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Abstract

Given an incomplete image without additional con-

straint, image inpainting natively allows for multiple solu-

tions as long as they appear plausible. Recently, multiple-

solution inpainting methods have been proposed and shown

the potential of generating diverse results. However, these

methods have difficulty in ensuring the quality of each so-

lution, e.g. they produce distorted structure and/or blurry

texture. We propose a two-stage model for diverse inpaint-

ing, where the first stage generates multiple coarse results

each of which has a different structure, and the second stage

refines each coarse result separately by augmenting texture.

The proposed model is inspired by the hierarchical vector

quantized variational auto-encoder (VQ-VAE), whose hi-

erarchical architecture disentangles structural and textural

information. In addition, the vector quantization in VQ-

VAE enables autoregressive modeling of the discrete distri-

bution over the structural information. Sampling from the

distribution can easily generate diverse and high-quality

structures, making up the first stage of our model. In

the second stage, we propose a structural attention mod-

ule inside the texture generation network, where the mod-

ule utilizes the structural information to capture distant

correlations. We further reuse the VQ-VAE to calculate

two feature losses, which help improve structure coherence

and texture realism, respectively. Experimental results on

CelebA-HQ, Places2, and ImageNet datasets show that our

method not only enhances the diversity of the inpainting

solutions but also improves the visual quality of the gen-

erated multiple images. Code and models are available

at: https://github.com/USTC-JialunPeng/

Diverse-Structure-Inpainting.

1. Introduction

Image inpainting refers to the task of filling in the miss-

ing region of an incomplete image so as to produce a com-

plete and visually plausible image. Inpainting benefits a se-

*This work was supported by the Natural Science Foundation of China

under Grants 62036005 and 62022075. (Corresponding author: Dong

Liu.)

Figure 1. (Top) Input incomplete image, where the missing region

is depicted in gray. (Middle) Visualization of the generated diverse

structures. (Bottom) Output images of our method.

ries of applications including object removal, photo restora-

tion, and transmission error concealment. As an ill-posed

problem, inpainting raises a great challenge especially when

the missing region is large and contains complex content.

As such, inpainting has attracted much research attention.

Recently, a series of deep learning-based methods are

proposed for inpainting [10, 19]. They usually employ

encoder-decoder architectures and train the networks with

the combinations of reconstruction and adversarial losses.

To enhance the visual quality of the results, a number of

studies [23, 26, 32, 34, 36] adopt the contextual attention

mechanisms to use the available content for generating the

missing content. Also, several studies [13, 33, 35] propose

modified convolutions in replacement of normal convolu-

tions to reduce the artifacts.

The aforementioned methods all learn a deterministic

mapping from an incomplete image to a complete im-
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age. However, in practice, the solution to inpainting is not

unique. Without additional constraint, multiple inpainting

results are equally/similarly plausible for an incomplete im-

age, especially when the missing region is large and con-

tains complex content (e.g. Figure 1). Moreover, for typi-

cal applications, providing multiple inpainting results may

enable the user to select from them according to his/her

own preference. It then motivates the design for multiple-

solution inpainting.

In contrast to single-solution methods, multiple-solution

inpainting shall build a probabilistic model of the missing

content conditioned on the available content. Several recent

studies [38, 39] employ variational auto-encoder (VAE) ar-

chitectures and train the networks with the combinations of

Kullback-Leibler (KL) divergences and adversarial losses.

VAE-based methods [38,39] assume a Gaussian distribution

over continuous latent variables. Sampling from the Gaus-

sian distribution presents diverse latent features and leads to

diverse inpainted images. Although these methods can gen-

erate multiple solutions, some of their solutions are of low

quality due to distorted structures and/or blurry textures. It

may be attributed to the limitation of the parametric (e.g.

Gaussian) distribution when we try to model the complex

natural image content. In addition, recent studies more and

more demonstrate the importance of structural information,

e.g. segmentation maps [12,27], edges [17,30], and smooth

images [14, 21], for guiding image inpainting. Such struc-

tural information is yet to be incorporated into multiple-

solution inpainting. Thus, VAE-based methods [38,39] tend

to produce multiple results with limited structural diversity,

which is called posterior collapse in [29].

In this paper we try to address the limitations of the ex-

isting multiple-solution inpainting methods. First, instead

of parametric distribution modeling of continuous variables,

we resort to autoregressive modeling of discrete variables.

