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Abstract

Over the last few years, we have witnessed tremendous

progress on many subtasks of autonomous driving includ-

ing perception, motion forecasting, and motion planning.

However, these systems often assume that the car is accu-

rately localized against a high-definition map. In this paper

we question this assumption, and investigate the issues that

arise in state-of-the-art autonomy stacks under localization

error. Based on our observations, we design a system that

jointly performs perception, prediction, and localization.

Our architecture is able to reuse computation between the

three tasks, and is thus able to correct localization errors

efficiently. We show experiments on a large-scale autonomy

dataset, demonstrating the efficiency and accuracy of our

proposed approach.

1. Introduction

Many tasks in robotics can be broken down into a series

of subproblems that are easier to study in isolation, and facil-

itate the interpretability of system failures [75]. In particular,

it is common to subdivide the self-driving problem into five

critical subtasks: (i) Localization: placing the car on a high-

definition (HD) map with centimetre-level accuracy. (ii)

Perception: estimating the number and location of dynamic

objects in the scene. (iii) Prediction: forecasting the trajecto-

ries and actions that the observed dynamic objects might do

in the next few seconds. (iv) Motion planning: coming up

with a desired trajectory for the ego-vehicle, and (v) Control:

using the actuators (i.e., steering, brakes, throttle, etc.) to

execute the planned motion.

Moreover, it is common to solve the above problems se-

quentially, such that the output of one sub-system is passed

as input to the next, and the procedure is repeated iteratively

over time. This classical approach lets researchers focus

on well-defined problems that can be studied independently,

and these areas tend to have well-understood metrics that

measure progress on their respective sub-fields. For sim-

plicity, researchers typically study autonomy subproblems

under the assumption that its inputs are correct. For exam-

ple, state-of-the-art perception-prediction (P2) and motion

planning (MP) systems often take HD maps as input, thereby

assuming access to accurate online localization. We focus

our attention on this assumption and begin by studying the

effect of localization errors on modern autonomy pipelines.

Here, we observe that localization errors can have serious

consequences for P2 and MP systems, resulting in missed

detections and prediction errors, as well as bad planning that

leads to larger discrepancies with human trajectories, and in-

creased collision rates. Please refer to Fig. 1 for an example

of an autonomy error caused by inaccurate localization.

In contrast to the classical formulation, recent systems

have been designed to perform multiple autonomy tasks

jointly. This joint formulation often comes with a shared

neural backbone that decreases computational and system

complexity, while still producing interpretable outputs that

make it easier to diagnose system failures. However, these

approaches have so far been limited to jointly performing

perception and prediction (P2) [11,13,41,43], P2 and motion

planning (P3) [52, 69, 70], semantic segmentation and local-

ization [51] or road segmentation and object detection [60].

In this paper, and informed by our analysis of the effects

of localization error, we apply the joint design philosophy

to the tasks of localization, perception, and prediction; we

refer to this joint setting as LP2. We design an LP2 system

that shares computation between the tasks, which makes

it possible to perform localization with as little as 2 ms of

computational overhead while still producing intepretable

localization and P2 outputs. We evaluate our proposed sys-

tem on a large-scale dataset in terms of motion planning

metrics, and show that the proposed approach matches the

performance of a traditional system with separate localiza-

tion and perception components, while being able to correct

localization errors online, and having reduced run time and

engineering complexity.
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Figure 1: A scenario where a small amount of localization error results in a collision. The top row visualizes the first time step, and the

bottom row visualizes a later time step where a collision occurs. GT labels are black rectangles, and the pale blue rectangles are forecasted

object trajectories. The SDV is the red rectangle, with its GT trajectory in a dark blue rectangle. The samples predicted by the motion

planner are shown as orange lines. The 3 columns visualize different variants of the same scenario. (Left) The planned trajectory of the SDV

when there is no localization error. (Middle) What the SDV “thinks” is happening, based on its estimated pose that has error (x, y, yaw) =

(10 cm, 0 cm, 1.5 deg). (Right) What the SDV is actually doing when subject to the pose error; this is the same trajectory as shown in the

middle image, but rigidly transformed so that the initial pose agrees with the GT pose. The collision (red circle) occurs because the yellow

vehicle is not perceived at t = 0 due to occlusion (by the cyan vehicle); the localization error then causes the SDV to go into the lane of

opposite traffic which results in a collision.

