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Abstract

We define the concept of CompositeTasking as the fusion

of multiple, spatially distributed tasks, for various aspects

of image understanding. Learning to perform spatially dis-

tributed tasks is motivated by the frequent availability of

only sparse labels across tasks, and the desire for a com-

pact multi-tasking network. To facilitate CompositeTask-

ing, we introduce a novel task conditioning model – a sin-

gle encoder-decoder network that performs multiple, spa-

tially varying tasks at once. The proposed network takes

an image and a set of pixel-wise dense task requests as in-

puts, and performs the requested prediction task for each

pixel. Moreover, we also learn the composition of tasks that

needs to be performed according to some CompositeTasking

rules, which includes the decision of where to apply which

task. It not only offers us a compact network for multi-

tasking, but also allows for task-editing. Another strength

of the proposed method is demonstrated by only having to

supply sparse supervision per task. The obtained results

are on par with our baselines that use dense supervision

and a multi-headed multi-tasking design. The source code

will be made publicly available at www.github.com/

nikola3794/composite-tasking.

1. Introduction

Intuitively, different image understanding tasks offer

complementary information for scene understanding and

reasoning [24, 53, 2, 62, 57, 61, 11, 50]. Therefore, net-

works that can perform multiple visual tasks on the same

image are of very high interest [10, 34, 22, 51, 55]. A key

aspect – effectively serving the ultimate goal of scene un-

derstanding and reasoning – is often not part of their design.

This paper is about this utility question: can we determine

where in the image it is necessary (or even meaningful) to

perform a task? For example, the task of recognizing hu-

man body parts is meaningful only in the presence of hu-

mans. Similarly, any attempt to estimate the normals of the

sky is absurd.

One may argue that we cannot know beforehand whether

some task is necessary to be performed, without recogniz-

ing the image content. The content of the image may then

reveal the task necessity. This begs the question whether

we can know what task needs to be performed where, while

bypassing the content-task pairing altogether? When the an-

swer to where is known – either by learning or not – we aim

to design an algorithm that executes the given multi-task

instructions in an efficient manner. For example, some ap-

plications of Augmented Reality may require human poses

and the normals of the interacting surfaces. We show that

such flexibility to locally activate some tasks allows us to

design more compact multi-tasking networks.

The task specific annotations of images are often sparse,

either by definition or due to missing annotations. Take, for

example, facial landmarks or image salience. Sometimes,

the annotations may be missing simply because of being fu-

tile. Even the well-curated PASCAL-MT [38, 34] dataset

has the sparsity of 30.4%, 7.5%, 41.9%, 60.0%, for se-

mantic segmentation, human body parts, surface normals,

and salience, respectively. Such label sparsity only tends

to get worse, if the image annotations are crowd-sourced.

In fact, it is simply impractical to expect pixel-wise dense

annotations for large datasets, even at locations where the

annotations are well defined. The case of merging datasets,

by cross-label intersection, follows the same behaviour of

sparsity. Under such circumstances, it may be unnecessary

to waste computational resources during learning, for im-

age pixels without labels. This calls for an efficient learning

paradigm for multi-tasking from sparse labels. In this work,

we show that efficient learning from sparse multi-task la-

bels and executing spatially chosen multi-task instructions

go hand-in-hand.

The key idea of this paper is rather simple. We design a

convolutional neural network that performs multiple, pixel-

wise tasks. We feed every image along with a composi-

tion of spatially distributed multiple task requests – which

we call Task Palette – to execute pixel-specific tasks. This

process we call CompositeTasking. The proposed network

uses a single encoder-decoder architecture to perform all
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Figure 1: CompositeTasking. Given an RGB image and a Task

Palette as inputs, our CompositeTasking performs locally request-

specific tasks to compute the output.

the tasks in one forward pass. The simplicity of such archi-

tecture allows us to perform multiple tasks in an efficient

and compact manner, thanks to the proposed method. An

overview of our network is presented in Fig. 1.