Second, we want to generate multiple structures in an ex-

plicit fashion, and then base the inpainting upon the gen-

erated structure. We find that the hierarchical vector quan-

tized VAE (VQ-VAE) [20] is suitable for our study1. First,

there is a vector quantization step in VQ-VAE making the

latent variables to be all discrete; as noted in [29], these dis-

crete latent variables allow the usage of powerful decoders

to avoid the posterior collapse. Second, the hierarchical lay-

out encourages the split of the image information into global

and local parts; with proper design, it may disentangle struc-

tural features from textural features of an image.

Based on the hierarchical VQ-VAE, we propose a two-

stage model for multiple-solution inpainting. The first

stage is known as diverse structure generator, where sam-

pling from a conditional autoregressive distribution pro-

1In this paper we use the basic model in [20], which is called VQ-

VAE-2. Note that our method can use other hierarchical VQ-VAE models

as well.

duces multiple sets of structural features. The second stage

is known as texture generator, where an encoder-decoder ar-

chitecture is used to produce a complete image based on the

guidance of a set of structural features. Note that each set of

the generated structural features leads to a complete image

(see Figure 1).

The main contributions we have made in this paper can

be summarized as follows:

• We propose a multiple-solution image inpainting

method based on hierarchical VQ-VAE. The method

has two distinctions from previous multiple-solution

methods: first, the model learns an autoregressive dis-

tribution over discrete latent variables; second, the

model splits structural and textural features.

• We propose to learn a conditional autoregressive net-

work for the distribution over structural features. The

network manages to generate reasonable structures

with high diversity.

• For texture generation we propose a structural atten-

tion module to capture distant correlations of structural

features. We also propose two new feature losses to

improve structure coherence and texture realism.

• Extensive experiments on three benchmark datasets in-

cluding CelebA-HQ, Places2, and ImageNet demon-

strate the superiority of our proposed method in both

quality and diversity.

2. Related Work

2.1. Image Inpainting

Traditional image inpainting methods such as diffusion-

based methods [1, 4] and patch-based methods [2, 5, 7, 8]

borrow image-level patches from source images to fill in the

missing regions. They are unable to generate unique content

not found in the source images. Furthermore, these meth-

ods often generate unreasonable results without considering

high-level semantics of the images.

Recently, learning-based methods which use deep con-

volutional networks are proposed to semantically predict

the missing regions. Pathak et al. [19] first apply adver-

sarial learning to the image inpainting. Iizuka et al. [10]

introduce an extra discriminator to enforce the local con-

sistency. Yan et al. [32] and Yu et al. [34] propose patch-

swap and contextual attention to make use of distant feature

patches for the higher inpainting quality. Liu et al. [13] and

Yu et al. [35] introduce partial convolutions and gated con-

volutions to reduce visual artifacts caused by normal con-

volutions. In order to generate reasonable structures and

realistic textures, Nazeri et al. [17] and Xu et al. [31] use

edge maps as structural information to guide image inpaint-

ing. Ren et al. [21] propose to use edge-preserved smooth

images instead of edge maps. Liu et al. [14] propose feature

equalizations to improve the consistency between the struc-

ture and the texture. However, these learning-based meth-
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ods only generate one optimal result for each incomplete in-

put. They focus on reconstructing ground truth rather than

creating plausible results.

To obtain multiple inpainting solutions, Zheng et al. [39]

propose a VAE-based model with two parallel paths, which

trades off between reconstructing ground truth and main-

taining the diversity of the inpainting results. Zhao et al.

[38] propose a similar VAE-based model which uses in-

stance images to improve the diversity. However, these

methods do not effectively separate the structural and tex-

tural information, they often produce distorted structures

and/or blurry textures.

2.2. VQ­VAE and Autoregressive Networks

The vector quantized variational auto-encoder (VQ-

VAE) [29] is a discrete latent VAE model which relies on

vector quantization layers to model discrete latent variables.

