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Abstract

Adversarial attacks play a critical role in understand-

ing deep neural network predictions and improving their

robustness. Existing attack methods aim to deceive convo-

lutional neural network (CNN)-based classifiers by manip-

ulating RGB images that are fed directly to the classifiers.

However, these approaches typically neglect the influence

of the camera optics and image processing pipeline (ISP)

that produce the network inputs. ISPs transform RAW mea-

surements to RGB images and traditionally are assumed

to preserve adversarial patterns. In fact, these low-level

pipelines can destroy, introduce or amplify adversarial pat-

terns that can deceive a downstream detector. As a result,

optimized patterns can become adversarial for the classifier

after being transformed by a certain camera ISP or optical

lens system but not for others. In this work, we examine

and develop such an attack that deceives a specific cam-

era ISP while leaving others intact, using the same down-

stream classifier. We frame this camera-specific attack as a

multi-task optimization problem, relying on a differentiable

approximation for the ISP itself. We validate the proposed

method using recent state-of-the-art automotive hardware

ISPs, achieving 92% fooling rate when attacking a specific

ISP. We demonstrate physical optics attacks with 90% fool-

ing rate for a specific camera lens.

1. Introduction

Deep neural networks have become a cornerstone

method in computer vision [7, 20, 21, 25, 58] with diverse

applications across fields, including safety-critical percep-

tion for self-driving vehicles, medical diagnosis, video se-

curity, medical imaging and assistive robotics. Although a

wide range of high-stakes applications base their decision

making on the output of deep networks, existing deep mod-

els have been shown to be susceptible to adversarial attacks

on the image that the network ingests. Specifically, existing

adversarial attacks perturb the input image with carefully

designed patterns to deceive the model while being imper-

ceptible to a human viewer [34, 41, 44, 48, 37, 52]. As such,

understanding and exploring adversarial perturbations offer
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Figure 1: We illustrate and show the camera-specific attack. The

image is tampered such that it becomes only adversarial for a spe-

cific camera pipeline, even when the three pipelines deploy the

same classifier.

insights into the failure cases of today’s models and it allows

researchers to develop defense methods and models that are

resilient against proposed attacks [3, 33, 34, 42, 55].

Existing adversarial attacks find post-capture adver-

saries, tampering with the image after capture before it is

input to the deep network. Recently, a number of attack

methods have been demonstrated in the form of physical

objects that are placed in real-world scenes to generate ad-

versarial patterns by capturing images of the physical ob-

jects [2, 14, 29]. The most successful methods for com-

puting adversarial perturbations rely on network gradients

to form adversarial examples [48, 18, 29, 36, 41, 4] for

each input image, that struggle to transfer to other net-

works or images [48, 32, 39]. Alternative approaches rely
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only on the network predictions [24, 38, 47] and use surro-

gate networks [40] or gradient approximations [1]. All of

these methods, both physical and synthetic attacks, assume

that the camera image processing pipeline (ISP) preserves

the attack pattern. Although modern image processing

pipelines implement complex algorithms, such as tonemap-

ping, sharpening and denoising [27, 28], which transform

RAW measurements to RGB images on embedded camera

processors, the influence of this pipeline is ignored by exist-

ing attack methods. Some of the processing blocks in cam-

era image processing pipelines have even been suggested as

defenses against existing attacks [19, 31].

In this work, we close this gap between scene-based

physical attacks and attacks on post-processed images.

Specifically, we propose a novel method that allows us to

attack cameras with a specific ISP, while leaving the detec-

tions of other cameras intact for the identical classifier but

a different ISP. As such, the attack mechanism proposed in

this work is a camera-specific attack that not only targets

the deep network but conventional hardware ISPs that tradi-

tionally have not been considered susceptible to adversarial

attacks. As a further camera-specific attack, we also attack

the optical system of a camera. The proposed method can

incorporate proprietary black-box ISP and complex com-

pound optics, without accurate models, by relying on dif-

ferentiable approximations as gradient oracles. We validate

our method using recent automotive hardware ISP proces-

sors and automotive optics, where the novel attack achieves

a fooling rate of 92% on RAW images in experimental cap-

tures.

