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Abstract

Deep neural networks for video classification, just like

image classification networks, may be subjected to adver-

sarial manipulation. The main difference between image

classifiers and video classifiers is that the latter usually

use temporal information contained within the video. In

this work we present a manipulation scheme for fooling

video classifiers by introducing a flickering temporal per-

turbation that in some cases may be unnoticeable by hu-

man observers and is implementable in the real world. Af-

ter demonstrating the manipulation of action classification

of single videos, we generalize the procedure to make uni-

versal adversarial perturbation, achieving high fooling ra-

tio. In addition, we generalize the universal perturbation

and produce a temporal-invariant perturbation, which can

be applied to the video without synchronizing the pertur-

bation to the input. The attack was implemented on sev-

eral target models and the transferability of the attack was

demonstrated. These properties allow us to bridge the gap

between simulated environment and real-world application,

as will be demonstrated in this paper for the first time for

an over-the-air flickering attack.

1. Introduction

In recent years, Deep Neural Networks (DNNs) have

shown phenomenal performance in a wide range of tasks,

such as image classification [12], object detection [18], se-

mantic segmentation [22] etc. Despite their success, DNNs

have been found vulnerable to adversarial attacks. Many

works [27, 5, 17] have shown that a small (sometimes im-

perceptible) perturbation added to an image, can make a

given DNNs prediction false. These findings have raised
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(a) Diagram of a Flickering Adversarial Attack in a simulated en-

vironment (digital).
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(b) Diagram of an Over-the-Air Flickering Adversarial Attack in

the real-world (physical).

Figure 1: Top figure shows the attack diagram in the digital

domain performed by adding a uniform RGB perturbation

to the attacked video. Bottom figure shows the modeling of

the digitally-developed attack into the real-world by trans-

mitting the perturbation in the scene using a smart RGB led

bulb.

many concerns, particularly for critical systems such as face

recognition systems [25], surveillance cameras [24], au-

tonomous vehicles, and medical applications [16]. In recent

years most of the attention was given to the study of adver-

sarial patterns in images and less in video action recogni-

tion. Only in the past two years works on adversarial video

attacks were published [33, 8, 34, 10], even though DNNs

have been applied to video-based tasks for several years,

in particular video action recognition [2, 32, 4]. In video

action recognition networks temporal information is of the

essence in categorizing actions, in addition to per-frame im-
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age classification. In some of the proposed attacks the em-

phasis was, beyond adversarial categorization, the sparsity

of the perturbation. In our work, we consider adversarial

attacks against video action recognition under a white-box

setting, with an emphasis on the imperceptible nature of

the perturbation in the spatio-temporal domain to the hu-

man observer and implementability of the generalized ad-

versarial perturbation in the real-world. We introduce flick-

ering perturbations by applying a uniform RGB perturba-

tion to each frame, thus constructing a temporal adversar-

ial pattern. Unlike previous works, in our case sparsity of

the pattern is undesirable, because it helps the adversarial

perturbation to be detectable by human observers for its un-

natural pattern, and to image based adversarial perturbation

detectors for the exact same reason. The adversarial pertur-

bation presented in this work does not contain any spatial

information on a single frame other than a constant offset.

This type of perturbation often occurs in natural videos by

changing lighting conditions, scene changes, etc. In this

paper, we aim to attack the video action recognition task

[11]. For the targeted model we focus on the I3D [2] model

(Specifically we attack the RGB stream of the model, rather

than on the easier to influence optical flow stream) based

on InceptionV1 [26] and we expand our experiments to ad-

ditional models from [29]. The attacked models trained on

the Kinetics-400 Human Action Video Dataset [11].

In order to make the adversarial perturbation unnotice-

able by human observers, we reduce the thickness and tem-

poral roughness of the adversarial perturbation, which will

be defined later in this paper. In order to do so we apply

two regularization terms during the optimization process,

each corresponds to a different effect of the perceptibly of

the adversarial pattern. In addition, we introduce a modi-

fied adversarial-loss function that allows better integration

of these regularization terms with the adversarial loss.

We will first focus on the I3D [2] network and introduce

a flickering attack on a single video and present the trade-

off between the different regularization terms. We con-

struct universal perturbations that generalize over classes

and achieve 93% fooling ratio. Another significant fea-

ture of our proposed method is time invariant perturbations

that can be applied to the classifier without synchroniza-

tion. This makes the perturbation relevant for real world

scenarios, since frame synchronization is rarely possible.