2. Related Work

We provide a brief overview of existing approaches for

the tasks that we study (perception, prediction, and local-

ization), followed by a discussion of common multi-task

paradigms for deep learning, and a review of recent work in

characterizing and addressing the system-level challenges in

perception.

Object Detection and Motion Prediction: Detecting ac-

tors and predicting their future motion from sensor data is

one of the fundamental tasks in autonomous driving. While

object detection and motion forecasting can be modeled as

independent tasks [14, 19, 24, 49, 58, 66, 74], models that

jointly perform both tasks [13, 41, 43, 72] have been shown

to provide a number of benefits, such as fast inference, un-

certainty propagation, and overall improved performance.

Localization: The objective of localization is to accurately

and precisely determine the position of the ego-vehicle with

respect to a pre-built map. Localization methods can be

based on a wide variety of sensors, such as differential GPS

in the form of Real-Time Kinematic systems [32, 63], Li-

DAR [8, 38, 42, 47, 68], cameras [31, 35, 54], RADAR [4, 59]

or combinations of such sensors [44,65,76]. While purely ge-

ometric algorithms for LiDAR localization such as iterative

closest-point [68] have been shown to be effective, recent

work has shown that learned representations [8,22,42,55,76]

can lead to improved robustness and scalability.

Multi-Task Learning: Compared to end-to-end ap-

proaches for autonomous agents that learn to directly map

sensor readings to control output [3, 5, 36], multi-task mod-

ular approaches have been shown to perform better empir-

ically [75], while also being more interpretable thanks to

human-readable intermediary representations like seman-

tic segmentation [75], object detections [70], occupancy

forecasts [52] and planning cost maps [69]. Furthermore,

Liang et al. [40] have shown the benefits of jointly perform-
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ing mapping, object detection, and optical flow from LiDAR

and camera data.

The wide range of recent multi-task learning approaches

can be divided into two major areas. One line of work is

focused primarily on developing and understanding network

architectures, such as those leveraging a common backbone

with task-specific heads [10, 17, 22, 33, 34, 43, 54, 60], cas-

caded approaches where some tasks rely on the outputs of

others [20, 28, 29, 69, 70], or cross-talk networks such as

Cross-Stitch [46] which have completely separate per-task

networks, but share activation information.

Modular learning approaches such as Modular Meta-

Learning [1], aim to construct reusable modular architec-

tures which can be re-combined to solve new tasks. Side-

Tuning [71] proposes an incremental approach where new

tasks are added to existing neural networks in the form of

additive side-modules that are easy to train, and have the

advantage of leaving the weights of the original network

unchanged, bypassing issues such as catastrophic forgetting.

Another line of work is concerned with the optimization

process itself. The most straightforward approach is sub-task

weighting, which may be based on uncertainty scores [34],

learning speed [15] or performance [26]. Other methods have

explored multi-task learning by performing multi-objective

optimization explicitly [57], by regularizing task-specific

networks through soft parameter sharing [67], or through

knowledge distillation [6, 16]. Please see Crawshaw [18] for

a detailed survey of multi-task deep learning.

Planning Under Pose Uncertainty: The task of planning

robust trajectories under pose uncertainty has been studied

in the past, with previous methods formulating it as a contin-

uous POMDP which can be solved with an iterative linear-

quadratic-Gaussian method [62], or as an optimal control

problem solved using model-predictive control [30]. More

recently, Artuñedo et al. [2] focus on autonomous vehicles

and incorporate the pose uncertainty in a probabilistic map

representation that is then leveraged by a sampling-based

planner, while Zhang and Scaramuzza [73] propose an ef-

ficient way of estimating visual localization accuracy for

use in motion planning. However, none of these approaches

model other dynamic actors and the uncertainty in their own

motion, and they do not study the complex interplay between

pose uncertainty and state-of-the-art perception systems.