The proposed method for CompositeTasking learns by

task-specific batch normalization. Each task is performed

by predicting layer-wise (only on the decoder side) affine

batch normalization (BN) parameters, using a small task-

conditioned network. Such design choice dedicates the

encoder towards a compact visual representation shared

among tasks. On the output side, each task is represented

in an image format – thereby performing the conditional

image-to-image translation. The image format chooses

some arbitrary embedding for every task. We aim to map

images to such embedding, conditioned upon the spatially

distributed task requests. The task specific losses are then

computed by mapping the predicted embedding to the task-

appropriate label representations. For example, the pre-

dicted 3-channel values are mapped to class probabilities for

segmentation task to compute cross-entropy, whereas, pixel

normals are directly regressed by minimizing the angular

distance between the prediction and the normal’s label. This

design choice enforces tasks to share network parameters

even on the decoder side. Surprisingly, such simple design

already offers us very competitive results.

During inference, only a small part of the embedding

network performs computation. This allows our Compos-

iteTasking network to use an efficient single encoder - single

decoder architecture for all tasks. Furthermore, our training

strategy enables users to request any task at any pixel. In

fact, we also propose to learn the Task Palette, in case it

is missing. The inferred palette follows some hand-crafted

rules for task requests. It is then fed back to our network to

execute the spatially distributed, rule-based tasks.

Learning pixel-specific tasking has several benefits,

which may be obvious when a parallel to the image segmen-

tation is drawn. In this work, we demonstrate the benefits

in regard to a couple of chosen applications, namely, learn-

ing the Task Palette, task editing, and rule transfer. In the

following, we summarize key contributions of our work.

• We introduce the new problem of CompositeTasking

which we demonstrate to be useful for images.

• A novel method for CompositeTasking is also pro-

posed. It is significantly superior in terms of compu-

tational efficiency, and competitive in terms of perfor-

mance for image understanding tasks.

• Applications of the proposed CompositeTasking net-

work, namely on predicting with an estimated Task

Palette, task editing, and rule transfer, are also demon-

strated in this paper.

2. Related Work

Multi-task learning (MTL). MTL is concerned with learn-

ing multiple tasks simultaneously, while exerting shared in-

fluence on model parameters. The potential benefits are

manifold, and include speed-up of training or inference,

higher accuracy, better representations, as well as higher pa-

rameter or sample efficiency. A comprehensive survey on

architectures, optimization and other aspects of MTL can

be found in [12]. On one hand, many MTL methods in the

literature perform multiple tasks by a single forward pass,

using shared trunk [8, 32, 54, 31, 14], cross talk [36], or

prediction distillation [59, 65, 66, 55] architectures. On the

other hand, the following methods perform one task at a

time by conditioning a shared encoder, using feature mask-

ing [51], task-specific projections [67], attention mecha-

nisms [34] or parametrized convolutions [22], while using

one decoder head for each task. With CompositeTasking,

we are bridging the gap between the two paradigms, by per-

forming multiple tasks on the input image within one for-

ward pass, by performing one task at a time – for each pixel.

In stark contrast to conditioning a shared encoder, as done

in [34, 22, 46, 5, 67, 51], we instead learn an unconditioned

encoder, together with pixel-wise conditioning of a single

unified decoder to output the task composition.

Conditional normalization (CN). Conditional normaliza-

tion is the workhorse of many methods solving diverse

problems in multi-domain learning [46, 47], image gener-

ation [23, 9, 43], image editing [42], style transfer [19],

and super-resolution [56]. The operating principle is as

simple as applying condition-dependent affine transforma-

tions on the normalized batch [21], local response [26], in-

stance [52], layer [4], or feature group [58], allowing fea-

tures to occupy different regions in the space, depending

on the triggered condition. While many of the aforemen-

tioned tasks however only require a conditioning on image

level – encoding for instance domain, class, or style – we

are in need to perform pixel-wise varying conditioning. In-

spired by the success of dense conditioning for semantic
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image synthesis, we realise our pixel-wise task condition-

ing via spatially-adaptive normalization [56, 43]. To our

knowledge, we are presenting the first method that learns

multiple tasks with a single conditional unified head for all

tasks, and is even so capable of performing multiple tasks –

for different regions – in one forward pass.