We show the effectiveness of the flickering attack on other

models [29] and the inter-model transferability, and finally

demonstrate the over-the-air flickering attack in a real world

scenario for the first time. A diagram of the digital attack

and the over-the-air attack pipelines are shown in Figure 1.

The main contributions of this work are:

• A methodology for developing flickering adversarial

attacks against video action recognition networks that

incorporates a new type of regularization for affecting

the visibility of the adversarial pattern.

• A universal time-invariant adversarial perturbation that

does not require frame synchronization.

• Adversarial attacks that are transferable between dif-

ferent networks.

• Adversarial attacks that are implementable using tem-

poral perturbations.

The paper is organized as follows: We briefly review

related work and present the flickering adversarial attack.

Then we show experimental results and the generalization

of the attack. Finally, we present real world examples of the

flickering adversarial attacks, followed by conclusions and

future work. We encourage the readers to view the attack

videos1, over-the-air scene-based attack videos2, and over-

the-air universal attack videos3. Our code can be found in

the following repository4.

2. Related Work

2.1. Video Action Recognition

With deep Convolutional Neural Networks (CNNs)

achieving state-of-the-art performance on image recogni-

tion tasks, many works propose to adapt this achievement

to video-based computer vision tasks. The most straight-

forward approach for achieving this is to add temporally-

recurrent layers such as LSTM [21] models to traditional

2D-CNNs. This way, long-term temporal dependencies

can be assigned to spatial features [31, 23]. Another ap-

proach implemented in C3D [9, 28, 30] extends the 2D

CNNs (image-based) to 3D CNNs (video-based) kernels

and learns hierarchical spatio-temporal representations di-

rectly from raw videos. Despite the simplicity of this ap-

proach, it is very difficult to train such networks due to

their huge parameter space. To address this, [2] proposes

the Inflated 3D CNN (I3D) with inflated 2D pre-trained fil-

ters [20]. In addition to the RGB pipeline, optical flow is

also useful for temporal information encoding, and indeed

several architectures greatly improved their performance

by incorporating an optical-flow stream [2]. [29] demon-

strated the advantages of 3D CNNs over 2D CNNs within

the framework of residual learning, proposing factorization

of the 3D convolutional filters into separate spatial and tem-

poral components.

2.2. Adversarial Attack on Video Models

The research of the vulnerability of video-based classi-

fiers to adversarial attacks emerged only in the past years.

1 https://bit.ly/Flickering_Attack_videos
2https://bit.ly/Over_the_Air_scene_based_videos
3https://bit.ly/Over_the_Air_videos
4https://bit.ly/Flickering_Attack_Code
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The following attacks were performed under the white-box

attack settings: [33] were the first to investigate a white-

box attack on video action recognition. They proposed

an L2,1 norm based optimization algorithm to compute

sparse adversarial perturbations, focusing on networks with

a CNN+RNN architecture in order to investigate the propa-

gation properties of perturbations. [15] generated an offline

universal perturbation using a GAN-based model that they

applied to the learned model on unseen input for real-time

video recognition models. [19] proposed a nonlinear adver-

sarial perturbation by using another neural network model

(besides the attacked model), which was optimized to trans-

form the input into adversarial pattern under the L1 norm.

[8] proposed both white and black box untargeted attacks

on two-stream model (optical-flow and RGB), based on the

original and the iterative version of FGSM [5, 13], and used

FlowNet2 [7] to estimate optical flow in order to provide

gradients estimation. Several black-box attacks were pro-

posed [10, 34]. Our attack follows the white-box setting

therefore those attacks are beyond the scope of this paper.

3. Flickering Adversarial Attack

The flickering adversarial attack consists of a uniform

offset added to the entire frame that changes each frame.

This novel approach is desirable for several reasons. First,

it contains no spatial pattern within individual frames but

an RGB offset. Second, this type of perturbation can easily

be mistaken in some cases as changing lighting conditions

of the scene or typical sensor behaviour. Third, it is imple-

mentable in the real-world using a simple LED light source.

3.1. Preliminaries

Video action recognition is a function Fθ(X) = y that

accepts an input X = [x1, x2, .., xT ] ∈ R
T×H×W×C from

T consecutive frames with H rows, W columns and C color

channels, and produces an output y ∈ R
K which can be

treated as probability distribution over the output domain,

where K is the number of classes. The model F implicitly

depends on some parameters θ that are fixed during the at-

tack. The classifier assigns the label Aθ(X) = argmaxi yi
to the input X . We denote adversarial video by X̂ =
X + δ where the video perturbation δ = [δ1, δ2, .., δT ] ∈
R

T×H×W×C , and each individual adversarial frame by

x̂i = xi + δi. X̂ is adversarial when Aθ(X̂) 6= Aθ(X) (un-

targeted attack) or Aθ(X̂) = k 6= Aθ(X) for a specific pre-

determined incorrect class k ∈ [K] (targeted attack), while

keeping the distance between X̂ and X as small as possible

under the selected metric (e.g., L2 norm).