Specifically, we make the following contributions

• We introduce the first method for finding adversarial

attacks that deceives a specific camera ISP and optics

while leaving cameras with other ISPs or optics intact

although they employ the same classifier network.

• We demonstrate attacks for embedded hardware ISPs

that are not differentiable and only available as black-

box algorithms. To this end, we learn differentiable

approximations of the image processing and sensing

pipeline that serves as gradient oracles for our attack.

• We analyze and validate the attack on RAW input mea-

surements for state-of-the-art hardware ISPs.

• We validate physical attacks of the proposed method

on recent automotive camera ISPs and automotive op-

tics, achieving more than 90% success rate.

2. Related Work

Our work considers the problem of adversarial attacks on

camera pipelines. We review the relevant literature below.

Camera Image Processing Pipelines. Research on high-

level vision tasks has often overlooked the existence of the

low-level image signal processing (ISP) pipeline in the cam-

era. In practice, the role of these ISPs is critical in a vi-

sion system because their ability to recover high quality

images from noisy and distorted RAW measurements di-

rectly affects the downstream processing modules [22, 51].

For display applications, domain-specific image processing

methods [16, 17, 5, 9, 57, 15, 22] have been successful in

tackling low-light, shot-noise and optical aberrations. Un-

fortunately, these methods are computationally expensive,

and, as such, their application is limited to off-line tasks. In

contrast, real-time applications, such as robotics and aug-

mented reality demand real-time processing at more than

30 Hz for double-digit megapixel streams. As a result, inte-

grated system-on-chip ISPs are today employed for robotic

vision systems, such as autonomous robots, self-driving ve-

hicles, and drones. For example, the ARM Mali-C71 ASIC

ISP is capable of processing 12 megapixel streams at up to

100 Hz with less than one Watt power consumption. How-

ever, although hardware ISPs are efficient, these processing

pipelines are typically highly optimized proprietary com-

pute units that are not differentiable and their behavior is

unknown to the user [51]. In this work, we present the

first adversarial attack that targets these hardware process-

ing blocks, which, in contrast to deep neural networks, tra-

ditionally have been assumed to be not susceptible to ad-

versarial perturbations and instead have been suggested as

potential defense units [19, 31].

Adversarial Attacks. A large body of work has ex-

plored adversarial attacks on deep networks in computer

vision. A common formulation describes an attack as

an ℓp norm-ball constrained perturbation that deceives a

specific classifier [34]. Depending on the knowledge of

the model (i.e., weights and architecture) that the adver-

sary has, attacks can be grouped into two settings: white-

box and black-box attacks. In the white-box setting, the

model specification are known and the adversaries lever-

age it to synthesize the perturbation. By treating the at-

tack as a solution of an optimization problem, techniques

ranges from mixed-integer programming [50, 54] to 1st-

order gradient method [18, 34, 36, 48] have been proposed.

Additionally, by manipulating the optimization objectives

and constraints, attacks can reveal interesting properties

of the target network, such as sparsity and interpretabil-

ity [59, 4, 35, 56, 49]. In the black-box setting, adver-

saries can only query the input-output pairs, and, hence,

the target model is more difficult to deceive. Neverthe-

less, existing approaches have shown that adversaries can

successfully approximate the gradients and apply the white-

box method. This is achieved by approximating the target

network function [40, 1] (transfer methods) or by numer-

ical estimation (score methods) [23, 53, 6, 30, 8]. In this

work, we propose a transfer approach that approximates

non-differentiable camera pipelines, including the camera
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optics and ISP, with differentiable proxy functions.