Learning from partial labels. Crowdsourcing platforms

such as Amazon Mechanical Turk or reCAPTCHA made

image annotation affordable, and have brought valuable

contributions for the computer vision community [49, 30,

33, 64]. In order to make best use of all annotators, an ef-

ficient approach is required for large-scale labelling, which

may come at the price of only obtaining partial labels for

each image. This trade-off is still favorable, since par-

tially annotating more images typically outperforms dense

labelling of fewer images, due to the increased variety of

images seen during training [15]. Although the partial label

problem has been addressed for diverse tasks such as seg-

mentation [60, 3], depth densification [45], or multi-label

classification [15, 20], it has only been tackled from the per-

spective of a single task at a time. In contrast, with our ap-

proach one can handle partial annotations of multiple tasks

in the same image. Offering the ability to focus the learning

of interesting tasks in interesting regions can significantly

boost sample efficiency during training.

3. CompositeTasking Network

In this paragraph, we introduce the formal notations. The

input image is denoted as I ∈ R
3×H×W , where H is height

and W is the width of an image. The image is represented

using 3 color channels. Next, we introduce the Task Palette,

which is denoted as T ∈ [1, ...,K]H×W . It is of the same

spatial dimension as the input image H × W , and it takes

one of K discrete values, where K is the number of con-

sidered prediction tasks. The Task Palette specifies which

task to predict at which pixel location. The model takes

the image I and the Task Palette T as inputs and produces

O = M(I, T ), where O ∈ R
3×H×W . The output has the

same spatial dimension as the input image H ×W and also

has 3 output channels. To construct the output O, the model

predicts task tyx at output location oyx. The output O is

called the Composite Task, since it is a spatial composition

of considered tasks 1, ..,K. Pixel-wise, every task is rep-

resented as a 3D vector oyx ∈ R
3. An overview of our

architecture is presented in Figure 2. A detailed network

diagram can be found in the supplementary materials.

3.1. Network Overview

The proposed model is divided into two parts: the en-

coder and the decoder network. This is inspired by the U-

net [48] architecture. The encoder only processes the in-

put image I. The decoder takes the features processed by

the encoder, along with the Task Palette T , to produce the
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Figure 2: Overview of the CompositeTasking network archi-

tecture. We follow a U-NET [48] like design for Image-to-image

translation. Blue blocks are modules from the encoder backbone.

Green blocks of the decoder are depicted in Figure 4. The yel-

low block which produces the Task Palette embedding E(T ) is

depicted in Figure 3.

output O. The encoder’s job is to learn to produce a very

rich feature representation that is sufficient to predict all K

tasks. This representation is expected to capture enough

information to be translated into different spatial composi-

tions of tasks. The decoder’s job is to take that feature repre-

sentation, as well as a specific Task Palette T , and translate

it into the output O. For the sake of simplicity, we choose 3
channels for the output O to treat this problem as image-to-

image translation. Choice for higher number channels can

also be made, if needed. Such choice is made merely for the

convenience, which is also empirically supported.

Having the same number of output channels for each

task, as well as the ability to predict different tasks at differ-

ent spatial locations, allows us to have a truly multi-tasking

network. This means that the exact same network can pre-

dict any considered task at any considered location with the

exact same architecture. We believe that most of the visual

tasks can also be embedded within few channels. In fact, a

similar practice is common in the domain of instance seg-

mentation [41, 13, 7, 27, 17, 39, 40] and an another related

work [1]. Our image format-based output chooses some ar-

bitrary embedding for every task. We aim to map images to

such embedding, conditioned upon the spatially distributed

task requests. The task specific losses are then computed by

mapping the predicted embedding to the task-appropriate

label representations. This allows our network to produce

the same output format, thereby making addition of new

tasks very simple. More importantly, additional tasks re-

quire no additional modules, network heads, etc. The ar-

chitecture of the CompositeTasking network, as well as its

parameter count remain exactly the same.