3.2. Methodology

In our attack δi is designed to be spatial-constant on the

three color channels of the frame, meaning that for each

pixel in image xi, an offset is added with the same value

(RGB). Thus, the ith perturbation δi, which corresponds to

the ith frame xi of the video, can be represented by three

scalars, hence δ = [δ1, δ2, .., δT ] ∈ R
T×1×1×3, having in

total 3T parameter to optimize. To generate an adversarial

perturbation we usually use the following objective function

argmin
δ

λ
∑

j

βjDj(δ) +
1

N

N
∑

n=1

ℓ(Fθ(Xn + δ), tn) (1)

s.t x̂i ∈ [Vmin, Vmax]
H×W×C , (2)

where N is the total number of training videos, Xn is the

nth video, Fθ(Xn + δ) is the classifier output (probability

distribution or logits), and tn is the original label (in the case

of untargeted attack). The first term in Equation (1) is regu-

larization term, while the second is adversarial classification

loss, as will be discussed later in this paper. The parameter

λ weighs the relative importance of being adversarial and

also the regularization terms. The set of functions Dj(·)
controls the regularization terms that allows us to achieve

better imperceptibility for the human observer. The parame-

ter βj weighs the relative importance of each regularization

term. The constraint in Equation (2) guarantees that after

applying the adversarial perturbation, the perturbed video

will be clipped between the valid values: Vmin, Vmax, that

represents the minimum and maximum allowed pixel inten-

sity.

3.3. Adversarial loss function

We use a loss mechanism similar to the loss presented by

C&W [1], with a minor modification. For untargeted attack:

ℓ(y, t) = max

(

0,min

(

1

m
ℓm(y, t)2, ℓm(y, t)

))

(3)

ℓm(y, t) = yt −max
i 6=t

(yi) +m, (4)

where m > 0 is the desired margin of the original class

probability below the adversarial class probability. A more

detailed explanation of the motivation in defining the above

loss function is found in the supplementary material.

3.4. Regularization terms

We quantify the distortion introduced by the perturba-

tion δ with D(δ) in the spatio-temporal domain. This met-

ric will be constrained in order for the perturbation δ to be

imperceptible to the human observer while remaining ad-

versarial. Unlike previously published works on adversarial

patches in images, in the video domain imperceptible may

reference thin patches in gray-level space or slow changing

patches in temporal frame space. In contrast to previous re-

lated works [33, 34], in our case temporal sparsity is not of

the essence but the unnoticability to the human observer. In
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order to achieve the most imperceptible perturbation we in-

troduce two regularization terms, each controlling different

aspects of human perception.

In order to simplify the definition of our regularization

terms and metrics, we define the following notations for

X = [x1, x2, .., xT ] ∈ R
T×H×W×C (video or perturba-

tion).

Tensor p-norm:

‖X‖p =

(

T
∑

i1=1

· · ·

C
∑

i4=1

|xi1...i4 |
p

)1/p

, (5)

where i1, i2, .., i4 refer to dimensions.

Roll operator: Roll(X, τ) produce the time shifted ten-

sor, whose elements are τ -cyclic shifted along the first axis

(time):

Roll(X, τ) = [x(τ mod T )+1, ..., x(T−1+τ mod T )+1]. (6)

1st and 2nd order temporal derivatives: We approximate

the 1st and 2nd order temporal derivatives by finite differ-

ences as follows.

∂X

∂t
= Roll(X, 1)−Roll(X, 0), (7)

∂2X

∂t2
= Roll(X,−1)− 2Roll(X, 0) +Roll(X, 1). (8)

3.4.1 Thickness regularization

This loss term forces the adversarial perturbation to be as

small as possible in gray-level over the three color chan-

nels (per-frame), having no temporal constraint and can be

related to the “thickness” of the adversarial pattern.

D1(δ) =
1

3T
‖δ‖

2
2 ,

where ‖·‖2 defined in Equation (5) with p = 2.