Going beyond synthetically generated adversarial exam-

ples, researchers have shown to be able to recreate them

in the wild by placing adversarial patterns on physical

objects. Kurakin et al. [29] demonstrate such a physi-

cal attack by printing the digital adversarial image on pa-

per and capturing it with a camera, assuming that the ac-

quisition and capture pipeline itself is not susceptible to

the adversarial pattern. Athalye et al. [2] propose an at-

tack which optimizes the perturbation under different im-

age augmentations, a direction further explored by a line of

work [14, 26, 46, 13, 10] to achieve higher attack ratios. All

of these existing methods have in common that they assume

that the scene light transport and acquisition preserve the

adversarial patterns, including the optics, sensors and ISP

in the camera as non-susceptible image transforms. As a di-

rect result, existing physical attacks have failed to achieve

the high fooling rates of synthetic attacks [29]. Our work

fills this gap and shows that it is possible to achieve high

fooling rates when including the acquisition and processing

operations in adversarial attacks. Building on this insight,

we realize attacks of individual camera types by exploiting

slight differences in their acquisition and image processing

pipeline.

3. Background

In this section, we review the differentiable proxy frame-

work from Tseng et al. [51] and the projected gradient de-

scent ℓp norm-bounded adversarial attack [34], and we in-

troduce relevant notation for the following sections.

3.1. Differentiable Proxy ISPs

A given non-differentiable hardware ISP is approxi-

mated by a differentiable proxy function, which implements

a mapping from RAW input data to post-ISP images via

a convolutional neural network (CNN). We note that this

framework can also be extended to include the compound

optics in the pipeline, see Supplementary Document.

Proxy ISP Model. We denote h : Rd −→ R
d×3 as a black-

box ISP function that maps a RAW image x ∈ R
d to an

RGB image, where d is the RAW image dimension (e.g.,

1920×1200). The proxy ISP function h̃θ : Rd −→ R
d×3 de-

pends on θ as the learnable parameters (i.e., CNN weights)

also map a RAW image to a post-ISP image. As a departure

from Tseng et al. [51], we found that bilinear demosaicing

as a first layer in this proxy module improves training stabil-

ity and accuracy. This demosaicing layer is differentiable.

The demosaiced RGB image is fed into a U-Net [45], which

is trained to approximate the output of the hardware ISP.

Proxy Training. Given a set of RAW captures: X =
{x1, x2, ..., xN} where each xi ∈ R

d, we train the proxy

function h̃θ by minimizing the ℓ1 reconstruction loss.

3.2. Projected Gradient Adversarial Attacks

Let us denote a probabilistic classifier that maps an input

x ∈ R
d to a categorical distribution vector as f : Rd −→

R
K , where d is the input dimension and K is the number of

classes. We define a decision function c(x), which assigns

a label to x as: c(x) = argmax
k=1,2,...,K

fk(x).

ℓp Norm-bounded Attack. For an input x, an additive per-

turbation δ ∈ Bd(p; ǫ) is adversarial when c(x + δ) = t,
where t is a target label and Bd(p; ǫ) = {r ∈ Rd : ‖r‖p <
ǫ} is an ℓp norm-ball with radius ǫ1. We will use ℓ∞
throughout this paper. To create such a perturbation, we

solve the following constrained optimization problem

minimize
‖δ‖∞≤ǫ

L(f(x+ δ), t), (1)

where L is the cross-entropy loss.

Projected Gradient Descent (PGD). In the case of ℓ∞, we

can solve (1) by first randomly initializing δ ∈ Bd(∞; ǫ)
and iteratively perform the following PGD update

δ ←− δ − α · sgn(∇δL(f(x+ δ), t)). (2)

where α is the step size that can depend on the current ordi-

nal iteration number.

4. Camera Pipeline Adversarial Attack

In the following, we consider a camera pipeline consist-

ing of a black-box, non-differentiable ISP followed by a

downstream RGB image classifier. A direct RAW attack

on such a pipeline involves manipulating the captured RAW

image. For a physical camera attack, our pipeline also in-

cludes the optical system that captures an adversarial scene.

In this section we only explain the direct RAW attack with-

out any loss of generality.

Next, we describe two types of attacks on these pipelines

and the method to generate them. The first type of attack,

referred to as untargeted camera attack, aims to craft an

adversarial RAW perturbation to the pipeline, without con-

sidering its transferability to the other pipelines. The second

type, referred to as targeted camera attack, generates a per-

turbation that deceives a specific pipeline while leaving the

other intact, even when the same classifier is deployed. Fig-

ure 2 provides an overview of the proposed targeted camera

attack and corresponding proxy functions.