3.2. Conditioning with the Task Palette

The spatially specific output conditioning is achieved by

using a layer described in this section. This layer is inspired

by [43], which was originally used to generates images with

desired semantic structure. We however, perform Batch-

Norm normalization [21] only in the decoder, where task
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conv𝑘 × 𝑘Figure 3: Task representation block. Each task is process in-

dependently to learn the task-specific embedding. We broadcast

these embeddings according to the task request T . The broadcast

E is fed into the composition blocks from Figure 4.

specific affine transformation parameters are predicted dif-

ferently for each pixel conditioned upon the Task Palette T
at that spatial location tyx. For the notational convenience,

we follow [43]. Let hi denote the activation of layer i in

the decoder, for a batch of N samples. Let Hi and W i be

the height and width of the activation map and let Ci be

the number of channels in layer i. Then, the task specific

conditioning is achieved by using a layer which computes,

hi+1
ncyx = γi

cyx(tyx)
hi
ncyx − µi

c

σi
c

+ βi
cyx(tyx), (1)

where hi+1
ncyx is the output of our task-specific conditioning

layer, and µi
c and σi

c are the mean and standard deviation of

the activations in channel c:

µi
c =

1

NHiW i

∑

n,y,x

hi
ncyx, (2)

σi
c =

√

1

NHiW i

∑

n,y,x

(

(hi
ncyx)

2 − (µi
c)

2
)

. (3)

The affine parameters γi
cyx(tyx) and βi

cyx(tyx) condi-

tion the normalized activation hi
ncyx based on the requested

tasks tyx. Unlike [43], which allows surrounding seman-

tics dependent γi
cyx and βi

cyx by using 3 × 3 convolutions

on conditioned semantics, we keep operations for each task

request independent. In other words, during conditioning,

[43] aims to fit pixels meaningfully in the surrounding,

whereas we are interested to make each request indepen-

dent. This choice is motivated by the potential of flexi-

ble applications of our method, some of which are demon-

strated later in this paper. In this process, we first trans-

form the Task Palette to an embedding E = f(T ), where

E ∈ R
H×W×Nw . The parameters γi

cyx(eyx(tyx)) and

βi
cyx(eyx(tyx)) are then obtained using the embedding E .

Here, we present further details of our method using two

blocks: (a) task representation; and (b) task composition.

Task representation block. In order to embed the Task

Palette T into E = f(T ) , we first learn the task spe-

cific embeddings {e1, e2, . . . , eK} for each task. This is
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Figure 4: Task composition block. This block receives task em-

bedding and previous layer’s features as inputs, and performs task-

conditioned transformation of the features.

done by embedding all distinct values of the Task Palette

ek = f(zk), where zk is the unique task code. The Palette’s

embedding E is then obtained by broadcasting task specific

embeddings according to the task requests T . All of the

Task Composition Blocks use the same embedding E . In

Figure 3, we can see that each task is processed indepen-

dently through a fully connected Neural Network, before

broadcasting into E .

Task composition block. A graphical representation of

this block depicted in Figure 4. The task composition block

receives the task embedding E and the features from the

previous layer of the network. The conditioning operation

of (1) takes place within this block as follows: (i) features

are processed using a standard convolution layer; (ii) em-

bedding E is processed independently for each task using

two layers of 1 × 1 convolutions to obtain γi
cyx(eyx(tyx))

and βi
cyx(eyx(tyx)); (iii) the operation of (1) is then per-

formed followed by an activation function. Output of this

block is the task-conditioned transformed features. As

shown in Figure 2, we use the task composition blocks only

in the decoder and skip connections of our network.

3.3. Computing the Loss and Training

Every task k has its own loss function of interest Lk .

The total loss is given by:

L =
∑

k

λkLk(O,Yk, T ), (4)

where Yk are the labels for task k. Usually the losses

are computed per pixel location as Lk(oyx, yyx), but that

doesn’t necessarily have to be the case. The hyperparam-

eter λk helps to define the balance/trade-off of the predic-

tive performance of all K tasks under consideration. The

CompositeTasking network uses a standard training proce-

dure. The images from the training set I are continuously

passed to the network as inputs, along with the desired Task

Palettes T to predict the output O = M(I, T ). The pre-

dicted output O is given to the loss function (4), along

with the corresponding labels Y1, ...,YK and Task Palette

T . The final loss is minimized using standard optimization

algorithms [25].
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4. Tasks and Rules

We consider the following dense prediction tasks.

Semantic segmentation. This is the task of predicting

which of the defined semantic classes the pixel belongs to.

Human body parts. Similar to semantic segmentation, this

is the task of predicting which of the defined human body

parts the pixel belongs to.

Surface normals. This is the task of predicting the 3D ori-

entation of the surface contained in the pixel.

Semantic Edges. This is the task of predicting edges be-

tween different objects on the input image.