3.4.2 Roughness regularization

We introduce temporal loss functions that incorporate two

different terms,

D2(δ) =
1

3T

∥

∥

∥

∥

∂δ

∂t

∥

∥

∥

∥

2

2

+
1

3T

∥

∥

∥

∥

∂2δ

∂t2

∥

∥

∥

∥

2

2

, (9)

where ∂δ
∂t and ∂2δ

∂t2 are defined in Equations (7,8), respec-

tively.

The norm of the first order temporal difference shown in

the Equation (9) (first term) controls the difference between

each two consecutive frame perturbations. This term penal-

izes temporal changes of the adversarial pattern. Within the

Attack Attacked Model Fooling ratio[%] Thickness[%] Roughness[%]

Single Video I3D 100 1.0±0.5 0.83± 0.4

Single Video R(2+1)D 93.0 2.4±1.9 2.1± 2.0

Single Class I3D 90.2± 11.72 13.0± 3.6 10.6± 2.2

Universal I3D 93.0 15.5 15.7

Universal R(2+1)D 79.0 18.1 21.0

Universal MC3 77.1 18.3 24.5

Universal R3D 90.3 17.8 25.5

Universal Time Invariance I3D 83.1 18.0 14.0

Table 1: Results over several types of attacks on different at-

tacked models. Thickness and Roughness defined in Equa-

tions (10,11)

context of human visual perception, this term is perceived

as “flickering”, thus we wish to minimize it.

The norm of the second order temporal difference shown

in Equation (9) (second term) controls the trend of the ad-

versarial perturbation. Visually, this term penalizes fast

trend changes, such as spikes, and may be considered as

scintillation reducing term.

The weights of D1 and D2 will be noted by β1 and β2,

respectively, throughout the rest of the paper and also in the

YouTube videos.

3.5. Metrics

Let us define several metrics in order to quantify the per-

formance of our adversarial attacks.

Fooling ratio: is defined as the percentage of adversarial

videos that are successfully misclassified (higher is better).

Mean Absolute Perturbation per-pixel:

thicknessgl(δ) =
1

3T
‖δ‖1 , (10)

where ‖·‖1 defined in Equation (5) with p = 1.

Mean Absolute Temporal-diff Perturbation per-pixel:

roughnessgl(δ) =
1

3T

∥

∥

∥

∥

∂δ

∂t

∥

∥

∥

∥

1

. (11)

The thickness and roughness values in this paper will be

presented as percents from the full applicable values of the

image span, e.g.,

thickness(δ) =
thicknessgl(δ)

Vmax − Vmin
∗ 100.

4. Experiments on I3D

4.1. Targeted Model

Our attack follows the white-box setting, which assumes

the complete knowledge of the targeted model, its param-

eter values and architecture. The I3D [2] model for video

recognition is used as target model, focused on the RGB

pipeline. The adversarial attacks described in this work can
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be a targeted or untargeted, and the theory and implementa-

tion can be easily adapted accordingly. The I3D model was

selected for targeting because common video classification

networks are based upon its architecture. Therefore, the in-

sights derived from this work will be relevant for these net-

works. In the I3D configuration T = 90, H = 224,W =
224, C = 3, and Vmin = −1, Vmax = 1 (trained on the

kinetics Dataset). Implementation details can be found in

the supplementary material.

4.2. Dataset

We use Kinetics-400 [11] for our experiments. Kinetics

is a standard benchmark for action recognition in videos.

It contains about 275K video of 400 different human ac-

tion categories (220K videos in the training split, 18K in

the validation split, and 35K in the test split). For the single

video attack we have developed the attacks using the val-

idation set. In the class generalization section we trained

on the training set and evaluated on the validation set. In

the universal attack section we trained on the validation set

and evaluated on the test set. We pre-processed the dataset

by excluding movies in which the network misclassified to

begin with and over-fitted entries. Each video contains 90-

frame snippets.

4.3. Single Video Attack

In order to perform the flickering adversarial attacks on

single videos, a separate optimization has to be solved for

each video, i.e., solving Equation (1) for a single video

(N = 1) s.t. each video have its own tailor-made δ. In our

experiment we have developed different δ’s for hundreds of

randomly picked samples from the kinetics validation set.

The Single Video entry in Table 1 shows the statistics of av-

erage and standard deviation of the fooling ratio, thickness

and roughness of untargeted single-video attacks, reaching

100% fooling ratio with low roughness and thickness val-

ues. Video examples of the attack can be found here1. De-

tailed description of the convergence process regarding this

attack can be found in the supplementary material.