We define a black-box ISP function as h : Rd−→R
d×3,

a trained proxy function that approximates h as h̃θ :
R

d−→R
d×3 and an RGB image classifier as g : Rd×3−→R

K .

Given a RAW image x∈Rd, we define the camera pipelines

using the original ISP and proxy ISP separately as:

f(x)=(g◦h)(x) and f̃(x)=(g◦h̃)(x). Similar to Sec-

tion3.2, c(x) and c̃(x) are the corresponding decision func-

1As an image, (x+δ) needs to stay within the valid range (e.g., [0,255]

for RGB images), which can be achieved by clipping. We implicitly as-

sume this condition throughout this paper without stating it.
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Figure 2: Overview of the proposed targeted camera attack. We perturb either the display scene (physical camera attack) or the captured

RAW image (physical ISP attack), whose label is “black swan”, such that they are misclassified into “plane” by pipeline A but not by

pipeline B. To find such an attack, we solve an optimization problem, using the estimated gradients from the proxies approximation of the

black-box, non-differentiable imaging modules. The objective function is a weighted sum of two cross-entropy losses, where the first term

encourages the attack to fool pipeline A and the second term prevents it from changing the original prediction probability of pipeline B.

Algorithm 1 Local Proxy Training

Input: h; h̃; g; Number of augmented images M ; number of at-

tack iterations n; a list of targeted images S; a predefined

bound ǫ; update step size α.

Output: A local proxy function ĥ

1: Ŝ = S

2: f̃ = (g ◦ h̃)
3: for all xi ∈ S do:

4: for m←− 1...M do:

5: ǫ̂ ∼ uniform(α, ǫ+ α)
6: δ ←− PGD(xi, f̃ , n, ǫ̂;α) ⊲ perform n-steps PGD up-

date, target random class

7: Ŝ = Ŝ ∪ {xi + δ, h(xi + δ)}
8: end for

9: end for

10: ĥ←− TRAIN(h̃, Ŝ) ⊲ Train the local proxy ĥ from Ŝ and h̃

11: return ĥ

tions. Before describing the two camera attacks, we next in-

troduce the a local proxy function, which is a modification

of Tseng et al. [51]’s model that is essential to the success

of the proposed attack.

4.1. Local Gradient Proxies

In our experiments, we found that, despite h̃(x) being

perceptually similar to h(x), performing the PGD-update

based on the estimated gradient from h̃ does not result in

high success rate in many cases, especially for the targeted

camera attack. To this end, we propose using a local proxy

model as an alternative gradient-oracle, which is trained by

fine-tuning the existing proxy model h̃ with a set of target

images and Jacobian augmentation [40]. We find that such

a local proxy model effectively improves the success rate

for both untargeted and targeted camera attacks.

Specifically, given an image set S that we wish to attack,

we create M different Jacobian-augmented pairs: {(xi +
δi), h(xi + δi)} for each xi ∈ S, where δi ∈ Bd(p; ǫ̂) is

the adversarial perturbation on the proxy pipeline f̃ and the

bounded radius ǫ̂ is uniformly sampled within [α, ǫ + α],
where α is the PGD update step size. The local proxy model

ĥ is obtained by finetuning h̃ with the newly augmented

training set Ŝ. This method is formalized in Algorithm 1.

4.2. Untargeted Camera Attack

For this attack type, we aim to generate an adversarial

perturbation δ ∈ Bd(∞; ǫ) to a RAW image x such that:

c(x + δ) = t independent of the camera pipeline. We re-

place the black-box ISP h with its local proxy function ĥ
and generate adversarial perturbations δ from the PGD up-

date on f̂ = g ◦ ĥ, that is

δ ←− δ − α · sgn(∇δL(f̂(x+ δ), t)). (3)

We found that, despite both h̃(x), ĥ(x) being perceptually

similar to h(x), estimated gradients using ĥ consistently

yields a higher success rate than h̃, see Supplementary Doc-

ument for quantitative comparisons. We illustrate this in

Figure 3, showing that being trained with different perturba-

tions enables ĥ to provide accurate gradients for the attack

to transfer well to h.