System-Level Analysis: A number of recent papers have

studied the correlations between task-level metrics, such as

object detection, and system performance [50]. This line

of work has shown that while task-level metrics serve as

good predictors of overall system performance, they are un-

able to differentiate between similar errors that can however

lead to very different system behaviors. A related line of

work analyzed the impact of sensor and inference latency

on object detection in images [39] and LiDAR [23, 27]. At

the same time, the simultaneous localization and mapping

(SLAM) community [7, 21, 48] has recently proposed ex-

tending SLAM evaluation beyond trajectory accuracy [25],

towards system-level metrics like latency, power usage, and

computational costs.

3. The Effects of Localization Error

Since state-of-the-art perception-prediction (P2) and mo-

tion planning (MP) stacks make extensive use of accurate

localization on high-definition maps (often assuming perfect

localization [3, 11, 13, 69]), we study the effects of localiza-

tion error on a state-of-the-art P2 and MP pipeline. We begin

by describing how these modules work and how they use

localization.

Perception-Prediction (P2): P2 models are tasked with

perceiving actors and predicting their future trajectories to

ensure that motion planning has access to safety-critical in-

formation about the scene for the entire duration of the plan-

ning horizon. We study the state-of-the-art Implicit Latent

Variable Model [11] (ILVM), the latest of a family of meth-

ods that use deep neural networks with voxelized LiDAR

inputs to jointly perform detection and prediction [13,43,69].

ILVM encodes the whole scene in a latent random variable

and uses a deterministic decoder to efficiently sample multi-

ple scene-consistent trajectories for all the actors in the scene.

Besides LiDAR, the ILVM backbone takes as input a multi-

channel image with semantic aspects of the rasterized map

(e.g., one channel encodes walkways, another encodes lanes,

and so on, for a total of 13 layers [11]), which the model is

expected to use to improve detection and forecasting. While

the LiDAR scans are always processed in the vehicle frame,

the scans and the map are aligned using the pose of the car.

Thus, localization error results in a misalignment between

the semantic map and the LiDAR scan.

Motion Planning (MP): Given a map and a set of dy-

namic agents and their future behaviours, the task of the

motion planner is to provide a route that is safe, comfort-

able, and physically realizable to the control module. We

study the state-of-the-art Path Lateral Time (PLT) motion

planner [53], a method that samples physically realizable

trajectories, evaluates them, and selects the one with the

minimal cost.

The PLT planner receives S=50 Monte Carlo samples

from the joint distribution over the trajectories of all actors

{Y 1, . . . , Y S} from the P2 module. It then samples a small

set of trajectories τ ∈ T (M,R,x0) given the map M, high-

level routing R and the current state of the SDV x0. The

planned trajectory τ∗ = argminτ∈T (M,R,x0)

∑S

s=1 c(τ, Y
s)

is then computed to be the one with the minimum expected

cost over the predicted futures, as defined by a cost function

c that takes into account safety and comfort. In this case, bad
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Figure 2: The effects of localization error on perception-prediction and motion planning. (Top) The effects of perturbing the ego-pose

on P2. SFDE is the mean displacement error across all samples at the 5s mark as defined in [11], and mAP@0.7 is the mean average

precision evaluated at an IOU of 0.7. (Bottom) The effects of perturbing the ego-pose on planning. Collision rate is the percentage of

examples for which the planned path collides with another vehicle or pedestrian within the 5s simulation, and ℓ2 human is the distance

between the planned path and the ground truth human-driven path at the 5s mark.

localization gives the planner a wrong idea about the layout

of the static parts of the scene.

3.1. Experimental setup

LP3 Dataset: Evaluating the localization, perception, pre-

diction, and motion planning tasks requires a dataset that

contains accurately localized self-driving segments, together

with the corresponding HD appearance maps (to evaluate

localization), as well as annotations of dynamic objects in

the scene, their tracks, and their future trajectories (to eval-

uate P3). To the best of our knowledge, no current public

dataset satisfies all these criteria.1 Therefore, we use our

own LP3 dataset. The LP3 dataset is named after the ability

it provides to evaluate Localization (L) as well as Perception,

Prediction, and motion Planning (P3). LP3 is a subset of

the ATG4D dataset [11, 13, 69], that also has appearance

maps available. In particular, our maps have 2d images of

aggregated LiDAR intensity that summarize the appearance

of the ground (c.f . the top left of Fig. 3), and are between 6

and 12 months old by the time the SDV traverses the scene.

