computer vision

tasks such as Structure-from-Motion (SfM) [13, 44], Simul-

taneous Localization and Mapping (SLAM) [35], large-scale

visual localization [41, 46] and 3D reconstruction [9], due

to their compact and robust representation. Yet, the world

is composed of higher-level geometric structures which are

semantically more meaningful than points. Among these

structures, lines can offer many benefits compared to points.

Lines are widespread and frequent in the world, especially

in man-made environments, and are still present in poorly

textured areas. In contrast to points, they have a natural ori-

entation, and a collection of lines provide strong geometric

* Authors contributed equally.

Figure 1: Line segment detection and matching. Our ap-

proach detects repeatable lines and is able to match sub-

segments to handle partial occlusions. On the right, lines of

the same color are matched together.

clues about the structure of a scene [57, 49, 15]. As such,

lines represent good features for 3D geometric tasks.

Previous methods to detect line segments in images often

relied on image gradient information and handcrafted fil-

ters [53, 1]. Recently, deep learning has also enabled robust

and real-time line detection [18]. Most learned line detectors

are however tackling a closely related task: wireframe pars-

ing, which aims at inferring the structured layout of a scene

based on line segments and their connectivity [17, 63, 59, 64].

These structures provide strong geometric cues, in particular

for man-made environments. Yet, these methods have not

been optimized for repeatability across images, a vital fea-

ture for multi-view tasks, and their training requires ground

truth lines that are cumbersome to manually label [17].

The traditional way to match geometric structures across

images is to use feature descriptors. Yet, line descriptors face

several challenges: line segments can be partially occluded,

their endpoints may not be well localized, the scale of the

area to describe around each line fluctuates a lot, and it

can be severely deformed under perspective and distortion
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changes [43]. Early line descriptors focused on extracting a

support region around each line and on computing gradient

statistics on it [56, 61]. More recently, motivated by the

success of learned point descriptors [7, 9, 39], a few deep

line descriptors have been proposed [24, 51, 23]. However,

they are not designed to handle line occlusion and remain

sensitive to poorly localized endpoints.

In this work, we propose to jointly learn the detection and

description of line segments. To this end, we introduce a

self-supervised network, inspired by LCNN [63] and Super-

Point [7], that can be trained on any image dataset without

any labels. Pretrained on a synthetic dataset, our method is

then generalized to real images. Our line detection aims at

maximizing the line repeatability and at being as accurate

as possible to allow its use in geometric estimation tasks.

The learned descriptor is designed to be robust to occlusions,

while remaining as discriminative as the current learned

point descriptors. To achieve that, we introduce a novel

line matching based on dynamic programming and inspired

by sequence alignment in genetics [36] and classical stereo

matching [8]. Thus, our self-supervised occlusion-aware line

description and detection (SOLD2) offers a generic pipeline

that aims at bridging the gap with the recent learned feature

point methods. Overall, our contributions can be summa-

rized as follows:

• We propose the first deep network for joint line segment

detection and description.

• We show how to self-supervise our network for line detec-

tion, allowing training on any dataset of real images.

• Our line matching procedure is robust to occlusion and

achieves state-of-the-art results on image matching tasks.

2. Related work

Line detection. Gradient-based line segment detection

methods such as LSD [53] and EDLines [1] offer a high

runtime efficiency, but are not very repeatable under view-

point and appearance changes. Deep learning is notoriously

good at tackling these issues, but learned line detectors have

emerged only recently, with the introduction of the wire-

frame parsing [17, 59, 58, 2]. Wireframes are collections

of line segments connected by their two endpoints usually

labeled by humans [17]. Wireframes can be parameterized

by the line junctions associated with a line verification mod-

ule [17, 63], by an attraction field map (AFM) [58, 59], by a

connected graph [62], by a root point and two displacements

for the endpoints [18] and can benefit from a deep Hough

transform prior [16, 28]. Although these methods can extract

qualitatively good line segments from images, they have not

been trained to produce repeatable lines under viewpoint

changes and can still miss some important line landmarks

for localization. We take inspiration from them but aim at

detecting generic line segments generalizing to most scenes.