4.3. Targeted Camera Attack

For this attack type, we find a perturbation that deceives a

specific camera pipeline h, while leaving the classifications

of other camera pipelines intact, even when all the pipelines

deploy the same classifier g. Let hi, for i ∈ {1, 2, ..., T},
be one of the ISPs that we do not want to attack, its asso-

ciated camera pipeline and decision function are fi(x) =
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Figure 3: Local Proxies: The proxy from Tseng et al. [51] does

not approximate the real ISP adequately for an adversarial attack.

The proposed local proxy attack successfully causes the physical

pipeline to misclassify the image into the target class “Shetland”,

while Tseng et al.’s proxy fails.

(g ◦ hi)(x) and ci(x). We assume that g is transferable

across different ISPs, i.e., accuracy higher than 70% for

each ISP in the Imagenet dataset. Ideally, an adversarial

perturbation δ ∈ Bd(∞; ǫ) to an image x with label y should

satisfy: c(x + δ) = t and fi(x + δ) = fi(x), given that

c(x) = y and every ci(x) = y. Such a perturbation can be

found as a solution of the following optimization problem

minimize
||δ||p≤ǫ

L(f(x+ δ), t)

s.t fi(x+ δ) = fi(x), ∀i ∈ 1, ..., T .
(4)

The problem from (4) is a challenging nonlinear-equality

constrained problem that may only have a feasible solution

with large cross-entropy loss.

Soft-Constrained Objective. For known and differentiable

h, hi, we can relax (4) using soft-constraints and apply the

PGD update on δ to jointly minimize the objective function

and the distance between fi(x+δ) and fi(x)

minimize
||δ||p≤ǫ

Lobj(x, δ, t), (5)

where Lobj(x, δ, t)=L(f(x+δ), t)+
∑T

i=1
λiL(fi(x +

δ), fi(x)). The second term measures the cross-entropy

loss between fi(x+δ) and fi(x) which is equivalent to

minimizing the KL divergence between the two categorical

distributions. We set λi=1, ∀i in our experiment.

Objective Function with Local Proxy ISP. Since h and hi

can be non-differentiable, we optimize δ on the new objec-

tive function, which replace h and hi with their correspond-

ing local proxy ĥ and ĥi, that is

L̂obj(x, δ, t)=L(f̂(x+δ), t)+

T
∑

i=1

λiL(f̂i(x+δ), fi(x)). (6)

Similar to previous work on multi-task optimization [11,

59], we found that alternately updating δ on L(f̂(x+δ), t)

and
∑T

i=1
λiL(f̂i(x+δ), fi(x)) yields a better result, that is

{

δ ←−δ − α · sgn(∇δL(f̂(x+δ), t)

δ ←−δ − α · sgn(∇δ

∑T
i=1

λiL(f̂i(x+δ), fi(x)))
(7)

Algorithm 2 Targeted Camera Adversarial Perturbation

Input: Targeted ISP h; Untargeted ISPs {h1, h2, ..., hT }; Pre-

trained local proxies: ĥ, {ĥ1, ĥ2, ..., ĥT }; RGB classifier g;

number of attack iterations n; targeted image x; targeted class

t; perturbation bound ǫ.

Output: adversarial image x′ ∈ R
d

1: / / Construct the proxy pipelines :

2: f̂ = (g ◦ ĥ); f̂i = (g ◦ ĥi)
3: / / Attack the targeted image:

4: δ ∼ uniform(−ǫ, ǫ)
5: for k ←− 1...n do:

6: δ ←− clip(x+ δ)− x ⊲ Clip δ to the valid range

7: δ ←− δ − α · sgn(∇δL(f̂(x+ δ), t))
8: δ ←− δ − α · sgn(∇δ

∑T

i=1
λiL(f̂i(x+ δ), fi(x)))

9: // Alternately: δ ←− δ − α · sgn(∇δL̂obj(x, δ, t))
10: end for

11: x′ = clip(x+ δ) ⊲ Clip x+ δ to the valid range

12: return x′

We note that replacing h, hi with h̃, h̃i does not give a high

success rate, even for large ǫ, as the approximated gradients

from h̃, h̃i are not accurate enough for multiple constraints.