The discrete latent variables allow a powerful autoregres-

sive network such as PixelCNN [6, 18, 25, 28] to model la-

tents without worrying about the posterior collapse prob-

lem [29]. Razavi et al. [20] propose a hierarchical VQ-VAE

which uses a hierarchy of discrete latent variables to sepa-

rate the structural and textural information. Then they use

two PixelCNNs to model structural and textural informa-

tion, respectively. However, the PixelCNNs are conditioned

on the class label for image generation, while there is no

class label in the image inpainting task. Besides, the gener-

ated textures of the PixelCNNs lack fine-grained details due

to the lossy nature of VQ-VAE. It relieves the generation

model from modeling negligible information, but it hinders

the inpainting model from generating realistic textures con-

sistent with the known regions. The PixelCNNs are thus not

practical for image inpainting.

3. Method

As shown in Figure 2, the pipeline of our method con-

sists of three parts: hierarchical VQ-VAE Evq-Dvq , diverse

structure generator Gs and texture generator Gt. The hi-

erarchical encoder Evq disentangles discrete structural fea-

tures and discrete textural features of the ground truth Igt

and the decoder Dvq outputs the reconstructed image Ir.

The diverse structure generator Gs produces diverse dis-

crete structural features given an input incomplete image

Iin. The texture generator Gt synthesizes the image texture

given the discrete structural features and outputs the com-

pletion result Icomp. We also use the pre-trained Evq as

an auxiliary evaluator to define two novel feature losses for

better visual quality of the completion result.

3.1. Hierarchical VQ­VAE

In order to disentangle structural and textural informa-

tion, we pre-train a hierarchical VQ-VAE Evq-Dvq follow-

ing [20]. The hierarchical encoder Evq maps ground truth

Igt onto structural features sgt and textural features tgt. The

processing of Evq can be written as (sgt, tgt) = Evq(Igt).
These features are then quantized to discrete features by two

vector quantization layers. Each vector quantization layer

has K = 512 prototype vectors in its codebook and the vec-

tor dimensionality is D = 64. As such, each vector of fea-

tures is replaced by the nearest prototype vector based on

Euclidean distance. The processing of vector quantization

can be written as s̄gt = V Qs(sgt) and t̄gt = V Qt(tgt).
Finally, the decoder Dvq reconstructs image from these two

sets of discrete features. The processing of Dvq can be writ-

ten as Ir = Dvq(s̄gt, t̄gt).
The reconstruction loss of Evq-Dvq is defined as:

Lℓ2 = ‖Ir − Igt‖
2
2 (1)

To back-propagate the gradient of the reconstruction loss

through vector quantization, we use the straight-through

gradient estimator [3]. The codebook prototype vectors are

updated using the exponential moving average of the en-

coder output. As proposed in [29], we also use two commit-

ment losses Lsc and Ltc to align the encoder output with the

codebook prototype vectors for stable training. The com-

mitment loss of structural features is defined as:

Lsc = ‖sgt − sg[ s̄gt]‖
2
2 (2)

where sg denotes the stop-gradient operator [29]. The com-

mitment loss of textural features (denoted as Ltc) is similar

to Lsc. The total loss of Evq-Dvq is defined as:

Lvq = αℓ2Lℓ2 + αc(Lsc + Ltc) (3)

where αℓ2 and αc are loss weights.

For 256×256 images, the size of structural features is

32×32 and that of textural features is 64×64. We visu-

alize their discrete representations using the decoder Dvq .

The visualized results can be written as Dvq(s̄gt, 0) and

Dvq(0, t̄gt), where 0 is a zero tensor. As shown in Fig-

ure 2, the structural features model global information such

as shapes and colors, and the textural features model local

information such as details and textures.

3.2. Diverse Structure Generator

Previous multiple-solution inpainting methods [38, 39]

often produce distorted structures and/or blurry textures,

suggesting that these methods struggle to recover the struc-

ture and the texture simultaneously. Therefore, we first pro-

pose a diverse structure generator Gs which uses an au-

toregressive network to formulate a conditional distribution

over the discrete structural features. Sampling from the dis-

tribution can produce diverse structural features.