Line description. While early line descriptors are based on

simple color histograms [4], most handcrafted descriptors

leverage the image gradient [55, 56]. The most common

approach is thus to extract a line support region around

each line and to summarize gradient information in subre-

gions [55, 56, 14, 61, 52]. Due to its good performance and

efficiency, the Line Band Descriptor (LBD) is the most fa-

mous of them, but it still suffers from large viewpoint and ap-

pearance changes. It is only recently that line description has

been tackled with deep learning. One approach is to extract

a patch around the line and to compute a low dimensional

embedding optimized through a triplet loss, as in DLD [24]

and WLD [23]. On the other hand, a line descriptor can be

considered as a collection of point descriptors, following

the idea of Liu et al. [29]. The Learned Line Descriptor

(LLD) [51] thus samples and describes multiple points along

each line, and is conceptually the closest previous approach

to our method. Designed to be fast and to be used for SLAM,

it is however not invariant to rotations and its performance

quickly degrades for large viewpoint changes.

Joint detection and description of learned features.

Jointly learned point detectors and descriptors [42, 7, 39, 32]

propose to share computation between the keypoint detec-

tion and description to get fast inference and better feature

representations from multi-task learning. The describe-then-

detect trend first computes a dense descriptor map and then

extracts the keypoints location from it [9, 32, 60, 50]. Super-

vision is provided by either pixel-wise correspondences from

SfM [9, 32], or from image level correspondences only [60].

HF-Net [40] unifies keypoint detection, local and global

description through a multi-task distillation with multiple

teacher networks. Towards the fully unsupervised spectrum,

recent methods tightly couple the detector and descriptor

learning to output repeatable and reliable points [5, 39, 48].

On the other hand, Superpoint [7] first learned the concept of

interest points by pretraining a corner detector on a synthetic

dataset and later transferring it to real world images. We

adopt here a similar approach extended to line segments.

Line matching. Beyond simply comparing descriptor simi-

larities, several works tried to leverage higher-level structural

cues to guide line matching [25]. One approach considers

the neighboring lines/points and finds similar patterns across

images, for instance through local clusters of lines [54],

intersections between lines [21] or line-junction-line struc-

tures [27, 26]. However, these methods cannot match iso-

lated lines. Another direction is to find coplanar sets of lines

and points and to leverage line-point invariants as well as sim-

ple point matching to achieve line matching [30, 10, 11, 38].

Finally, a last approach consists in matching points sampled

along a line, using for example intensity information and

epipolar geometry [43] or simply point descriptors [51]. Our

work follows this direction but offers a flexible matching of

the points along the line, which handles occlusions.
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Figure 2: Training pipeline overview. Left: Our detector network is first trained on a synthetic dataset with known ground

truth. Middle: A pseudo ground truth of line segments is then generated on real images through homography adaptation.

Right: Finally, the full model with descriptors is trained on real images using the pseudo ground truth.

3. Method

We propose a unified network to perform line segment

detection and description, allowing to match lines across dif-

ferent images. We achieve self-supervision in two steps. Our

detector is first pretrained on a synthetic dataset with known

ground truth. The full detector and descriptor can then be

trained by generating pseudo ground truth line segments

on real images using the pretrained model. We provide an

overview of our training pipeline in Figure 2 and detail its

parts in the following sections.

3.1. Problem formulation

Line segments can be parametrized in many ways: with

two endpoints; with a middle point, a direction and a length;

with a middle point and offsets for the endpoints; with an

attraction field, etc. In this work, we chose the line represen-

tation with two endpoints for its simplicity and compatibility

with our self-supervision process discussed in Section 3.4.

For an image I with spatial resolution h× w, we thus con-

sider in the following; the set of all junctions P = {pn}
N
n=1

and line segments L = {lm}Mm=1 of I . A line segment lm is

defined by a pair of endpoints (e1m, e2m) ∈ P 2.

3.2. Junction and line heatmap inference

Our network takes grayscale images as input, processes

them through a shared backbone encoder that is later divided

into three different outputs. A junction map J predicts the

probability of each pixel to be a line endpoint, a line heatmap

H provides the probability of a pixel to be on a line, and a

descriptor map D yields a pixel-wise local descriptor. We

focus here on the optimization of the first two branches,

while the following sections describe their combination to

retrieve and match the line segments of an image.