4.3.1 Thickness Vs. Roughness

In order to illustrate the trade-off between β1 and β2 under

single video attacks, we have selected a video sample (ki-

netics test set) on which we developed two different flick-

ering attacks by solving Equation (1) (separately) under the

single video attack settings (N = 1). As described in Sec-

tion 3.4, the βj’s coefficients control the importance of each

regularization term, where β1 associated with the term that

forces the perturbation to be as small as possible in gray-

level over the three color channels and β2 associated with

purely temporal terms (norms of the first and second tem-

poral derivatives) forcing the perturbation to be temporally-

Figure 2: Illustration of the trade-off between thickness and

roughness in a single video attack as described in Section

4.3.1.

smooth as possible. The first perturbation developed with

β1 = 1 and β2 = 0, minimize the thickness while leaving

the roughness unconstrained. The second perturbation de-

veloped with β1 = 0 and β2 = 1, minimize the roughness

while leaving the thickness unconstrained. Both of these

perturbations cause misclassifications on the I3D model. In

order to visualize the difference between these perturba-

tions, we deliberately picked a difficult example to attack

which that requires large thickness and roughness. In Fig-

ure 2 we plot both attacks in order to visualize the differ-

ence between the two cases. Each row combined 8 consec-

utive frames (out of 90 frames). In the first row, the original

(clean) video sample from the “juggling balls” category.

In the second row, the adversarial (misclassified) video we

developed with β1 = 1 and β2 = 0 (minimizing thick-

ness). In the third row the adversarial video with β1 = 0
and β2 = 1 (minimizing roughness). In the fourth row we

plot the flickering perturbations with β1 = 1, β2 = 0 reach-

ing a thickness of 2.97% and roughness of 4.84%. In the

fifth row we plot the flickering perturbations with β1 = 0,

β2 = 1 reaching a thickness of 7.45% and roughness of

2.20%. As expected, the perturbation with the minimized

roughness (last row) is smoother than the one without the

temporal constrain (fourth row). Furthermore, even though

the thickness of temporal constrained perturbation is much

higher (7.45% compare to 2.97%) the adversarial perturba-

tion is less noticeable to the human observer than the one

with the smaller thickness. Video examples of the discussed

attacks can be found here1 under “juggling balls”.

4.4. Adversarial Attack Generalization

Unlike single video attack, where the flickering perturba-

tion δ was video-specific, a generalized (or universal) flick-

ering attack is a single perturbation that fools our targeted

model with high probability for all videos (from any class
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or a specific class). In order to obtain a universal adversarial

perturbation across videos we solve the optimization prob-

lem in Equation (1) with some attack-specific modifications

as described in the following sections.

4.4.1 Class generalization: Untargeted Attack

Adversarial attacks on a single video have limited applica-

bility in the real world. In this section we generalize the

attack to cause misclassification to all videos from a spe-

cific class with a single generalized adversarial perturbation

δ. Our experiments conducted on 100 (randomly picked)

out of 400 kinetics classes s.t. for each class (separately)

we developed its own δ by solving the optimization prob-

lem in Equation (1), where {Xn}
N
n=1 is the relevant class

training set split. After developing the class generalization

δ we evaluate its fooling ratio performance, thickness and

roughness as defined in Section 3.5 on the relevant class

evaluation split. The Single Class entry in Table 1 shows

the statistics of average and standard deviation (across 100

different δ’s) of the fooling ratio, thickness and roughness.

Showing that when applying this attack, on average 90.2%
of the videos from each class were misclassified. It is ob-

vious that generalization produces perturbation with larger

thickness and roughness.

4.4.2 Universal Untargeted Attack

We take one more step toward real world implementation of

the flickering attack by devising a single universal perturba-

tion that will attack videos from any class. Constructing

such flickering attacks is not trivial due to the small num-

ber of trainable parameters (T × C or 270 in I3D) and in

particular that they are independent of image dimensions.

Similarly to the previous section, we developed single δ

by solving the optimization problem in Equation (1), where

{Xn}
N
n=1 is the training set defined as the entire evaluation-

split ( 20K videos) of the Kinetics-400. Once the universal

δ was computed, we evaluated its fooling ratio performance,

thickness and roughness on a random sub-sample of 5K
videos from the kinetics test-split. As can be seen in Uni-

versal Class entry in Table 1, our universal attack reaches a

93% fooling ratio. One might implement the universal flick-

ering attack as a class-targeted attack using the presented

method. In this case, the selected class may affect the effi-

ciency of the adversarial perturbation.