Finally, while the proposed objective (6) only minimizes the

KL divergence between f̂i(x+δ) and fi(x), the local prox-

ies ĥ, ĥi were trained to indirectly minimized the distance

between f̂i(x+δ) and fi(x+δ) around the perturbation ra-

dius ǫ. We formalize this method in Algorithm 2.

5. Assessment

We validate our methods using hardware ISPs and opti-

cal assemblies for direct RAW and physical camera attacks.

5.1. Validation Experiments

Dataset. For all the experiments, we use a subset of 1,000

ImageNet validation images [12].

Image Processing Pipelines. We evaluate our method for

the black-box/non-differentiable hardware ARM Mali C71

and Movidius Myriad 2 ISPs. In addition to the two hard-

ware ISPs, we also jointly evaluate with two differentiable

ISPs. The first one only performs bilinear demosaicing, and

will be referred to as the Demosaicing ISP. The second one

performs bilinear demosaicing operation followed by bilat-

eral filtering [43], and referred to as Bilateral Filter ISP, see

details in the Supplementary Document.

Optics. We use a Fujinon CF12.5HA-1 lens with 54° field

of view as the default lens for our experiments. As this com-

pound optics is a proprietary design, we evaluate the pro-

posed attacks on a Cooke triplet optimized for image qual-

ity using Zemax Hammer optimization and fabricated using

PMMA (more details in the Supplementary Document).

Classifier. We use a large Resnet-101 [12] classifier, which

achieves 76.4% Top-1 accuracy. Since each ISP has a dif-

ferent set of parameters (such as white-balance coefficients,

color-correction matrix, etc.), we prevent the domain-shift

problem by finetuning the pretrained Resnet-101 model on
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Figure 4: Setup for Evaluation of Camera-Specific Attacks. We

employ a monitor placed in front of the target camera system,

which is attacked by the proposed method. The proposed setup

allows us to evaluate attacks on specific cameras, including their

ISPs and camera optics using physical captures.

a set of ISP output images.

Evaluation Metrics. We evaluate success rate, transfer

rate and targeted success rate as metrics in our evaluation.

Success rate measures whether an attack for a given cam-

era pipeline is able to change that pipeline’s prediction to

the target class. Transfer rate measures whether an adver-

sarial RAW is misclassified by other pipelines. Targeted

success rate measures if an attack pattern changes the tar-

geted pipeline’s prediction to the target class while leaving

other camera pipelines unaffected (class prediction does not

change and the confidence difference between the original

and adversarial RAW is below 0.15).

5.2. Physical Setup

To validate the proposed method in a physical setup, we

display the attacked images on the ViewSonic VP2785-4k

monitor, as shown in Figure 4. This allows us to collect

large-scale evaluation statistics in a physical setup, depart-

ing from sparse validation examples presented in existing

works with RGB printouts [29, 2]. We capture images us-

ing a FLIR Blackfly S camera employing a Sony IMX249

sensor. The camera is positioned on a tripod and mounted

such that the optical axis aligns with the center of the mon-

itor. The camera and monitor are connected to a computer,

which is used to jointly display and capture thousands of

validation images. Each lens assembly is focused at infinity

with the screen beyond the hyperfocal distance. The cap-

tured RAW image acquired by the sensor in this setup is fed

to the ISPs and then resized to the resolution of 224×224
before going through the Resnet-101 classifier.

5.3. Physical ISP Attack

In this setting, we acquire the RAW images from the

screen-projected images, using the Sony IMX249 camera.

These RAW images are then fed to different ISPs and the

adversarial perturbation are added directly to these RAW

images. For each RAW image, we target a random class,

choose ǫ=2000 for reliable success rates and use a total of

30 iterations, with α=50.