The dataset is comprised of 1858 sequences of 25 seconds

each, all captured in a large North American city.

Besides bounding boxes for vehicles, pedestrians and

bicycles in the scene, the dataset provides semantic map an-

notations, such as lanes, traffic signs and sidewalks. Impor-

tantly, LP3 also provides a map appearance layer comprised

of the LiDAR intensity of the static elements of the scene

as captured by multiple passes of LiDAR scans through the

area (please refer to the top left of Figure 3 for an example).

Our LP3 dataset makes it possible to evaluate methods that

jointly perform appearance-based LiDAR localization and

1A few days after the submission deadline, the nuScenes dataset [9]

added support for an appearance layer, thereby enabling similar experiments

to the ones we present in this work.

P2, and to quantify motion planning metrics.

Simulating Localization Error: We simulate localization

error and study its effects on downstream autonomy tasks.

Given a maximum amount of noise m ∈ R (which we call

maximum jitter), we perturb the ground truth pose on eval-

uation frames by sampling translational or rotational noise

from a uniform distribution ε ∼ U (−m,m). To understand

the effects of different types of noise, we evaluate transla-

tional noise and rotational noise independently.

Metrics: For perception, we focus on the mean average

precision metric with at least 70% overlap between the pre-

dicted and the ground truth boxes (mAP@0.7) [13]. For

prediction, we report the mean scene final displacement error

(mean SFDE2) between the ground truth and the predicted

trajectory after 5 seconds (i.e., planning horizon) [11].

We run the planner at the beginning of the segments, and

let the trajectory unfold for 5 seconds. We then measure the

percent of segments for which there is a collision, and the ℓ2
distance between the predicted trajectory and the trajectory

followed by the human driver after 5 seconds.

Note that in our setting all the actors are “passive”, in

the sense that they follow their pre-recorded trajectory in-

dependently of the actions taken by the SDV. This is often

called an open-loop evaluation. While evaluating our task

on a closed-loop setting would be more desirable, building a

simulator of reactive agents and counterfactual sensor inputs

comes with its own set of challenges (e.g., realistic LiDAR

2We use meanSFDE instead of minSFDE because for large numbers of

samples (S = 50 in our case), minSFDE is overly optimistic. The presence

of unrealistic false positive trajectory samples can interfere with the SDV,

causing it to break or swerve, creating a dangerous situation. However, the

minSFDE will not capture this dangerous behavior as long as there is at

least one good sample. Please refer to [12] for a more detailed discussion.
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simulation, realistic controllable actors, etc.) and is out of

the scope of our work.

Results: We show the effects of perturbing the pose of the

ego-vehicle on P2 in the top row of Figure 2. We observe that

the performance of ILVM is barely affected by translational

jitter up to 25 cm, and rotational jitter up to 0.5◦. Larger

amounts of translational noise have little effect (∼2% mAP,

.05 mean SFDE) up to 80 cm, while the effect is stronger for

rotational error (∼7% mAP, .30 mean SFDE) up to 3◦.

We show the effects of perturbing the ego-vehicle pose

on motion planning in the bottom row of Figure 2. Similar

to P2, MP performance does not degrade much until there is

translational noise above 25 cm (or rotational noise above

0.5◦). We also observe that large translation errors have

small effects relative to rotational noise for both collision

rate and distance to human route. While this is somewhat ex-

pected (as rotational error can cause straight paths to run into

sidewalks or incoming traffic), it is interesting to formally

quantify these effects.

4. Joint Localization, Perception, & Prediction

We now formulate a model that performs joint localiza-

tion and P2 (LP2). First, we lay out the key challenges that

we would like our system to overcome, and then explain our

design choices in detail.