Saliency. This is the task of predicting which locations in

the image are most conspicuous for human observers.

Since the network output is constrained to 3 channels, we

need to embed the tasks accordingly. Surface normals are

3D vectors by nature, and fit in the output shape. In the case

of edges and saliency, the output corresponds to a scalar

probability of the positive class. One way to embed them

is to predict them at all 3 channels and calculate the mean

at test-time. For the task of semantic segmentation and hu-

man parts, the pixel-wise outputs are usually represented as

length C vectors representing the probability of each class.

To this end, we transform the pixel-wise 3D output o. First,

we define 3D class anchors ai to each class i, uniformly

spread out in space (more details in the supplementary ma-

terials). Then, we compute a score vector l ∈ R
C based on

the distance to the class centers,

li =
1

‖o− ai‖+ ǫ
, (5)

where ǫ is a small constant. Hence, l has the highest value

at the index of the closest class center. Applying a soft-

max operation ôi = eli
∑

C
j=1

e
lj

transforms l to a probability

measure that can be used with the common loss functions.

One can argue that if we look at ô as the predicted class-

probabilities, it is biased by the arbitrary definition of class

anchors. If the class i has the highest predicted probability

i = argmaxj ôj , only one of the classes {j : aj ∈ N (ôi)}
close to ôj can have the second highest probability. There-

fore we can not analyze class similarity by looking at these

predicted probabilities. However, since our fist priority for

the segmentation tasks is predicting the correct class, this

offers a simple and effective solution. In case one is inter-

ested in making more detailed conclusions from the predic-

tion, alternative approaches can be taken.

The rules for constructing Task Palettes T for our exper-

iments are as follows.

Single task rule S: The Task Palette P has the same value

k at every location ∀x, y : tyx = k. Task k can be changed

every time the Task Palette is requested from this rule.

Random mosaic rule R1r: The image is spatially divided

into four rectangles by intersecting a vertical and horizontal

line through a randomly chosen point c = (cx, cy). Each

region gets a task assigned to it randomly. The assigned

tasks, as well as the point c, can be changed every time the

Task Palette is requested from this rule.

Semantic rules R2 and R3: These rules assign the tasks

with respect to the image semantics.

Random rule Rrnd: This rule assigns a randomly chosen

task to each pixel independently.

More details on these rules can be found in the supple-

mentary materials.

Our rationale for choosing these rules is based on our de-

sire to analyse the behaviour of our method. Rule S is used

in the field for solving specific problems. Rule R1r is one

way of seeing what happens if you train and test the net-

work by mixing tasks in the output randomly, without any

specific rule or structure behind it. Rules R2 and R3 repre-

sents rules with some semantic meaning behind it. Finally,

rule Rrnd is designed to test the proposed method’s limits.

5. Implementation Details

5.1. Data Set Description

The experiments are conducted on the PASCAL-MT

data set from [34]. While constructing the data set authors

distilled labels for some of the tasks, while others were used

from PASCAL [16] or PASCAL-Context [38]. The data set

contains 4998 training and 5105 validation images. We pre-

dict the tasks mentioned in section 4. We evaluate the per-

formance of semantic segmentation and human body parts

with the mean intersection over union (mIoU). We evaluate

the performance of saliency with computing the maximal

mIoU over different thresholds. We compute the prediction

of surface normals as the mean angular error (mErr). And

finally, we evaluate the performance of edges with the op-

timal dataset F-measure (odsF) [35], using the implementa-

tion from [44]. These evaluation metrics are in concordance

with recent multi-tasking work [34, 22].

5.2. Experimental Setup

In our experiments we use the following models:

CompositeTasking network (CTN). This is the network

we proposed in section 3. The network uses a ResNet34

[18] encoder. The decoder is build using spatially varying

conditioning blocks from Figure 4, and it is much smaller

than the encoder, in terms of network parameters. The con-

ditioning blocks use 1 × 1 regular convolutions in the skip

connections and 3×3 elsewhere, which performed well em-

pirically.