Similar to the PixelCNN in [20], our autoregressive net-

work consists of 20 residual gated convolution layers and
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Figure 2. Overview of the proposed method. (Top) Hierarchical vector quantized variational auto-encoder (VQ-VAE) consists of hierar-

chical encoder Evq and decoder Dvq . Evq extracts discrete structural features s̄gt and discrete textural features t̄gt. Dvq reconstructs

the image from these two sets of discrete features. (Middle) Diverse structure generator Gs models the conditional distribution over the

discrete structural features by using an autoregressive network, where s̄gt is used to calculate the loss LNLL. During inference, sampling

from the distribution can generate multiple possible structural features s̄gen. (Bottom) Texture generator Gt synthesizes the image texture

given the discrete structural features (̄sgt in the training and s̄gen in the inference). The pre-trained Evq is used as an auxiliary evaluator to

improve image quality, where s̄gt and t̄gt are used to calculate the losses Lsf and Ltf . During training, the hierarchical VQ-VAE is firstly

trained, and then Gs and Gt are trained individually. During inference, only Gs and Gt are used.

4 casual multi-headed attention layers. Since the PixelCNN

in [20] is conditioned on the class label for the image gener-

ation task, we make two modifications to make it practical

for the image inpainting task. First, we stack gated con-

volution layers to map the input incomplete image Iin and

its binary mask M to a condition. The condition is injected

into each residual gated convolution layer of the autoregres-

sive network. Second, we use a light-weight autoregressive

network by reducing both the hidden units and the residual

units to 128 for efficiency.

During training, Gs utilizes the input incomplete im-

age as the condition and models the conditional distribution

over s̄gt. This distribution can be written as pθ(s̄gt|Iin,M),
where θ denotes network parameters of Gs. The training

loss of Gs is defined as the negative log likelihood of s̄gt:

LNLL = −E Igt∼pdata
[log pθ(s̄gt|Iin,M)] (4)

where pdata denotes the distribution of training dataset.

During inference, Gs utilizes the input incomplete image

as condition and outputs a conditional distribution for gen-

erating structural features. This distribution can be written

as pθ(s̄gen|Iin,M). Sampling from pθ(s̄gen|Iin,M) sequen-

tially can generate diverse discrete structural features s̄gen.

Due to the low-resolution of structural features, our di-

verse structure generator can better capture global informa-

tion. It thus helps generate reasonable global structures. In

addition, the training objective of our diverse structure gen-

erator is to maximize likelihood of all samples in the train-

ing set without any additional loss. Thus, the generated

structures do not suffer from GAN’s known shortcomings

such as mode collapse and lack of diversity.

3.3. Texture Generator

Network Architecture. After obtaining the generated

structural features s̄gen, our texture generator Gt synthe-

sizes the image texture based on the guidance of s̄gen. The

network architecture of Gt is similar to the refine network

in [33]. As shown in Figure 2, the network architecture con-

sists of gated convolutions and dilated convolutions. Unlike
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existing inpainting methods, our texture generator Gt uti-

lizes the given structural features as guidance. The struc-

tural features are not only input to the first few layers of

Gt, but also input to our structural attention module. The

proposed structural attention module borrows distant infor-

mation based on the correlations of the structural features.

It thus ensures that the synthesized texture is consistent with

the generated structure.

Let Iout denote the output of Gt. The final completion

result Icomp is the output Iout with the non-masked pixels

directly set to ground truth. During training, Gt takes the

ground truth structural features s̄gt as input so that Icomp

is the reconstruction of ground truth. During inference, Gt

takes the generated structural features s̄gen as input so that

Icomp is the inpainting result.

Structural Attention Module. Attention modules are

widely used in the existing image inpainting methods. They

generally calculate the attention scores on a low-resolution

intermediate feature map of the network. However, due to

the lack of direct supervision on the attention scores, the

learned attention is insufficiently reliable [41]. These atten-

tion modules may refer to unsuitable features, resulting in

poor inpainting quality. To address this problem, we pro-

pose a structural attention module which directly calculates

the attention scores on the structural features. Intuitively,

regions with similar structures should have similar textures.

Calculating the attention scores on the structural features

can model accurate long-range correlations of structural in-

formation, thereby improving the consistency between the

synthesized texture and the generated structure.

In addition, the attention modules in the existing im-

age inpainting methods distinguish the foreground features

and the background features using the down-sampled mask.

This hand-crafted design may incorrectly divide the feature

map and produce artifacts in the inpainting result. There-

fore, our structural attention module calculates full attention

scores on the structural features. Unlike the foreground-

background cross attention that only models correlations

between the foreground and the background, our full atten-

tion learns full correlations regardless of the feature divi-

sion. It thus maintains the global consistency of the inpaint-

ing result. Moreover, our full attention does not increase the

amount of calculation compared to the cross attention.