4.1. System Desiderata

Low Latency: In order to provide a safe ride, a self-

driving car must react quickly to changes in its environment.

In practice, this means that we must minimize the time from

perception to action. In a naı̈ve, cascaded autonomy system,

the running time of each component adds up linearly, which

may result in unacceptable latency.

To reduce the latency of the localization system, it is com-

mon to use Bayesian filtering to provide high-frequency pose

updates. In this case, a belief about the pose is maintained

over time and updated through the continuous integration of

different levels of evidence from wheel autoencoders, IMUs,

or camera and LiDAR sensing. In this context, the external

sensing step (e.g., carried out via iterative closest point align-

ment between the LiDAR reading and an HD map) typically

carries the strongest evidence, but is also the most expensive

part of the system. Therefore, it is critical to keep the latency

of the sensing step of the localization filter low.

Learning-Based Localization: Localization systems

with learned components are typically better at discerning

semantic aspects of the scene that are traditionally hard to

discriminate with purely geometric features (e.g., growing

vegetation, tree stumps, and dynamic objects), and have the

potential of being more invariant to appearance changes

due to season, weather, and illumination [45]. Therefore,

we would like to incorporate a learning-based localization

component in our system. Moreover, since P2 systems are

typically heavily driven by learning, it should be possible

to incorporate learning-based localization by sharing

computation between the two modules, resulting in reduced

overhead to the overall LP2 system.

Simple Training and Deployment: We would like our

joint LP2 system to be easier to train and deploy than its

classical counterpart. Given the large amounts of ML infras-

tructure invested around P2 systems (e.g., on dataset curation,

labelling, active learning, and monitoring), it makes sense

to design a localization subsystem that can be trained as a

smaller addition to a larger P2 model [56]. This should also

make it easier to iterate on the more lightweight localization

module without the need to retrain the more computationally-

expensive P2 component.

4.2. Designing an LP2 System

We now explain our model design choices, highlighting

the ways they overcome the aforementioned challenges and

achieve our design goals. We show an overview of the

proposed architecture in Figure 3.

Input Representation: Our system receives LiDAR as

input, which is then converted to a bird’s-eye view (BEV)

voxelization with the channels of the 2D input corresponding

to the height dimension [66]. Despite P2 and localization

models both relying on some form of voxelized LiDAR input,

perception-prediction models often use a coarser LiDAR

resolution (e.g., 20cm [43,69]) to accomodate larger regions,

while matching-based localizers typically require a finer-

grained resolution to localize with higher precision [8].

Using only a fine resolution voxelization for an LP2

model would be simplest, but imposes large run-time ef-

ficiency costs. Therefore, to accommodate these resolution

differences, our method simultaneously rasterizes the in-

coming LiDAR point cloud x into two tensors of different

resolutions, x̃coarse for perception and x̃fine for localization.

Perception and Prediction: For our P2 subsystem, we

rely on ILVM [11], whose robustness to localization error

we quantified in Section 3 – this corresponds to the lower

part of Figure 3. The proposed P2 approach contains four

main submodules. (i) A lightweight network processes a

rasterized semantic map centred at the current vehicle pose.

We pass our estimated pose to this module. (ii) Another neu-

ral backbone h extracts features from a coarsely voxelized

LiDAR sweep x̃coarse. These two features maps are concate-

nated and passed to (iii) a detector-predictor that encodes the

scene into a latent variable Z, and (iv) a graph neural net-

work where each node represents a detected actor, and which

deterministically decodes samples from Z into samples of

the joint posterior distribution over all actor trajectories.
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Figure 3: The architecture of the combined localization and perception-prediction (LP2) model.

Localization: We approach localization using ground in-

tensity localization with deep LiDAR embeddings [8]. The

idea behind ground intensity localization [38] is to align the

(sparse) observed LiDAR sweep x with a pre-built (dense)

map of the LiDAR intensity patterns of the static scene, m.

This localizer learns deep functions that produce spatial em-

beddings of both the map f(m) and LiDAR sweep g(x̃fine)
before alignment. Following existing work [8] we parame-

terize the vehicle pose using three degrees of freedom (DoF),

x, y, and yaw, represented as ξ ∈ R
3.