Targeted ISP

Deployed ISP
Movidius Myriad 2 ARM Mali C71 Bilateral Filter ISP Demosaicing ISP

Movidius Myriad 2 93.5% 28.4% ‖ 50.6% 31.3 % ‖ 53.6% 39.7% ‖ 59.4%

ARM Mali C71 34.3%‖46.1% 94.4% 14.5%‖30.3% 18.7%‖44.3%

Bilateral Filter ISP 29.8%‖44.8% 18.9%‖32.4% 97.3% 94.3%‖97.3%

Demosaicing ISP 25.2%‖45.3% 23.3%‖35.1% 40.4%‖66.6% 98.2%

(a) Untargeted Physical ISP Attack

Targeted ISP

Deployed ISP
Movidius Myriad 2 ARM Mali C71 Bilateral Filter ISP Demosaicing ISP

Movidius Myriad 2 92.2% 4.3% ‖ 5.4% 0.0 % ‖ 0.0% 0.0 % ‖ 0.0%

ARM Mali C71 4.8%‖7.1% 93.8% 0.0 % ‖ 0.0% 0.0 % ‖ 0.0%

Bilateral Filter ISP 4.7%‖6.9% 4.5%‖5.6% 97.3% 0.0 % ‖ 0.0%

Demosaicing ISP 4.8%‖7.0% 4.2%‖5.1% 0.0 % ‖ 0.0% 98.2%

(b) Targeted Physical ISP Attack

Table 1: Success and transfer rate for the proposed (a) untargeted

and (b) targeted physical ISP attack. Each row shows the attack

success rate on the targeted ISP (diagonal cells) and transfer rate

to other ISPs (non-diagonal cells2). The proposed targeted method

significantly reduces the transfer rate across different ISPs.

Targeted Optics

Deployed Optics
Fujinon CF12.5HA-1 Cooke Triplet

Fujinon CF12.5HA-1 90.7% 4.5%‖7.9%

Cooke Triplet 5.2%‖8.1% 91.5%

Table 2: Success and transfer rate for the targeted physical optics

attack. Refer to Table 1 for table notation.

Untargeted Camera Attack. We measure the transferabil-

ity of the untargeted camera attack described in Section 4.2

in Table 1a. We observe that the attacks on one ISP are

more transferable to certain ISPs, e.g., attacks on the ARM

Mali C71 ISP are more transferable to the Movidius Myr-

iad 2 than the two differentiable ones. Also, attacks on the

Bilateral Filter ISP and Demosaicing ISP are likely to be

transferable to each other, but not to the hardware ISPs.

Targeted Camera Attack. Next, we use the proposed tar-

geted attack Algorithm 2 as an attack that only comes into

effect when fed into a specific pipeline. We show the re-

sult in Table 1b, where our method significantly reduces the

transfer rate across different ISPs. For each targeted black-

box ISP attack, it reduces the transfer rate of the Bilateral

Filter ISP and Demosaicing ISP to 0.0%, and the transfer

rate to the other black-box ISP is reduced to below 8.0%.

Figure 5 shows the adversarial RAW images, pertur-

bations (targeting different ISPs) and their associated ISP

outputs. Interestingly, despite having the same adversarial

RAW image as input, each ISP produces distinct RGB per-

turbations. For example, in the attack on Movidius Myriad

2, unlike other ISPs, the ARM Mali C71 suppresses the per-

turbation around the top left black regions. Also, while the

output RGB perturbations seem to contain similar macro

structures, only the one from the targeted ISP becomes ad-

versarial to the classifier, while others pose no threat at all.