Single task networks baseline (STN). Here we have dif-

ferent networks for different tasks. Each network has the

same architecture as the CompositeTasking network, but in-

stead of the spatially varying conditioning, they use a regu-

lar BatchNorm. This way the network has the same capac-
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ity. In the case of the single tasking rule S from section 4,

each task will be supervised by a different network. With

the other CompositeTasking rules R1r and R2 it is going

to do the same, which means that the network for a specific

task will only be supervised on the pixels that correspond to

that task in the Task Palette T .

Multi-head network (MHN). Here we have a network

with a shared encoder, and a different decoder for differ-

ent tasks. This is a standard approach in multi-task learn-

ing [46, 5, 34, 22]. The encoder is the same as in the Com-

positeTasking network, while the decoders have the same

architecture, but use regular BatchNorm instead of the task

specific conditioning. Similarly as above, this network is

going to be supervised by supervising each decoder only on

the pixels from its corresponding task.

Since CompositeTasking is a new concept, we decided to

evaluate the performance of our proposed CompositeTask-

ing network (Figure 2) with standard baselines. The STN

is a common pipeline for solving specific tasks in computer

vision, while the MHN is a common pipeline for solving

multiple tasks simultaneously in a multi-tasking fashion.

For more implementational details and hyper-parameter

values look at the supplementary materials.

6. Experiments

6.1. General Behaviour

To compare the performance of a method m with base-

line models from Section 5.2, we use the average per-task

drop with respect to the single-tasking baseline b, ∆m =
1

T

∑T

i=1
(−1)li

Mm,i−Mb,i

Mb,i
, where li = 1 if a lower value is

better for measure Mi of task i, and 0 otherwise [34].

We first evaluate on the single-task rule S . From Ta-

ble 1, we can see that the CompositeTasking network is on

par with the baselines, even though it is trained with ran-

domly cropped label regions of rule R1r, and tested on the

single-task setting S . This is very interesting, since it is

substantially more compact in terms of memory and com-

putational complexity, as can be seen in Figure 5. Also, this

experiment tells us that a lot can be learned even if only

arbitrary regions for labels are being presented during train-

ing, as is the case with rule R1r. More interestingly, the part

of the label that is being presented during training is a ran-

dom rectangle region without any semantic meaning behind

the chosen region, and still the network performs competi-

tively to the strongest multi-head baseline trained on com-

plete labels. A few examples of the networks predictions are

presented in Figures 6 and 7. More examples are presented

in the supplementary materials. We can see that it poses no

problem for the network to sharply switch from predicting

one task to another with negligible boundary artifacts, while

using the exact same architecture to predict different tasks.

For reference, the results from Table 1 can be compared to

Table 1: Testing the models on the single task rule. Our method

achieves the same performance as the baselines with much more

capacity, when trained on randomly cropped label regions R1r .

Training rule Method Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓

S
STN 69.50 63.69 58.76 15.58 69.38 0.0%

MHN 68.10 60.77 54.21 16.44 67.21 -4.60 %

R1r

STN 68.30 59.82 49.88 16.07 69.94 -5.05%

MHN 67.70 61.64 52.84 16.40 67.70 -4.71%

CTN(Ours) 68.60 62.45 52.59 16.93 67.81 -4.93%

Table 2: Testing the models on the semantic rule. Our method

achieves the same performance as the baselines with much more

capacity, when trained on the semantic rule R2.

Training rule Model Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓

S
STN 65.80 79.32 56.21 14.75 73.23 0.0%

MHN 64.60 73.94 50.65 15.68 71.01 -5.57%

R1r

STN 64.80 74.12 44.81 15.42 73.22 -6.58%

MHN 65.20 75.97 49.07 15.62 71.74 -5.15%

CTN(Ours) 62.30 76.73 48.87 16.45 71.40 -7.13%

R2

STN 63.90 83.91 59.63 17.13 70.04 -2.30%

MHN 64.40 83.71 58.44 17.44 67.02 -3.87 %

CTN(Ours) 69.20 84.70 59.74 18.12 67.95 -2.37%
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Figure 5: Model Complexity. Memory and computational re-

quirements of the compared methods for predicting 5 tasks.

SotA baselines in [34] (Tables 2 and 3) and [22] (Table 3).

In Table 2, we see the performance evaluated using the

semantic rule R2 where the tasks are being requested only

at sparse, but meaningful and compact regions for each task.