We adopt a similar approach to SuperPoint’s keypoint de-

coder [7] for the junction branch, where the output is a coarse

h
8 ×

w
8 ×65 feature map Jc. Each 65-dimensional vector cor-

responds to an 8×8 patch plus an extra “no junction” dustbin.

We define the ground truth junctions y ∈ {1, ..., 65}
h
8
×w

8 in-

dicating the index of the true junction position in each patch.

A junction is randomly selected when several ground truth

junctions land in the same patch and a value of 65 means that

there is no junction. The junction loss is then a cross-entropy

loss between Jc and y:

Ljunc =
64

h× w

h
8
,w
8

∑

i,j=1

− log

(

exp(Jc
ijyij

)
∑65

k=1 exp(J
c
ijk)

)

(1)

At inference time, we perform a softmax on the channel

dimension and discard the 65th dimension, before resizing

the junction map to get the final h× w grid.

The second branch outputs a line heatmap H at the image

resolution h × w. Given a binary ground truth HGT with

a value of 1 for pixels on lines and 0 otherwise, the line

heatmap is optimized via a binary cross-entropy loss:

Lline =
1

h× w

h,w
∑

i,j=1

−HGT
ij log(Hij) (2)

3.3. Line detection module

After inferring the junction map J and line heatmap H,

we threshold J to keep the maximal detections and apply a

non-maximum suppression (NMS) to extract the segment

junctions P̂ . The line segment candidates set L̂cand is com-

posed of every pair of junctions in P̂ . Extracting the final

line segment predictions L̂ based on H and L̂cand is non-

trivial as the activations along a segment defined by two

endpoints may vary a lot across different candidates. Our

approach can be broken down into four parts: (1) regular

sampling between endpoints, (2) adaptive local-maximum

search, (3) average score, and (4) inlier ratio.

11370



Regular sampling between endpoints: Instead of fetching all

the rasterized pixels between the two endpoints [64], we sam-

ple Ns uniformly spaced points (including the two endpoints)

along the line segment.

Adaptive local-maximum search: Using bilinear interpola-

tion to fetch the heatmap values at the extracted points qk
may discard some candidates due to the misalignment be-

tween the endpoints and the heatmap, especially for long

lines. To alleviate that, we search for the local maximal

heatmap activation hk around each sampled location qk
within a radius r proportional to the length of the line.

Average score: The average score is defined as the mean

of all the sampled heatmap values: yavg = 1
Ns

∑Ns

k=1 hk.

Given a threshold ξavg , valid line segment candidates should

satisfy yavg ≥ ξavg .

Inlier ratio: Only relying on the average score may keep

segments with a few high activations but with holes along

the line. To remove these spurious detections, we also con-

sider an inlier ratio yinlier = 1
Ns

|{hk|hk ≥ ξavg, hk ∈ H}|.
Given an inlier ratio threshold ξinlier, we only keep candi-

dates satisfying yinlier ≥ ξinlier.

3.4. Self­supervised learning pipeline

Inspired by the success of DeTone et al. [7], we extend

their homography adaptation to the case of line segments.

Let fjunc and fheat represent the forward pass of our net-

work to compute the junction map and the line heatmap. We

start by aggregating the junction and heatmap predictions as

in SuperPoint using a set of Nh homographies (Hi)
Nh

i=1:

Ĵ(I; fjunc) =
1

Nh

Nh
∑

i=1

H−1
i

(

fjunc(Hi(I))
)

(3)

Ĥ(I; fheat) =
1

Nh

Nh
∑

i=1

H−1
i

(

fheat(Hi(I))
)

(4)

We then apply the line detection module to the aggregated

maps Ĵ and Ĥ to obtain the predicted line segments L̂, which

are then used as ground truth for the next training round.

Figure 2 provides an overview of the pipeline. Similar to

Superpoint, this process can be iteratively applied to improve

the label quality. However, we found that a single round of

adaptation already provides sufficiently good labels.