Like [33], our structural attention module consists of an

attention computing step and an attention transfer step. The

attention computing step extracts 3×3 patches from the in-

put structural features. Then, the truncated distance similar-

ity score [23] between the patches at (x, y) and (x′, y′) is

defined as:

d̃(x,y),(x′,y′) = tanh(−(
d(x,y),(x′,y′) −m

σ
)) (5)

where d(x,y),(x′,y′) is the Euclidean distance, m and σ are

the mean value and the standard deviation of d(x,y),(x′,y′).

The truncated distance similarity scores are applied by a

scaled sotfmax layer to output full attention scores:

s∗(x,y),(x′,y′) = softmax(λ1d̃(x,y),(x′,y′)) (6)

where λ1 = 50. After obtaining the full attention scores

from the structural features, the attention transfer step re-

constructs lower-level feature maps (P l) by using the full

attention scores as weights:

ql(x′,y′) =
∑

x,y

s∗(x,y),(x′,y′)p
l
(x,y) (7)

where l ∈ (1, 2) is the layer number and pl(x,y) is the patch

of P l, and ql(x′,y′) is the patch of the reconstructed feature

map. The size of patches varies according to the size of fea-

ture map like [33]. Finally, the reconstructed feature maps

supplement the decoder of Gt via skip connections.

Training Losses. The total loss of Gt consists of a

reconstruction loss, an adversarial loss, and two feature

losses. The reconstruction loss of Gt is defined as:

Lℓ1 = ‖Iout − Igt‖1 (8)

We use SN-PatchGAN [35] as our discriminator Dt. The

hinge version of the adversarial loss for Dt is defined as:

Ld = E Igt∼pdata
[ReLU(1−Dt(Igt))]

+ E Icomp∼pz
[ReLU(1 +Dt(Icomp))]

(9)

where pz denotes the distribution of the inpainting results.

The adversarial loss for Gt is defined as:

Ladv = −E Icomp∼pz
[Dt(Icomp)] (10)

Some inpainting methods such as [13, 14] use the pre-

trained VGG-16 as an auxiliary evaluator to improve the

perceptual quality of the results. They define a perceptual

loss and a style loss based on the VGG features to train the

generator. Inspired by these feature losses, we propose two

novel feature losses by reusing our pre-trained hierarchical

encoder Evq as an auxiliary evaluator. As shown in Fig-

ure 2, Evq maps Icomp onto structural features scomp and

textural features tcomp. The structural feature loss of Gt is

defined as the multi-class cross-entropy between scomp and

s̄gt:

Lsf = −
∑

i,j

Iij log(softmax(λ2d̃ij)) (11)

Here, we set λ2 = 10. d̃ij denotes the truncated distance

similarity score between the ith feature vector of scomp and

the jth prototype vector of the structural codebook. Iij is

an indicator of the prototype vector class. Iij = 1 when

the ith feature vector of s̄gt belongs to the jth class of the

structural codebook, otherwise Iij = 0. The textural feature

loss (denoted as Ltf ) is similar to Lsf . The total loss of Gt

is defined as:

Ltg = αℓ1Lℓ1 + αadvLadv + αf (Lsf + Ltf ) (12)

where αℓ1, αadv , and αf are loss weights.
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Figure 3. Qualitative comparison results on two test images of CelebA-HQ. For each group, from top to bottom, from left to right, the

pictures are: incomplete image, results of CA [34], GC [35], CSA [15], SF [21], FE [14], results of PIC [39] (with blue box), results of

UCTGAN [38] (with green box), and results of our method (with red box).

Figure 4. Qualitative comparison results on two test images of Places2. For each group, from top to bottom, from left to right, the

pictures are: incomplete image, results of CA [34], GC [35], CSA [15], SF [21], FE [14], results of PIC [39] (with blue box), results of

UCTGAN [38] (with green box), and results of our method (with red box).
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Method PSNR↑ SSIM↑ IS↑ MIS↑ FID↓

Single-

Solution

CA [34] 23.65 0.8525 3.206 0.0207 16.64

GC [35] 25.23 0.8713 3.384 0.0235 12.24

CSA [15] 25.26 0.8840 3.408 0.0199 11.78

SF [21] 25.05 0.8717 3.360 0.0229 10.59

FE [14] 24.10 0.8632 3.357 0.0240 10.73

Multiple-

Solution

PIC [39] 23.93 0.8567 3.357 0.0225 11.70

UCTGAN [38] 24.39 0.8603 3.342 0.0237 11.74

Ours 24.56 0.8675 3.456 0.0245 9.784

Table 1. Quantitative comparison of different methods on the CelebA-HQ test set. For multiple-solution methods, we sample 50 images

for each incomplete image and report the average result. Note that PSNR and SSIM are full-reference metrics that compare the generated

image with the ground truth, but IS, MIS, and FID are not. For each metric, the best score is highlighted in bold, and the best score within

the other category is highlighted in red.

