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Abstract

High Dynamic Range (HDR) deghosting is an indispens-

able tool in capturing wide dynamic range scenes without

ghosting artifacts. Recently, convolutional neural networks

(CNNs) have shown tremendous success in HDR deghost-

ing. However, CNN-based HDR deghosting methods re-

quire collecting large datasets with ground truth, which is a

tedious and time-consuming process. This paper proposes

a pioneering work by introducing zero and few-shot learn-

ing strategies for data-efficient HDR deghosting. Our ap-

proach consists of two stages of training. In stage one, we

train the model with few labeled (5 or less) dynamic sam-

ples and a pool of unlabeled samples with a self-supervised

loss. We use the trained model to predict HDRs for the un-

labeled samples. To derive data for the next stage of train-

ing, we propose a novel method for generating correspond-

ing dynamic inputs from the predicted HDRs of unlabeled

data. The generated artificial dynamic inputs and predicted

HDRs are used as paired labeled data. In stage two, we

finetune the model with the original few labeled data and

artificially generated labeled data. Our few-shot approach

outperforms many fully-supervised methods in two publicly

available datasets, using as little as five labeled dynamic

samples.

1. Introduction

Unlike the human eye, a standard digital camera has lim-

ited dynamic range that it can recognize in a scene. All

objects beyond the recognizable dynamic range are thresh-

olded to the minimum or maximum pixel intensity value,

thus losing their details in the process. High Dynamic

Range imaging is an algorithmic solution to this problem.

It creates an image with a wider dynamic range than a stan-

dard camera image, closer to what human eyes perceive.

The generated HDR image contains details in both bright
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Figure 1. Qualitative results by different methods for an example

from Kalantari et al. dataset [19]. As shown in the zoomed in

boxes, our proposed few-shot approach using only 5 labeled dy-

namic sequences and pool of unlabeled sequences, generate better

results without any artifacts, than existing methods trained with

full dataset of 74 labeled dynamic sequences.

and dark regions.

To generate an HDR image, multiple images with differ-

ent exposure values (also known as exposure stack or LDR

images) are captured and merged. The merging process is

simple when the exposure stack’s input images are static

without any camera or object motion. However, such an

assumption is too good to be true in real-world scenarios.

Most often, the exposure stack is dynamic, consisting of

camera and object motion. Fusing such dynamic exposure

stack naively results in undesirable ghosting artifacts. The

process of fusing dynamic exposure stack without ghosting

artifacts is known as HDR deghosting.

A widely followed approach for HDR deghosting is to

register the LDRs first and identify moving regions. Once

identified, either the motion affected regions are excluded
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in those images, or a chosen reference image is used [10,

13, 17, 22, 33, 39, 59]. Such methods result in only LDR

content for moving regions. Another popular approach is

to align images using estimated dense correspondence be-

tween a reference image and input LDRs, and merging the

aligned images. Dense registration techniques like optical

flow methods introduce warping artifacts in heavily satu-

rated and occluded regions [3, 11, 21, 48, 51, 60]. Patch-

based optimization methods [16, 44] synthesize static se-

quences from dynamic input sequences and merge them to

generate the final HDR image. These methods are compu-

tationally expensive and hallucinate false details in heavily

saturated regions (see Fig. 1).

Recently proposed deep learning-based methods offer a

significant advantage over traditional methods in terms of

deghosting quality and computation time [19, 34, 35, 53,

56]. CNNs can learn complex fusion rules using abundant

training data with ground truth HDRs. However, collecting

a large amount of labeled training data for HDR deghosting

is challenging, due to the reasons listed below.

Difficulty in capturing labeled data: Capturing a sin-

gle labeled sample requires considerable effort. First, a dy-

namic exposure stack with controlled object motion is cap-

tured. Then, a static exposure stack of the same scene, with-

out object motion, is captured with a tripod to generate the

ground truth [19]. In this process, it must be ensured that

there are no other unexpected or unwanted motions in the

scene, such as tree, cloud, or vehicle motions. These con-

straints are applicable only for very few scene types and

human-controllable motion, thus limiting dataset diversity.

Post-capture manual examination: Another major dif-

ficulty in collecting large-scale supervised HDR deghosting

datasets is the post-capture manual examination. All sam-

ples must be carefully examined for any unwanted motion

in the static exposure stack. If any sample has such discrep-

ancies present, then that sample cannot be used to gener-

ate artifact-free ground truth and hence has to be discarded.

This often leads to almost a quarter of the captured samples

getting discarded. Kalantari et al. [19] discarded 25 sam-

ples from the captured 114, and Prabhakar et al. [35] had to

discard 118 from the captured 700 samples, after manually

scrutinizing every single one.

Furthermore, existing datasets are limited in the diver-

sity of camera parameters used to capture them, such as

ISO and exposure levels. However, collecting new large

datasets with ground truth for different settings is cumber-

some and highly inconvenient. Due to the above reasons,

HDR deghosting CNNs are limited by the diversity, scale,

and training dataset settings. The above limitations offer

all the more reason to explore data-efficient Deep HDR

Deghosting methods.

We address these limitations by proposing zero and few-

shot learning strategies for HDR deghosting while using a

pool of unlabeled dynamic exposure stacks. Many diverse

unlabeled samples can be effortlessly captured without wor-

rying about collecting ground truth for the same. It does not

require a tripod since we do not have to capture a corre-

sponding static exposure stack. Also, it does not require

post-capture scrutiny, as it is not constrained and can thus

include any diverse motion or scene.