3.5. Line description

Describing lines in images is a problem inherently more

difficult than describing feature points. A line can be par-

tially occluded, its endpoints are not always repeatable across

views, and the appearance of a line can significantly differ

under viewpoint changes. To tackle these challenges, we

depart from the classical description of a patch centered on

the line [24, 23], that is not robust to occlusions and end-

points shortening. Motivated by the success of learned point

descriptors, we formulate our line descriptor as a sequence

of point descriptors sampled along the line. Given a good

coverage of the points along the line, even if part of the line

is occluded, the points on the non-occluded part will store

enough line details and can still be matched.

The descriptor head of our network outputs a descriptor

map D ∈ R
h
4
×w

4
×128 and is optimized through the classical

point-based triplet loss [3, 34] used in other dense descrip-

tors [9]. Given a pair of images I1 and I2 and matching

lines in both images, we regularly sample points along each

line and extract the corresponding descriptors (Di
1)

n
i=1 and

(Di
2)

n
i=1 from the descriptor maps, where n is total number

of points in an image. The triplet loss minimizes the descrip-

tor distance of matching points and maximizes the one of

non-matching points. The positive distance is defined as

pi = ||Di
1 −Di

2||2 (5)

The negative distance is computed between a point and its

hardest negative example in batch:

ni = min
(

||Di
1 −D

h2(i)
2 ||2, ||D

h1(i)
1 −Di

2||2

)

(6)

where h1(i) = argmink∈[1,n] ||D
k
1 − Di

2|| such that the

points i and k are at a distance of at least T pixels and are

not part of the same line, and similarly for h2(i). The triplet

loss with margin M is then defined as

Ldesc =
1

n

n
∑

i=1

max(0,M + pi − ni) (7)

3.6. Multi­task learning

Detecting and describing lines are independent tasks with

different homoscedastic aleatoric uncertainties and their re-

spective losses can have different orders of magnitude. Thus,

we adopt the multi-task learning proposed by Kendall et

al. [20] with a dynamic weighting of the losses, where the

weights wjunc, wline and wdesc are optimized during train-

ing [19, 40]. The total loss becomes:

Ltotal = e−wjuncLjunc + e−wlineLline

+ e−wdescLdesc + wjunc + wline + wdesc

(8)

3.7. Line matching

At inference time, two line segments are compared based

on their respective collection of point descriptors sampled

along each line. However, some of the points might be oc-

cluded or, due to perspective changes, the length of a line can

vary and the sampled points may be misaligned. The order-

ing of the points matched along the line should nevertheless

be constant, i.e. the line descriptor is an ordered sequence of

descriptors, not just a set. To solve this sequence assignment

problem, we take inspiration from nucleotide alignment in
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Figure 3: Computation of a line match score. The optimal

path selected by the Needleman-Wunsch algorithm is shown

in green for matches and blue for skipping a point, using

here a gap score of zero.

bioinformatics [36] and pixel alignment along scanlines in

stereo vision [8]. We thus propose to find the optimal point

assignment through the dynamic programming algorithm

originally introduced by Needleman and Wunsch [36].

When matching two sequences of points, each point can

be either matched to another one or skipped. The score at-

tributed to a match of two points depends on the similarity

of their descriptors (i.e. their dot product), so that a higher

similarity gives a higher score. Skipping a point is penal-

ized by a gap score, which has to be adjusted so that it is

preferable to match points with high similarity but to skip

the ones with low similarity. The total score of a line match

is then the sum of all skip and match operations of the line

points. The Needleman-Wunsch (NW) algorithm returns

the optimal matching sequence maximizing this total score.

This is achieved with dynamic programming by filling a

matrix of scores row by row, as depicted in Figure 3. Given

a sequence of m points along a line l, m′ points along l′,

and the associated descriptors D and D′, this score matrix

S is an (m+ 1)× (m′ + 1) grid where S(i, j) contains the

optimal score for matching the first i points of l with the first

j points of l′. The grid is initialized by the gap score in the

first row and column, and is sequentially filled row by row,

using the scores stored in the left, top and top-left cells:

S(i, j) = max
(

S(i− 1, j) + gap,S(i, j − 1) + gap,

S(i− 1, j − 1) +DiTD′j
)

(9)

Once the matrix is filled, we select the highest score in

the grid and use it as a match score for the candidate pair of

lines. Each line of the first image is then matched to the line

in the second image with the maximum match score.