When we supervise by using rule R2, again we see that the

CompositeTasking network performs on par with the base-

lines that have a lot more parameters. This shows that it is

not necessary to waste so much resources when dealing with

very sparse labels. The performance of our model is almost

the same as the much more demanding baseline, that has a

separate network for each task.

6.2. Learning What to Do Where

Up until now we have considered cases when it is known

what tasks to predict where (the Task Palette T is known).

This is definitely interesting in some use-cases, like for ex-

ample Augmented Reality applications where a user can

specifically request what he wishes the algorithm to do. It is

even more interesting for the Task Palette to be predicted by

the network itself, given the input image. One such example

is when we have a semantic rule like R2, where for every

image we can supervise what needs to be predicted where.
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Figure 6: Random mosaic compositions. CompositeTasking net-

work predictions on requests with the R1r rule. The network

shows the ability to sharply switch to a different tasks at neigh-

bour pixels.

Figure 7: Single task predictions. Even though our model is

made for CompositeTasking, it can also make predictions on re-

quests with the S rule.

Image Task palette Prediction Predicted Palette Prediction

Figure 8: Learning what to do where. CompositeTasking net-

work predictions with the learned Task Palette. A separate net-

work is learned to predict the Task Palette with 75.04% mIoU.

More examples can be found in the supplementary materials.

We trained a network to predict the Task Palette from the

input image (75.04% mIoU), during supervision with R2.

This can be used for automatic data labelling when we are

interested in obtaining labels for multiple different tasks,

but only in sparse regions of interest.

6.3. Task Palette Editing

The world is striving towards automated processes, but

things are not perfect just yet. Data labelling is a very un-

pleasant and time-consuming job if someone has to make

dense annotations. Very often we are interested in labels of

different tasks at different spatial locations. For example,

we want to predict surface normals of cars so that we can

perform realistic re-rendering, at the same time semantic

segmentation of the surrounding objects and edges every-

where else. That is a very clear rule that can be learned by

Image Task Palette Prediction Edited Palette Prediction

Figure 9: Task Palette editing. The original Task Palette, ex-

tracted from the label, did not look satisfactory. A correction was

made manually. A prediction of the CompositeTasking network is

shown before and after correction.

the setup proposed in 6.2. This will not be perfect however,

and from time to time mistakes will be made. In such sce-

narios there may be a human in the loop, making sure that

all mistakes along the execution pipeline are corrected. Our

framework offers to take the predicted Task Palette, where

most of it is correct, and edit the mistakes in certain regions.

In that setup, most of the work is done automatically, and

the human in the loop puts her focus mostly on regions of

high interest to the use-case. One such visual example is

presented in Figure 9, while more can be found in the sup-

plementary materials. This highlights further the flexibility

of our proposed method.

6.4. Breaking the Rule

“The only constant in life is change”, as Heraclitus once

wisely said. In fact, also prediction tasks are constantly

evolving and are subject to change according to use case,

context or available resources. One could think of an ex-

isting task rule, say R2, needs to be adapted to cater for

a changing use case that demands a new rule R3. It can be

similar in one way, but different in another compared to R2.

For instance, the same tasks are used from R2, but now R3

requires different tasks to be performed in different regions.

One practical example of this is predicting surface nor-

mals. Often, the accurate normal labels are obtained by

having accurate 3D models. The 3D models however may

cover only a part of the scene, therefore of the image. This

builds a rule of having normals only for the objects with

3D models. In fact, similar datasets exist. For example,

datasets with 3D models of household objects like chairs

and tables [28], and of the human body [6]. Using the model

trained on such datasets, one may be interested to predict

normals beyond the reason of 3D models. Here we show

that our CompositeTasking network can indeed be trained

by breaking the rule.

We break the old rule by simply requesting to execute the

task of the new rule. This is then followed by fine-tuning

our network on the new rule, if necessary. As shown in

Table 3, our model trained on R2 is already doing good on

a newly introduced rule R3, without any fine-tuning. The

rule R3 is somewhat similar to R2, and the model shows the
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Table 3: Breaking the rule. Our method can make successful

predictions when changing from R2 to a somewhat similar rule

R3 (described in the supplementary materials). With fine-tuning

on the new rule, the predictions get even better.