Given a small set of pre-defined translational and rota-

tional offsets, we compute the dot product between the trans-

formed sweep and the map embeddings, and choose the

pose candidate ξ∗ from a pre-defined set (near the original

pose estimate) with the highest correlation as the maximum-

likelihood estimate of the vehicle pose:

ξ∗ = argmax
ξ

π(g(x̃fine) , ξ) · f(m) , argmax
ξ

p(ξ) (1)

where π is a function that warps its first argument based on

the 3-DoF offset ξ, and · represents the dot product operator.

In practice, this matching is done more efficiently by observ-

ing that the dot products can be computed in parallel with

respect to the translational portion of the pose candidates

by using a larger-region m and performing a single cross-

correlation rather than multiple dot products for each DoF in

the rotation dimension.

Multi-Resolution Feature Sharing: An important advan-

tage of localizing using LiDAR matching is that in con-

trast to, e.g., point cloud-based localizers [22], it uses the

same BEV input representation as P2, enabling a substantial

amount of computation to be shared between both systems.

However, as discussed earlier, the inputs to the P2 and lo-

calization backbones use different resolutions, which can

make information fusion difficult. We address this issue by

upsampling a crop of the LiDAR feature map computed by

the coarse perception backbone to match the resolution of

the finer features in the localization backbone. We then add

the feature maps together using a weighted sum to produce

the final localization embedding, as depicted in Fig. 3. This

allows localization LiDAR embeddings to be computed with

very little run-time or memory overhead compared to the

base perception-prediction network.

4.3. Learning

We optimize the full model using side-tuning [71]. We

first train the heavier perception-prediction module, and

then add the LiDAR branch of the localizer as a side-tuned

module. In the second stage, we freeze the weights of the

perception-prediction network (yellow modules in Fig. 3),

and only learn the map and online branches of the localizer

(purple modules in Fig 3). There are three benefits to this

approach: first, there is no risk of catastrophic forgetting in

the perception-prediction task, which can be problematic as

it typically requires 3–5× more computation to train than the

localizer alone; second, we do not need to balance the loss

terms of the localization vs. perception-prediction, eliminat-

ing the need for an additional hyperparameter; third, training

the localizer network can be done much faster than the full

system, since the P2 header no longer needs to be evaluated

and fewer gradients needs to be stored.

Perception and Prediction: We train the P2 component

using supervised learning by minimizing a loss which com-

bines object detection with motion forecasting, while ac-

counting for the multimodal nature of the trajectory predic-

tions. The P2 loss is therefore structured as

LP2 = LDET + αLPRED, (2)
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where LDET optimizes a binary cross entropy term for the

object detections and one based on smooth-ℓ1 for the box

regression parameters [66], LPRED optimizes the ELBO of

the log-likelihood of the inferred n trajectories over t time

steps, conditioned on the input [11], and α represents a scalar

weighting term selected empirically.

Localization: Learning f and g end-to-end produces rep-

resentations that are invariant to LiDAR intensity calibration,

and ignore aspects of the scene irrelevant to localization.

Learning is performed by treating localization as a classifi-

cation task and minimizing the cross-entropy between the

discrete distribution of p(ξ) and the ground truth pose offset

p
GT expressed using one-hot encoding [8]:

LLOC = −
∑

ξ

p(ξ)GT logp(ξ). (3)

The online and map embedding networks f and g use an

architecture based on the P2 map raster backbone and do not

share weights. In Section 5 we also show that it is possibly

to significantly improve run time by down-sizing g while

keeping f fixed with little impact on overall performance.

We refer to this architecture as a Pixor backbone [66].

5. Experiments

We design our experiments to test the accuracy of our

multi-task model on the joint localization and P2 (LP2) task.

We also show how these improvements translate to safe

and comfortable rides based on motion planning metrics.

We refer to the task of doing localization, P2, and motion

planning as LP3.