3.8. Implementation details

Network implementation. To have a fair comparison with

most wireframe parsing methods [63, 59, 28], we use the

same stacked hourglass network [37] for our backbone. The

three branches of our network are then series of convolutions,

ReLU activations and upsampling blocks via subpixel shuf-

fles [47]. Please refer to the supplementary material for more

details about the architecture. The network is optimized with

the Adam solver [22] with a learning rate of 0.0005.

Line parameters. We use a junction threshold of 1
65 ,

a heatmap threshold ξavg = 0.25, an inlier threshold

ξinlier = 0.75, we extract Ns = 64 samples along each

line to compute the heatmap and inlier scores, and we use

Nh = 100 homographies for the homography adaptation.

Matching details. The line descriptor is computed by

regularly sampling up to 5 points along each line segment,

but keeping a minimum distance of 8 pixels between each

point. Since the ordering of the points might be reversed

from one image to the other, we run the matching twice with

one point-set flipped. A gap score of 0.1 empirically yields

the best results during the NW matching. To speed up the

line matching, we pre-filter the set of line candidates with a

simple heuristic. Given the descriptor of the 5 points sampled

on a line of I1 to be matched, we compute the similarity with

their nearest neighbor in each line of I2, and average these

scores for each line. This yields a rough estimate of the line

match score, and we keep the top 10 best lines as candidates

for the NW matching. Finally, we retain at matching time

only the pairs that are mutually matched.

Training dataset. We use the same synthetic dataset as

in SuperPoint [7], labelling the corners of the geometrical

shapes as junctions and edges as line segments. For the

training with real images, we use the Wireframe dataset [17],

allowing a fair comparison with the current state of the art

also trained on these images. We follow the split policy in

LCNN [63]: 5, 000 images for training and 462 images for

testing. We however only use the images and ignore the

ground truth lines provided by the dataset.

4. Experiments

4.1. Line segment detection evaluation

To evaluate our line segment detection, we use the test

split of the Wireframe dataset [17] and the YorkUrban

dataset [6], which contains 102 outdoor images. For both

datasets, we generate a fixed set of random homographies

and warp each image to get a pair of matching images.

Line segment distance metrics. A line distance metric

needs to be defined to evaluate the accuracy of a line detec-

tion. We use the two following metrics:

Structural distance (ds): The structural distance of two line

segments l1 and l2 is defined as:

ds(l1, l2) = min(‖e11 − e12‖2 + ‖e21 − e22‖2,

‖e11 − e22‖2 + ‖e21 − e12‖2)
(10)

where (e11, e
2
1) and (e12, e

2
2) are the endpoints of l1 and l2

respectively. Contrary to the formulation of recent wireframe
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Wireframe Dataset [17] YorkUrban Dataset [6]

ds dorth time↓
# lines

/ image

ds dorth time↓
# lines

/ image
Rep-5 ↑ LE-5 ↓ Rep-5 ↑ LE-5 ↓ Rep-5 ↑ LE-5 ↓ Rep-5 ↑ LE-5 ↓

LCNN [63] @0.98 0.434 2.589 0.570 1.725 0.120 76 0.318 2.662 0.449 1.784 0.206 103

HAWP [59] @0.97 0.451 2.625 0.537 1.738 0.035 47 0.295 2.566 0.368 1.757 0.045 59

DeepHough [28] @0.9 0.419 2.576 0.618 1.720 0.289 135 0.315 2.695 0.535 1.751 0.519 206