4.5. Time Invariance

Practical implementation of adversarial attacks on video

classifiers can not be subjected to prior knowledge regard-

ing the frame numbering or temporal synchronization of the

attacked video. In this section we present a time-invariant

adversarial attack that can be applied to the recorded scene

without assuming that the perturbation of each frame is ap-

plied at the right time. Once this time-invariant attack is

projected to the scene in a cyclic manner, regardless of

the frame arbitrarily-selected as first, the adversarial pat-

tern would prove to be effective. Similar to the general-

ized adversarial attacks described in previous subsections, a

random shift between the perturbation and the model input

was applied during training. The adversarial perturbation in

Equation (1) modified by adding the Roll operator defined

in Equation (6) s.t. Fθ(Xn+Roll(δ, τ)) for randomly sam-

pled τ ∈ {1, 2, · · · , T} in each iteration and on each video

during training and evaluation. This time invariance gen-

eralization of universal adversarial flickering attack reaches

83% fooling ratio, which is luckily a small price to pay in

order to approach real-world implementability.

5. Additional models, baseline comparisons

and transferability

In order to demonstrate the effectiveness of the flicker-

ing adversarial attack (universal in particular) we applied

selected attacks to other relevant models and compared be-

tween the proposed universal flickering attack to other base-

line attacks (Section 5.2) and validate that our attack is in-

deed transferable [27] across models (Section 5.3).

5.1. Targeted Models

Similar to the previous experiment we follow the white-

box setting. In the following experiments we apply our at-

tack on three different models MC3, R3D, R(2+1)D (pre-

trained on the Kinetics Dataset) from [29] which discuss

several forms of spatiotemporal convolutions and study

their effects on action recognition. All three model are

based on 18 layers ResNet architecture [6], accepting spa-

tial and temporal dimensions of: T = 16, H = 112,W =
112, C = 3. Implementation details can be found in this

paper’s supplementary material.

5.2. Baseline comparison

Following the introduction of the first flickering attack

against video action recognition models, a baseline compar-

ison of the effectiveness of the universal attack is presented

against several types of random flickering perturbations. We

developed a universal flickering perturbation δF on model

F (I3D, R(2+1)D, etc.) with respect to the Kinetics Dataset

by solving the optimization problem defined by Equation

(1). Following Equation (1) we constrained the ℓ∞ norm of

δF by clipping s.t.
∥

∥δF
∥

∥

∞
= max |δF | ≤ ζ for some ζ.

In order to evaluate the Fooling ratio of any δ (and in

particular δF ) on some model F we define the evaluation set

X = {Xi}
M
i=1 where Xi = [xi

1, x
i
2, .., x

i
T ] is ith evaluation

video consisting of T consecutive frames. On top of X we

define the adversarial evaluation set X̂δ = {X̂i}
M
i=1 where,
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X̂i = [xi
1 + δ, xi

2 + δ, .., xi
T + δ] for all i. Therefore, the

fooling ratio is calculated by evaluating F on X̂δ . In the

following experiments we use the same evaluation set X.

Given a flickering universal adversarial perturbation δF

developed on model F , we define the following random

flickering attacks:

δFU ∼ U(min δF ,max δF ): Random variable uniformly

distributed between the minimal and maximal values of δF .

δFMinMax: Each element is drawn from the set

{min δF ,max δF } with equal probability.

δFshuffle: A random shuffle of δF along the frames and

color channels. Table 2 shows the results of our experiments

where each experiment (different ℓ∞[%]) was performed as

follows:

1. For given ζ we developing δF for each one of our four

attacked models: I3D, R(2+1)D, R3D and MC3.

2. For each δF we developed δFU , δ
F
MinMax, δ

F
shuffle as

described earlier.

3. On each model F we evaluate the fooling ratio

of the following perturbation: Random flickering

(δFU , δ
F
MinMax, δ

F
shuffle), universal flickering devel-

oped upon other models and universal flickering δF .

In our experiments the ℓ∞[%] norm of δ is represented as

the percentage of the allowed pixel intensity range (Vmax-

Vmin). e.g., if Vmax = 1, Vmin = −1 and ℓ∞[%] = 10
than ζ = 0.2. In order to obtain statistical attributes we per-

formed the experiments by re-perturbing the random gener-

ated δ’s (δFU , δ
F
MinMax, δ

F
shuffle). As shown in Table 2 we

performed the experiments over several values of ℓ∞[%]: 5,

10, 15 and 20. The columns (with models names) repre-

sent the attacked model, while the rows represent the type

of flickering attacks. Random flickering attacks are located

at the first 3 rows of each experiment, followed by the uni-

versal flickering attack trained upon other models (except

I3D)5– marked with (trns). The universal flickering attack

(ours) is located at the last row of each experiment. Each

cell holds the fooling ratio result (average and standard de-

viation in the case of random generated perturbations) when

evaluating the model on the data with the relevant attack.