Since the untargeted RGB perturbations do not change the

prediction, it means that they are considered as noise by

some hidden projections in the classifier. As such, the per-

turbations are specifically tailored to a specific ISP. In gen-

eral, for each targeted ISP, our method is able to deceive the

2The first entry in the non-diagonal cell is the transfer rate. The second

entry measures the percentage of images whose confidence for the adver-

sarial image significantly differs from the adversarial-free image (if their

confidence difference is greater than 0.15).
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Figure 5: Visualization of the adversarial images and perturbations for the targeted ISP attack. Each pair of rows shows the attack on the

Movidius Myriad 2, ARM Mali C71 and Bilateral Filter ISP, respectively. For each targeted ISP attack, we show in the first column the

adversarial RAW (top) and perturbations (bottom). The next four columns show the corresponding RGB images and perturbations from

the ISPs. The RGB perturbation is visualized by subtracting the ISP output of adversarial RAW from the unattacked output.
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Figure 6: Visualization of the targeted optics attack on the Fujinon

CF12.5HA-1 and Cooke Triplet optics. For each attack, we show

the displayed adversarial and post-processed images (top row). In

the bottom row, we visualize (from left to right) the additive per-

turbations on the display image and its zoomed in 150×150 top-left

and bottom right region.

target pipeline with more than 87% success rate3.

5.4. Attacking Camera Optics

Next, we use the proposed method to target a compound

optical module instead of a hardware ISP. The proxy func-

tion now models the entire transformation from the dis-

played image to optics, sensor, and ISP processing that re-

sults in the final RGB image that is fed to the image clas-

sifier. In this experiment, all the pipelines deploy an iden-

tical ARM Mali C71 ISP, which allows us to assess adver-

sarial pattern that targets only one optical system but not

another. For each attacked image, we use ǫ=20/255, tar-

get a random class and use a total of 30 iterations, with the

step size α=0.005. Note that ǫ is larger than the standard

value of 8/255 since we need to compensate for the atten-

uation loss during the acquisition process. We use Algo-

rithm 2 for the targeted optics attack and report its success

and transfer rate3 in Table 2. The proposed method is able to

achieve a high success rate of 90% while keeping the trans-

fer rate below 10%. We visualize the attacks in Figure 6.

3See Supplementary Document for results per ISP and untargeted op-

tics attack.
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Figure 7: Successful attack on a robust classifier where the ISP

amplifies perturbations. The original, adversarial, and pixel differ-

ence distribution shown for display and post-ISP images.

We find that in both attacks, the perturbations show distinc-

tive frequency-dependent patterns. We interpret this attack

as one that efficiently exploits the frequency bands specific

to the optical transfer functions of the employed optics.

Effectiveness Against Defense Methods. Optics and ISPs

tuned for image quality can inadvertently amplify the ad-

versarial perturbation in the scene. Thus, our attack poses

a realistic threat to current defense methods. We illustrate

this in Figure 7, by attacking a pipeline deployed with a

state-of-the-art robust ResNet152 with denoising modules

by Xie et al.4[55]. Our attacks achieve up to 58.2% success

rate, which is much higher than the success rate of 26.6%

reported in Xie et al. [55]. Note that this does not disqualify

Xie et al. [55] since the network input perturbation exceeds

the bound of 16/255, due to the effects of the ISP. Hence,

training ISP-aware robust classifiers and optimal trade-off

between robustness and image quality are essential for a ro-

bust vision system.

.
6. Conclusion

This work introduces the first method for finding adver-

sarial attacks that deceives a specific camera ISP and op-

tics while leaving cameras with other ISPs or optics intact

although they employ the same classifier network. Depart-

ing from existing adversarial attacks, that assume camera

pipelines to preserve adversarial perturbations, we propose

an optimization method that employs a local proxy network,

making it possible to attack embedded hardware ISPs that

are not differentiable and only available as black-box algo-

rithms. We validate the method experimentally on recent

automotive camera ISPs and optics, achieving more than

90% targeted success rate for both ISP and optics attacks.
Building on the proposed methods, we envision not only

research on defense mechanism to improve future image
processing and camera optics but the method also suggests
end-to-end multi-modal sensor design as a potential av-
enue to design systems resilient against adversarial attacks.

4Pretrained model from: https://github.com/facebookresearch/ImageNet-

Adversarial-Training. We set ǫ=16/255 for display images, α=1/255
and 100 iterations following Xie et al. [55].
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