TP-LSD [18] HG 0.358 3.220 0.647 2.212 0.038 72 0.233 3.357 0.524 2.395 0.038 113

TP-LSD [18] TP512 0.563 2.467 0.746 1.450 0.097 81 0.433 2.612 0.633 1.555 0.099 125

LSD [53] 0.358 2.079 0.707 0.825 0.026 228 0.357 2.116 0.704 0.876 0.031 359

Ours w/ CS 0.557 1.995 0.801 1.119 0.042 116 0.528 1.902 0.787 1.107 0.064 222

Ours 0.616 2.019 0.914 0.816 0.074 447 0.582 1.932 0.913 0.713 0.093 1085

Table 1: Line detection evaluation on the Wireframe [17] and YorkUrban [6] datasets. We compare repeatability and

localization error for an error threshold of 5 pixels in structural and orthogonal distances. Our approach provides the most

repeatable and accurate line detections compared to the other baselines.

parsing works [63, 59], we do not use square norms to make

it directly interpretable in terms of endpoints distance.

Orthogonal distance (dorth): The orthogonal distance of

two line segments l1 and l2 is defined as the average of

two asymmetrical distances da:

da(li, lj) = ‖e1j − pli(e
1
j )‖2 + ‖e2j − pli(e

2
j )‖2 (11)

dorth(l1, l2) =
da(l1, l2) + da(l2, l1)

2
(12)

where plj (.) denotes the orthogonal projection on line lj .

When searching the nearest line segment with this distance,

we ignore the line segments with an overlap below 0.5. This

definition allows line segments corresponding to the same

3D line but with different line lengths to be considered as

close, which can be useful in localization tasks [33].

Line segment detection metrics. Since the main objective

of our line segment detection method is to extract repeatable

and reliable line segments from images, evaluating it on the

manually labeled lines of the wireframe dataset [17] is not

suitable. We thus instead adapt the detector metrics proposed

for SuperPoint [7] to line segments using pairs of images.

Repeatability: The repeatability measures how often a line

can be re-detected in different views. It is the average per-

centage of lines in the first image that have a matching line

when reprojected in the second image. Two lines are con-

sidered to be matched when their distance is lower than a

threshold ǫ. This metric is computed symmetrically across

the two images and averaged.

Localization error: The localization error with tolerance ǫ is

the average line distance between a line and its re-detection

in the second image, only considering the matched lines.

Evaluation on the Wireframe and YorkUrban datasets.

We compare in Table 1 our line segment detection method

with 5 baselines including the handcrafted Line Segment

Detection (LSD) [53], wireframe parsing methods such as

LCNN [63], HAWP [59], TP-LSD [18], and Deep Hough-

transform Line Priors (DeepHough) [28]. LSD is used with

a minimum segment length of 15 pixels. For LCNN, HAWP,

and DeepHough, we chose thresholds (0.98, 0.97, and 0.9

respectively) on the line scores to maximize their perfor-

mances. We show two TP-LSD variants: HG using the same

backbone [37] as the other wireframe parsing baselines and

our method, and TP512 that uses a ResNet34 [12] backbone.

Overall, our method achieves the best performance in

terms of repeatability and localization error on both datasets.

We also include our method with candidate selection (CS),

which removes the segments having other junctions between

the two endpoints to avoid overlapping segments in the pre-

dictions L̂. Without overlapping segments, the performance

slightly decreases but we get fewer segments and faster in-

ference speed. The candidate selection is also used in our

descriptor evaluation section and is referred as line NMS.

4.2. Line segment description evaluation

Line descriptor metrics. Our line descriptor is evaluated

on several matching metrics, both on hand-labeled line seg-

ments and on detected line segments (LSD or our predicted

lines). When using ground truth lines, there is an exact one-

to-one line correspondence. For predicted lines, ground truth

matches are computed with a threshold ǫ similarly as for the

detector metrics. When depth is available, the lines are pro-

jected to 3D and directly compared in 3D space. Only lines

with a valid reprojection in the other image are considered.

Accuracy: Percentage of correctly matched lines given a set

of ground truth line matches.

Receiver operating characteristic (ROC) curve: Given a set

of matching lines, we compute the SIFT [31] descriptor of

each endpoint, average the SIFT distances between each

pair of lines, and use the second nearest neighboring line as

negative match. The ROC curve is then the true positive rate

(TPR) plotted against the false positive rate (FPR). The curve

is obtained by varying the descriptor similarity threshold

defining a positive match.