Dataset and Metrics: We use the LP3 dataset (c.f . Sec. 3),

for all our experiments. To evaluate localization accuracy,

following prior work [64], we report the percentage of frames

on which the localizer matches the ground truth exactly, and

where it matches the ground truth or a neighbouring offset

as recall @ 1 (r@1) and recall @ 2 (r@2) respectively. In

our setting, the former metric corresponds to exactly match-

ing the ground truth, up to our state space resolution (5cm

and 0.5◦), while the latter corresponds to being inside a

15cm×15cm×1.5◦ region centered at the ground truth. For

P2, we focus on mAP@0.7 for detection and mean SFDE for

prediction, as in Sec. 3. For motion planning, besides colli-

sion rate and ℓ2 distance to human trajectory (see Sec. 3), we

also measure lateral acceleration, jerk, and progress towards

the planning goal.

Experimental Setup: There are multiple ways to design

an experiment that tests a localizer. One alternative is to

start the state estimation at the identity and later align the

produced trajectory with the ground truth (as is often done in

SLAM [61]). Alternatively, online localization often initial-

izes the robot pose at the ground truth location, and measures
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Figure 4: Localizer embedding runtime vs. recall. The localiza-

tion performance and runtime of the single-task (i.e., sequential)

and multi-task (i.e., joint) localization methods. Faster inference is

achieved by narrower and shallower networks for the online LiDAR

embedding.

how far a localizer can travel before obtaining an incorrect

pose [8, 44, 76]. By definition, these setups assume that the

initial pose is correct, and do not test the ability to recover

from localization failure – which is crucial for self-driving.

Instead, we assume a self-driving scenario where the local-

ization of the pose is initially incorrect. As such, we perturb

the true pose of the vehicle and thus measure the ability of

the localizer to recover from this failure, as well as the ability

of P2 and MP to deal with localization failure. The perturba-

tions are performed following the same uniform noise policy

described in Section 3.1 with 0.5 metres for translation and

1.5 degrees for rotation.

Implementation Details: We train our model for 5 epochs

using the Adam [37] optimizer using 16 GPUs. The

coarse LiDAR tensor x̃coarse is rasterized at 20cm/voxel,

while the fine tensor x̃fine uses 5cm/voxel. The spatial re-

gion corresponding to the coarse LiDAR voxelization is

144m×80m×3.2m, while the spatial region corresponding

to the fine LiDAR voxelization is 48.05m×24.05m×3.2m.

Reducing the spatial extent of the high-resolution rasteriza-

tion reduces the run time of the system without sacrificing

performance. The localization search range covers ±0.5m

relative to the initial vehicle pose estimate in the x and y
dimension, discretized at 5cm intervals, and [-1.5◦, -1.0◦,

-0.5◦, 0.0◦, 0.5◦, 1.0◦, 1.5◦] in the yaw dimension. We do

not use any height information from the maps, which are

encoded as BEV images. When training the localizer, we

add uniform noise to the ground truth pose, up to the size of

the search range.

Results: In Table 1, we evaluate localization and P2 per-

formance through motion planning metrics. Notably, despite

significant variation in localization metrics, both of our lo-

calization models perform similarly well when evaluated in

terms of the motion planning metrics. These results further

confirm the observations from our jitter experiments (Fig-

ure 2): both P2 and a short-term rollout of PLT perform

similarly well when subject to a modest amount of local-

ization error. This means that besides localization accuracy

(which is important from an interpretability perspective), we
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Model P2 pose Planning Pose r@1 ↑ r@2 ↑ Collision ↓ ℓ2 human ↓ Lat. acc. ↓ Jerk ↓ Progress ↑
(GT, N, L) (GT, N, L) (%) (%) (% up to 5s) (m @ 5s) (m/s2) (m/s3) (m @ 5s)

ILVM GT GT - - 2.915 4.64 2.13 1.82 24.95

ILVM GT N - - 3.168 4.68 2.21 1.83 24.95

ILVM N N - - 3.511 4.70 2.20 1.83 24.92

Joint LP2 – Ours (Tiny Pixor) N N 46.6 93.5 2.962 4.64 2.13 1.82 24.96

Joint LP2 – Ours (Big Pixor) N N 52.5 96.9 2.922 4.64 2.13 1.82 24.95

Table 1: Motion planning evaluation using pose estimate and actor predictions. For the P2 and Planning poses: GT denotes ground

truth (the pose was not altered); N denotes that localization noise was added (translation and rotation sampled uniformly at random from

[-0.5m,+0.5m] and [-1.5◦,+1.5◦], respectively). Big Pixor refers to the largest width Pixor Embedding Net from Fig 4, and Tiny Pixor refers

to the smallest. Bold denotes the best results (within an epsilon threshold) and underlines second best results.