As can be seen, the universal flickering attack demonstrates

superiority across all four models, over the transferable at-

tacks and the random flickering attacks. In addition to Table

2, additional analysis is presented in the supplementary ma-

terial.

5.3. Transferability across Models

Transferability [27] is defined as the ability of an attack

to influence a model which was unknown to the attacker

5 The transferabilty between I3D to the other models (and vice versa)

were not evaluated because the input of the models is not compatible.

ℓ∞[%] Attack \Model I3D R(2+1)D R3D MC3

5

Random Uniform 8.4± 0.6% 4.9± 0.8% 8.3± 1.8% 11.0± 1.9%

Random MinMax 12.2± 0.7% 9.0± 2.3% 15.8± 3.5% 17.4± 3.8%

Filckering shuffle 11.9± 0.6% 9.4± 1.7% 16.4± 3.3% 16.5± 2.5%

R(2+1)D (trns) - - 27.6% 18.4%

R3D (trns) - 14.9% - 24.0%

MC3 (trns) - 12.3% 31.4% -

Filckering 26.2% 23.3% 34.3% 41.3%

10

Random Uniform 14.2± 1.2% 10.7± 3.3% 20.2± 5.3% 17.9± 3.1%

Random MinMax 23.6± 2.4% 19.2± 4.8% 36.7± 6.3% 30.0± 3.7%

Filckering shuffle 22.9± 2.1% 18.3± 5.5% 31.9± 7.2% 25.9± 3.7%

R(2+1)D (trns) - - 52.7% 38.4%

R3D (trns) - 30.6% - 35.6%

MC3 (trns) - 25.9% 50.5% -

Filckering 58.4% 47.2% 70.4% 55.3%

15

Random Uniform 20.3± 2.1% 16.0± 4.7% 26.2± 4.7% 24.2± 1.8%

Random MinMax 34.2± 3.1% 28.1± 7.9% 48.6± 7.4% 36.4± 4.9%

Filckering shuffle 29.3± 3.1% 28.7± 5.0% 44.6± 8.7% 35.3± 2.8%

R(2+1)D (trns) - - 64.4% 48.4%

R3D (trns) - 39.5% - 50.7%

MC3 (trns) - 40.7% 66.1% -

Filckering 78.1% 62.7% 83.4% 73.3%

20

Random Uniform 32.1± 3.1% 22.2± 5.7% 37.1± 4.0% 30.0± 4.5%

Random MinMax 48.0± 4.5% 42.0± 3.0% 54.6± 11.0% 44.0± 5.0%

Filckering shuffle 42.0± 3.6% 39.0± 8.0% 57.6± 6.4% 47.1± 4.7%

R(2+1)D (trns) - - 74.6% 59.2%

R3D (trns) - 58.5% - 60.7%

MC3 (trns) - 55.8% 70.4% -

Filckering 93.0% 79.0% 90.3% 77.1%

Table 2: Baseline comparison of the universal flickering at-

tack to several types of random flickering attacks and trans-

ferability across different models.

when developing the attack. We examined the transferabil-

ity of the flickering attack on different models of the same

input type. As seen in Table 2, for each ℓ∞[%] we evaluate

the the fooling ratio of attacks that was trained on differ-

ent models (trns). The high effectiveness of the attack ap-

plied across models indicates that our attack is transferable

between these different models, e.g., attack that was devel-

oped on R(2+1)D with ℓ∞[%] = 20 achieved 74.6% fooling

ratio when applied on R3D model compared to 90.3%.