Precision: Ratio of true positive matches over the total num-

ber of predicted matches.

Recall: Ratio of true positive matches over the total number
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Method Accuracy↑

LBD [61] 0.610

LLD [51] 0.265

WLD [23] 0.933

SOLD2 (Ours) 0.978

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0
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Matching ROC curve

LBD
LLD
WLD
Ours

Figure 4: Descriptor evaluation on the Wireframe [17]

dataset with ground truth lines. Matching the exact same

lines yields a very high score for WLD and our method.

of ground truth matches.

Descriptor evaluation on ground truth lines. Our first

experiment aims at evaluating our approach on a perfect

set of lines with a one-to-one matching. We thus use the

Wireframe test set with its ground truth lines. We compare

our line matcher against 3 competing baselines: the hand-

crafted Line Band Descriptor (LBD) [61], the Learnable

Line Descriptor (LLD) [51] and the Wavelet Line Descriptor

(WLD) [23], an improved version of the Deep Line Descrip-

tor (DLD) [24]. The results are shown in Figure 4.

Since LLD was trained on consecutive video frames with

nearly no rotation between the images, it is not rotation in-

variant, hence its poor performance on the rotated images

of our dataset. WLD showed that they were able to sur-

pass the handcrafted LBD, and our descriptor gets a slight

improvement over WLD by 5%.

Robustness to occlusion experiment. In real-world appli-

cations, the detected lines across multiple views are rarely

exactly the same, and some may be partially occluded or

with different endpoints. To evaluate the robustness of our

descriptor to these challenges, we modify the Wireframe test

set to include artificial occluders. More precisely, we overlay

ellipses with random parameters and synthetic textures on

the warped image of each pair, until at most s% of the lines

are covered. We also shorten the line segments accordingly,

so that each line stops at the occluders boundary. We com-

pare line matches for various values of s and get the results

presented in Figure 5.

While all methods show a decrease in performance with

a larger occlusion, SOLD2 outperforms the other baselines

by a large margin for all degrees of occlusion. Note the sig-

nificant drop for the learned baseline WLD, which operates

on line patches and is thus severely affected by occlusions.

This experiment thus validates the robustness of our method

to occlusion and unstable line endpoints.

Descriptor evaluation on predicted lines. To assess the

performance of our proposed line description and matching,

we also compute the matching metrics on predicted line

0.0 0.2 0.4 0.6 0.8
Max occlusion percentage per line

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LBD LLD WLD Ours

Figure 5: Robustness to occlusion. Left: When evaluated

on the Wireframe dataset with ground truth lines and ran-

dom occluders, our method shows a higher robustness to

occlusion compared to other methods. Right: Example of

matches in the presence of occluders.

Wireframe [17] ETH3D [45]

Lines Desc Precision↑ Recall↑ Precision↑ Recall↑

LSD [53]

LBD [61] 0.496 0.597 0.132 0.376

LLD [51] 0.123 0.116 0.085 0.230

WLD [23] 0.528 0.804 0.127 0.398

SOLD2 (Ours) 0.591 0.889 0.159 0.525

Ours SOLD2 (Ours) 0.882 0.688 0.196 0.538

Ours w/ NMS SOLD2 (Ours) 0.777 0.949 0.190 0.688

Table 2: Matching precision and recall using LSD [53]

and our lines. We use a threshold of 5 pixels in structural

distance for the Wireframe [17] images and of 5cm for the

ETH3D images to define the ground truth matches.

segments instead of using hand-labeled lines. We perform

two sets of experiments, on the Wireframe test set and on the

ETH3D [45] images which offer real world camera motions

and can contain more challenging viewpoint changes than

homographic warps. For the latter, images are downsampled

by a factor of 8 and we select all pairs of images that share

at least 500 covisible 3D points in the provided 3D models.

In both experiments, we run the LSD detector and compute

all the line descriptor methods on them and also compare

it with our full line prediction and description. Table 2 and

Figure 6 evaluate the precision and recall of all methods.