4. Experiments

4.1. Implementation Details

Our model is implemented in TensorFlow v1.12 and

trained on two NVIDIA 2080 Ti GPUs. The batch size is 8.

During optimization, the weights of different losses are set

to αℓ1 = αℓ2 = αadv = 1, αc = 0.25, αf = 0.1. We use the

Adam optimizer to train the three parts of our model. The

learning rate of Evq-Dvq is 10−4. The learning rate of Gs

follows the linear warm-up and square-root decay schedule

used in [20]. The learning rate of Gt is 10−4 and β1 = 0.5.

We also use polyak exponential moving average (EMA) de-

cay of 0.9997 when training Evq-Dvq and Gs. Each part

is trained for 1M iterations. During training, Evq-Dvq is

firstly trained, and then Gs and Gt are trained individually.

During inference, only Gs and Gt are used.

4.2. Performance Evaluation

We evaluate our method on three datasets including

CelebA-HQ [11], Places2 [40], and ImageNet [22]. We use

the original training, testing, and validation splits for these

three datasets. For CelebA-HQ, training images are down-

sampled to 256×256 and data augmentation is adopted.

For Places2 and ImageNet, training images are randomly

cropped to 256×256. The missing regions of the incom-

plete images can be regular or irregular. We compare our

method with state-of-the-art single-solution and multiple-

solution inpainting methods. The single-solution methods

among them are CA [34], GC [35], CSA [15], SF [21] and

FE [14]. The multiple-solution methods among them are

PIC [39] and UCTGAN [38]

Qualitative Comparisons. Figure 3 and Figure 4 show

the qualitative comparison results of center-hole inpaint-

ing on CelebA-HQ and Places2, respectively. It is difficult

for CA [34], GC [35] and CSA [15] to generate reason-

able structures without structural information acts as prior

knowledge. SF [21] and FE [14] use edge-preserved smooth

images to guide structure generation. However, they strug-

gle to synthesize fine-grained textures, which indicates that

their structural information provides limited help to texture

generation. PIC [39] and UCTGAN [38] show high di-

versity. But their results are of low quality, especially for

the challenging Places2 test images. Compared to these

methods, the results of our method have more reasonable

structures and more realistic textures, e.g. fine-grained hair

and eyebrows in Figure 3. In addition, the diversity of our

method is enhanced, e.g. different eye colors in Figure 3 and

varying window sizes in Figure 4. More qualitative results

and analyses of artifacts are presented in the supplementary

material.

Quantitative Comparisons. Following previous im-

age inpainting methods, we use common evaluation met-

rics such as peak signal-to-noise ratio (PSNR) and struc-

tural similarity (SSIM) to measure the similarity between

the inpainting result and ground truth. However, these full-

reference metrics are not suitable for the image inpainting

task because there are multiple plausible solutions for an

incomplete image. The image inpainting methods are sup-

posed to focus on generating realistic results rather than

merely approximating ground truth. Therefore, we also use

Inception Score (IS) [24], Modified Inception Score (MIS)

[38], and Fréchet Inception Distance (FID) [9] as perceptual

quality metrics. These metrics are consistent with human

judgment [9]. FID can also detect GAN’s known shortcom-

ings such as mode collapse and mode dropping [16].

Unlike previous multiple-solution methods [38, 39] that

use discriminator to select samples for quantitative evalu-

ation, we use all samples for fair comparison. The com-

parison is conducted on CelebA-HQ 1000 testing images

with 128×128 center holes. As shown in Table 1, multiple-

solution methods score relatively low on PSNR and SSIM

because they generate highly diverse results instead of ap-

proximating ground truth. Still, our method outperforms

PIC [39] and UCTGAN [38] on these two metrics. Fur-

thermore, our method outperforms all the other methods in

terms of IS, MIS and FID.
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(a) (b) (c) (d) (e)

Figure 5. Results of the ablation study on the structural attention

module. (a) Incomplete image. (b) Using cross attention on the

learned features. (c) Using full attention on the learned features.