Testing rule Training rule Edge↑ Parts↑ Normals↓ Sal↑ ∆m%↓

R3

R3 70.20 61.19 18.34 75.35 0.0%

R2 69.70 59.41 20.11 65.21 -6.68%

Fine-tuned R2 → R3 69.70 60.91 18.68 75.00 -0.87%

R2

R2 69.20 59.74 18.12 67.95 0.0%

Fine-tuned R2 → R3 69.40 60.84 17.95 68.31 +0.90%

Image Pred R2 Pred R3 Pred R2 Pred R3

(Trained R2) (Trained R2) (Tuned R2 → R3) (Tuned R2 → R3)

Figure 10: Breaking the rule. Predictions of the CompositeTask-

ing network are show before and after fine-tuning from the old to

the new semantic rule. Because the rules are similar in a way, the

model can extrapolate even before fine-tuning.

Table 4: Evaluating on randomly chosen tasks at each pixel

location independently. Notice the performance difference be-

tween training on R1r vs. Rrnd, and testing on Rrnd. The edge

evaluation is omitted due to the unsuitable evaluation protocol.

Trained on rule Evaluated on rule SemSeg ↑ Parts↑ Normals↓ Sal↑

R1r S 62.45 52.59 16.93 67.81

R1r Rrnd 35.89 21.11 64.36 66.71

Rrnd Rrnd 59.58 52.28 17.16 67.60

Rrnd S 52.26 51.88 22.65 65.34

ability to extrapolate on their differences. After fine-tuning

it on R3, the performance improves even more, as expected.

One example of this is presented in Figure 10, while more

can be found in the supplementary materials. Interestingly,

in Table 3 we observe that the old rule is even improved

when training on the new similar rule.

6.5. Random Compositions

Finally, we are interested to see what happens if our

model is evaluated on tasks chosen independently for each

pixel at random, denoted as Rrnd. Table 4 indicates that our

model trained on the mosaic rule R1r does not perform very

well on the random rule Rrnd. We conjecture this is be-

cause the rule R1r assigns tasks only to large connected re-

gions during training, and no incentive is given to learn the

ability to switch tasks with high spatial frequency. Training

on the random rule Rrnd, consequently improves the per-

formance on Rrnd significantly (Table 4). A visualization

of this results is presented in Figure 11. Interestingly, al-

though only using a single output, we can clearly observe a

meaningful execution of different tasks all over the image.

Image Task Palette Prediction

Figure 11: Random tasks chosen at each pixel indepen-

dently. Predictions includes all five tasks of rule Rrnd.

7. Discussion

We feel that this is only the tip of the iceberg. In [37],

for example, it is crucial to fuse different tasks like face de-

tection, pose estimation, scene understanding and depth es-

timation to obtain state-of-the-art performance for the high-

level task of emotion recognition. Many state-of-the-art

pipelines for high-level tasks share that approach 1 and more

often than not, different predicted tasks feel important only

at different spatial regions of the input image. A great po-

tential is seen for CompositeTasking here. This compact-

ness in terms of memory and computation efficiency can

sometimes determine whether some solution to the problem

can be practically implemented or not. Also, wasting re-

sources when there is no need for it is never welcome.

While supervising the high-level predictions, one can

also attempt to learn the rule of what is beneficial to pre-

dict where, even if such a rule is not known a priori. This

can bring a new level of understanding how the very com-

plex Deep Learning models make decisions on high-level

tasks, by observing the requests that the network is making

during inference.

8. Conclusion

In this work, we introduced the concept of Composite-

Tasking as the fusion of multiple, spatially distributed tasks,

motivated by the frequent availability of only sparse labels

across tasks, and the desire for a compact multi-tasking net-

work. To this end, we studied a novel task conditioning

model – a single encoder-decoder network that performs

multiple, spatially varying tasks at once. We showed that

CompositeTasking offers efficient multi-task learning from

only sparse supervision, with performance competitive to

dense supervision and a multi-headed multi-tasking design.

Moreover, we demonstrated the unique flexibility by our

approach with regards to interactive task editing, and rules

transformations.

1Andrej Karpathy, senior director of AI at Tesla, recently said that they

use a multi-tasking system with 48 shared backbones and 1000 different

output task heads in their self-driving Autopilot high-level task
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