6. Over-the-Air Real world demonstration

The main advantage of the flickering attack, unlike the

majority of adversarial attacks in published papers, is its

real-world implementability. In this section we demon-

strate, for the first time, the flickering attack in a real world

scenario. We used an RGB led light bulb and controlled

it through Wifi connection. Through this connection we

were able to control the red, green and blue illumination

values separately, and create almost any of the previously

developed adversarial RGB patterns introduced in this pa-

per (Figure 1 depicts the modeling of our digital domain

attack in the real-world). As in [14, 3], we have applied

several constraints for better efficiency of the adversarial

manipulations in real-world, such as temporal invariance

(Section 4.5) and increased smoothness to address the fi-
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nite rise (or fall) time of the RGB bulb (Section 3.4.2). Be-

cause the adversarial patterns presented here have positive

and negative amplitude perturbations, the baseline illumi-

nation of the scenario was set to around half of the possi-

ble maximum illumination of the bulb. A chromatic cali-

bration of the RGB intensities was performed in order to

mitigate the difference of the RGB illumination of the light

bulb and RGB responsivity of the camera, which was ob-

viously not the same and also included channel chromatic

crosstalk. The desired scenario for the demonstration of the

attack includes a video camera streaming a video filmed in

a room with a Wifi-controlled RGB light bulb. A computer

sends over Wifi the adversarial RGB pattern to the bulb. A

figure performs actions in front of the camera. Implementa-

tion and hardware details can be found in the supplementary

material. We demonstrate our over-the-air attack in two dif-

ferent ways, scene-based and universal flickering attack.
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Figure 3: Example of our Over-the-Air scene based attack.

The plot was taken from the “ironing” video example2.

6.1. OvertheAir Scenebased Flickering Attack

In this attack, we assume prior knowledge of the scene

and the action. Therefore, similar to a single video attack

(Section 4.3) we will develop a scene dedicated attack. In

this approach we record a clean video (without perturba-

tion) of the scene we would like to attack. For the clean

recording we develop a time-invariant digital attack as de-

scribed in the paper. Once we have the digital attack, we

transmit it to a “similar” scene (as described in the supple-

mentary material) in an over-the-air approach. Video ex-

amples of our scene based over-the-air adversarial attack

can be found here2. Figure 3 shows the probability of a

real example of our scene based over-the-air attack of the

“ironing” action, where the x-axis (Frame) represents pre-

diction time step and the y-axis (Probability) represents the

output probability of the I3D model for several selected

classes. The area shaded in red represents the period of

time the scene was attacked. As described in the legend,

the yellow graph is the true class (“ironing”) probability,

the red graph is the adversarial class (“drawing”) probabil-

ity and the dashed blue graph represents the probability of

the most probable class the classifier predicts each frame.

It can be seen that when the scene is not attacked (outside

the red area) the model predicts correctly the action being

performed (dashed blue and yellow graphs overlap). Once

the scene is attacked, the true class is suppressed and the

adversarial class is amplified. At the beginning (end) of

the attack, it can be seen that there is a delay from the mo-

ment the attack begins (ends) until the model responds to

the change due to the time required (90 frames) to fill the

classifier’s frame buffer and perform the prediction.

6.2. OvertheAir Universal Flickering Attack

This section deals with the case where we do not have

any prior knowledge regarding the scene and action we wish

to attack. Therefore, we would like to develop a universal

attack that will generalize to any scene or action. In this

approach, we will use a universal time-invariant attack as

described in the paper. Once we have the digital attack, we

transmit it to the scene in an over-the-air approach. Video

examples of our universal over-the-air attack can be found

here3. Since our approach is real-world applicable, and thus

we require universality and time-invariability perturbation

(no need to synchronize the video with the transmitted per-

turbation), the pattern is visible to the human observer.

7. Conclusions and future work

The flickering adversarial attack was presented, for the

first time, for several models and scenarios summarized in

Tables 1, 2. Furthermore, this attack was demonstrated

in the real world for the first time. The flickering attack

has several benefits, such as the relative imperceptability to

the human observer in some cases, achieved by small and

smooth perturbations as can be seen in the videos we have

posted1. The flickering attack was generalized to be uni-

versal, demonstrating superiority over random flickering at-

tacks on several models. In addition, the flickering attack

has demonstrated the ability to transfer between different

models. The flickering adversarial attack is probably the

most applicable real-world attack amongst any video ad-

versarial perturbation this far, as was shown3,2. Thanks to

the simplicity and uniformity of the perturbation across the

frame which can be achieved by subtle lighting changes to

the scene by illumination changes. All of these properties

make this attack implementable in real-world scenarios.

In extreme cases where generalization causes the pattern

to be thick enough to be noticed by human observers, the

usage of such perturbations can be relevant for non-man-

in-the-loop systems or cases where the human observer will

see image-flickering without associating this flickering with

an adversarial attack. In the future, we may expand the cur-

rent approach to develop defensive mechanisms against ad-

versarial attacks of video classifier networks.
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