(d) Using cross attention on the structural features. (e) Using full

attention on the structural features. [Best viewed with zoom-in.]

Full Structural SSIM↑ IS↑ FID↓

0.8606 3.402 11.55

X 0.8645 3.436 11.26

X 0.8675 3.416 10.12

X X 0.8676 3.467 9.670

Table 2. Quantitative comparison for the ablation study on the

structural attention module. Refer to Section 4.3 and Figure 5 for

description.

We also evaluate the diversity of our method using the

LPIPS [37] metric. The average score is calculated between

consecutive pairs of 50K results which are sampled from

1K incomplete images. Higher score indicates higher diver-

sity. The reported scores of PIC [39] and UCTGAN [38] are

0.029 and 0.030, respectively. Our method achieves a com-

parable score of 0.029. Please refer to the supplementary

material for some discussions about the diversity.

4.3. Ablation Study

We conduct an ablation study on CelebA-HQ to show

the effect of different components of the texture generator

Gt. Since the structure generator Gs can produce diverse

structural features, we randomly sample a set of generated

structural features. Then we use it across all the following

experiments for fair comparison.

Effect of structural attention module. We compare the

effect of different attention modules. The attention mod-

ule in [33] calculates cross attention scores on the learned

features, which often results in texture artifacts (see Fig-

ure 5(b)). Using full attention instead of cross attention

maintains global consistency (see Figure 5(c)). Using the

structural features instead of the learned features improves

the consistency between structures and textures (see Figure

5(d)). Our structural attention module calculates full atten-

tion scores on the structural features, which can synthesize

realistic textures, such as symmetric eyes and eyebrows (see

Figure 5(e)). The quantitative results in Table 2 also demon-

strate the benefits of our structural attention module.

Effect of our feature losses. We compare the effect of

(a) (b) (c) (d) (e) (f)

Figure 6. Results of the ablation study on the auxiliary losses. (a)

Incomplete image. (b) Using no feature losses (but still using Lℓ1

and Ladv). (c) Using Lsf . (d) Using Ltf . (e) Using both Lsf and

Ltf . (f) Using the perceptual and style losses as in [13, 14]. [Best

viewed with zoom-in.]

Lsf Ltf SSIM↑ IS↑ FID↓

0.8581 3.383 11.02

X 0.8589 3.367 11.16

X 0.8625 3.414 10.34

X X 0.8676 3.467 9.670

Lperceptual + Lstyle [13, 14] 0.8638 3.388 9.672

Table 3. Quantitative comparison for the ablation study on the aux-

iliary losses. Refer to Section 4.3 and Figure 6 for description.

different auxiliary losses. Without any auxiliary loss, the

perceptual quality of the inpainting result is not satisfactory

(see Figure 6(b)). Using our structural feature loss Lsf can

improve structure coherence, such as the shape of nose and

mouth (see Figure 6(c)). Using our textural feature loss Ltf

can improve texture realism, such as the luster of facial skin

(see Figure 6(d)). Using both Lsf and Ltf can generate

more natural images (see Figure 6(e)). Compared to our

feature losses, perceptual and style losses used in [13, 14]

may produce a distorted structure or an inconsistent texture

(see Figure 6(f)). The quantitative results in Table 3 also

demonstrate the benefits of our feature losses.

5. Conclusion

We have proposed a multiple-solution inpainting method

for generating diverse and high-quality images using hierar-

chical VQ-VAE. Our method first formulates an autoregres-

sive distribution to generate diverse structures, then synthe-

sizes the image texture for each kind of structure. We pro-

pose a structural attention module to ensure that the syn-

thesized texture is consistent with the generated structure.

We further propose two feature losses to improve structure

coherence and texture realism, respectively. Extensive qual-

itative and quantitative comparisons show the superiority of

our method in both quality and diversity. We demonstrate

that the structural information extracted by the hierarchical

VQ-VAE is of great benefit for the inpainting task. As for

future work, we plan to extend our method to other condi-

tional image generation tasks including style transfer, image

super-resolution, and guided editing.
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