Whether it is on synthetically warped images, or with

real camera changes, SOLD2 outperforms all the descriptor

baselines both in terms of matching precision and recall

when compared on LSD lines. Using our own lines also

improves the metrics, but the best performance is achieved

when we apply a line NMS to remove overlapping segments.

Having no overlap makes it indeed easier for the descriptor

to discriminate the closest matching line.
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Figure 6: Precision-Recall curves on predicted lines. Our

descriptor outperforms the other baselines when compared

on LSD lines and the best performance is achieved for our

full approach with our lines and descriptors.

Matching accuracy↑

GT lines GT lines

Method w/ occl.

SIFT [31] endpoints 0.532 0.403

Average descriptor 0.944 0.754

NN average 0.972 0.803

D2-Net [9] sampling 0.969 0.825

ASLFeat [32] sampling 0.963 0.812

Ours (3 samples) 0.979 0.813

Ours (5 samples) 0.978 0.846

Ours (10 samples) 0.972 0.836

Table 3: Ablation study

on the Wireframe [17]

dataset. We compare to

various line matching and

sampling methods along

each line. Ground truth

(GT) lines are used, both

without occlusion and with

up to 50% occlusion.

4.3. Ablation study

To validate the design choices of our approach, we per-

form an ablation study on the descriptor. SIFT endpoints

computes a SIFT descriptor [31] for both endpoints using

the line direction as keypoint orientation, and averages the

endpoints descriptor distance of each line candidate pair to

get the line match scores. Average descriptor computes a

line descriptor by averaging the descriptors of all the points

sampled along each line. NN average computes the descrip-

tor similarity of each line point with its nearest neighbor

in the other line and averages all the similarities to get a

line match score. D2-Net sampling and ASLFeat sampling

refer to our proposed matching method where the points are

sampled along the lines according to the saliency score intro-

duced in D2-Net [9] and ASLFeat [32], respectively. Finally,

we test our method with various numbers of points sampled

along each line. Table 3 compares the accuracy of all these

methods on the Wireframe dataset with ground truth lines

both with and without occluders.

Results show that simply matching the line endpoints

with a point descriptor such as SIFT is quickly limited and

confirm the necessity of having a specific descriptor for lines.

The small drop in matching accuracy for Average descrip-

tor and NN average highlights the importance of keeping

ordered points in NW matching. Surprisingly, smarter selec-

tions of points along each line such as D2-Net and ASLFeat

LSD [53] + WLD [23] SOLD2 (Ours)

Figure 7: Line matches visualization. Comparison of line

matches between LSD [53] + WLD [23] and our method

with correct matches, incorrect ones, and unmatched lines.

SOLD2 provides fewer but more repeatable lines that can be

matched in poorly textured areas and with repetitive patterns.

sampling perform slightly worse than a regular sampling of

points. Finally, there is a trade-off on the number of samples

along each line: the NW algorithm loses its benefit when

used with few points and the line descriptor becomes less

robust to occlusions. On the other hand, many points along

the line may produce descriptors that are too close from

each other, which makes it harder to correctly discriminate

between them. We found that 5 samples is a good trade-off

overall, as was also the case for LLD [51].

5. Conclusion

We presented the first deep learning pipeline for joint de-

tection and description of line segments in images. Thanks to

a self-supervised training scheme, our method can be applied

to most image datasets, in contrast with the current learned

line detectors limited to hand-labeled wireframe images. Our

descriptor and matching procedure addresses common issues

in line description by handling partial occlusions and poorly

localized line endpoints, while benefiting from the discrim-

inative power of deep feature descriptors. By evaluating

our method on a range of indoor and outdoor datasets, we

demonstrate an improved repeatability, localization accuracy

and matching performance compared to previous baselines.

While our line segment predictions are designed to be

generic, further work is needed to tune them for specific

applications. For instance, line-based localization may prefer

short and stable lines, while 3D reconstruction and wireframe

parsing may favor longer lines to get a better estimate of the

dimensions of the scene. Thanks to our flexible line segment

definition, a tuning of the line parameters allows to steer the

output segments in one direction or another. Overall, we

hope that our full line detection and description pipeline is

a first step to catch up with the more mature field of feature

point matching, to be later able to combine both points and

lines in a unified framework.
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