Model Time (ms) r@1 r@2

LiDAR Localizer [8] 25.92 0.52 0.95

LiDAR Localizer (Pixor-based) 2.79 0.47 0.95

Joint LP2 (Ours) 1.95 0.49 0.95

Table 2: Localization inference time comparison. While being

nearly identical in terms of matching accuracy when comparing

models with recall @ 2 performance similar to [8], the proposed

approach is much faster, due to a more efficient architecture and

sharing computation with the perception backbone.

have plenty of room to optimize for latency and simplicity

when designing the localization component of an LP2 ar-

chitecture. Our tiny Pixor-based localizer only takes 2ms

of overhead on top of the P2 subsystem, while providing a

robust learned localization signal to the autonomy system.

Ablation Study: We perform an ablation study to investi-

gate the trade-off between matching performance and infer-

ence time in the localization part of our system. We show

our results in Fig. 4.

We compare the effectiveness of our localization network

trained to re-use P2 features (i.e., the joint LP2 network),

and a network trained to do localization from scratch (i.e.,

as used in a sequential setting). In both cases, faster infer-

ence is achieved by shallower (fewer layers) and narrower

networks (fewer channels) used for the online LiDAR em-

bedding. The reported inference time does not include the

map embedding branch, which can be pre-computed offline.

The largest model corresponds to an architecture similar to

the P2 rasterized HD map backbone (which is itself a smaller

version of the P2 LiDAR backbone), while the faster and

smaller models have fewer layers or fewer channels in each

layer. The four largest models have 11 convolutional layers

and a factor of C = 1/20, 1/21, 1/23, 1/24 the number of

channels as the largest model. The smallest (fifth largest) has

C = 1/24 and five layers rather than 11, which corresponds

to one layer around each of the three pooling/upsampling

stages followed by a final layer. We observe that, while

reducing model size leads to a small drop in matching ac-

curacy, this does not end up affecting motion planning, as

shown in Table 1, while at the same time reducing the online

embedding computation time four-fold.

Finally, Table 2 compares our proposed online LiDAR

embedding networks to the state of the art. The U-Net-

based approach from [8] was shown to outperform classic

approaches like ICP-based localization, especially in chal-

lenging environments such as highways. Our results show

that the original performance can already be matched with a

much faster network architecture, while leveraging the per-

ception feature maps allows even smaller models to perform

at the same level. All inference times are measured on an

NVIDIA RTX5000 GPU.

6. Conclusion

While prior research in autonomous driving has explored

either full end-to-end learning or the joint study of tasks

such as object detection and motion forecasting, the task of

localization has not received as much attention in the context

of perception and planning systems, in spite of the strong

reliance of self-driving vehicles on HD maps for these tasks.

In this paper, we studied how localization errors affect

state-of-the-art perception, prediction, and motion-planning

systems. Our analysis showed that while perception is ro-

bust to relatively small localization errors, motion planning

performance suffers more, especially in case of yaw errors,

motivating the need to detect and correct such issues. We

subsequently proposed a multi-task learning solution capable

of jointly localizing against an HD map while also perform-

ing object detection and motion forecasting, and showed that

localization errors can be successfully detected and corrected

in less than 2 ms of GPU time.

Our work suggests multiple areas for improvement that

may be addressed in future work, such as end-to-end sys-

tem evaluation using a closed-loop simulator, more detailed

comparisons to classic localizers (e.g., ICP-based [68]), the

integration of a recursive Bayesian filter in the localizer, and

a finer-grained evaluation of motion planning errors.
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Modular meta-learning. In CoRL, 2018. 3
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