Our approach consists of two stages of training. In the

first stage, we train a model with a supervised loss for few

labeled dynamic samples and use a self-supervised loss for

the unlabeled samples. Then, we use the trained model to

predict HDRs for the unlabeled samples and call them as

predicted HDRs. Since the HDR images predicted by the

model will inherently contain errors, they cannot be treated

as proper ground truth for the unlabeled samples. There-

fore, we generate artificial dynamic input images that cor-

respond to the predicted HDR images and use them along

with few labeled dynamic images to improve the model in

second stage. In summary, the main contributions of our

paper are as follows:

• To the best of our knowledge, this is the first work to

explore zero-shot and few-shot learning with unlabeled

images for Deep HDR Deghosting.

• We propose a novel method to generate labeled dy-

namic training data from unlabeled dynamic data.

• Our method trained with only 5 labeled dynamic sam-

ples and unlabeled samples achieves comparable, if

not better, results than existing methods trained on

complete datasets in a supervised fashion, on two pub-

licly available datasets.

• We perform comprehensive experiments and ablation

studies to demonstrate the significance of various com-

ponents of our proposed approach.

2. Related works

Over the past two decades, many different methods have

been proposed for HDR deghosting. The methods proposed

in the literature can be classified into four major categories.

The first category of methods assumes that only a few

pixels were affected by the motion, and majority are static

[6, 15, 22, 25, 29, 31, 36, 38, 52]. Static pixels are merged

using standard static exposure fusion rules. Whereas the

moving pixels are merged either by using only static im-

ages in those regions or using a chosen reference image.

Grosch [13] method uses brightness consistency criteria in

the pixel domain to identify moving pixels. Gallo et al. [10]

improved upon [13] by comparing patches instead of pix-

els in the log domain. The method by Reinhard et al. [41]

threshold the weighted irradiance map variance to locate

moving pixels.

The second category of methods align the input images

to a chosen reference image using alignment techniques [3,

21, 60]. The aligned static images are merged using stan-
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dard HDR fusion methods. Methods such as Ward [51]

and Tomaszewska et al. [48] use rigid alignment techniques

to compensate for global camera motion. More advanced

methods use non-rigid alignment techniques to estimate

dense correspondence. The method by Bogoni et al. [3]

uses optical flow computed in a multi-scale fashion to align

input images. Jinno and Okuda [18] use Markov Random

Field to predict dense correspondence map for aligning.

Gallo et al. [12] proposed a fast method by computing flow

only at sparse locations. They then interpolate it to gener-

ate the final dense flow. This category of methods cannot

handle complex motion and cannot synthesize new details

in occluded regions.

The third category of methods synthesizes static expo-

sure stack from the input dynamic exposure stack [16, 37,

44]. The synthesized static stack will be structurally simi-

lar to a chosen reference image but have contents borrowed

from other images in saturated regions of the reference im-

age. Hu et al. [16] use the patch-match algorithm to gener-

ate the aligned sequences. Sen et al. [44] use a multi-image

bidirectional similarity metric for the same. These methods

introduce artifacts for images with extreme exposure pro-

files, and they are computationally exorbitant.

The last category of methods uses CNNs to generate final

HDR images. Kalantari et al. [19] align the inputs with op-

tical flow and fuses the aligned images with a CNN. Wu et

al. [53] train a CNN to fuse unaligned input images directly.

Prabhakar et al. [35] proposed a scalable CNN feature ag-

gregation architecture that can fuse an arbitrary number of

input images. Yan et al. [55] use an attention mechanism

to select useful features from other non-reference input im-

ages. In [57], Yan et al. propose to use a non-local module

to find a correlation between input feature maps. Similarly,

Yan et al. [56] use multi-scale CNN architecture to generate

accurate results. Recently, Prabhakar et al. [34] proposed a

computationally efficient method that uses bilateral guided

upsampler to generate high-resolution output. Single im-

age HDR reconstruction methods such as Endo et al. [8]

and Eilertsen et al. [7] train a CNN to reconstruct saturated

details in a single image.

Few-shot learning (FSL): FSL is a rapidly growing re-

search area focused on learning generalizable representa-

tions for new classes/tasks with only few supervised sam-

ples. FSL approaches use different methods such as meta-

learners [9, 40, 42, 46], distance-based classifiers [45, 49],

and embedding learning [2, 47]. However, FSL for HDR

deghosting has not been explored before.

Self-Supervised Learning (SSL): SSL investigates the

use of unlabeled data to learn better representations [1, 24,

30, 32, 58]. One class of SSL methods generate pseudo la-

bels for input images and use them to train on augmented

versions of the same input [4, 14, 26]. This strategy is best

suited for classification tasks, where the pseudo (or pre-

dicted) label remains the same for both original and aug-

mented input. However, for image reconstruction tasks such

as HDR deghosting, a crude pseudo-label cannot be used as

a ground truth for augmented versions of the input. In fact,

this penalizes the learning model in regions where predicted

HDR contains even minor artifacts (refer Sec. 5). To over-

come this mismatch, we propose a novel method to synthe-

size a single dynamic input sequence that matches the pre-

dicted HDR output. Since the synthesized dynamic input is

an exact match for predicted HDR output, they can be used

as a supervised training pair.

3. Proposed method

Motivation: Existing CNN-based HDR deghosting

methods use only labeled dynamic sequences for training.

However, ground truth for diverse dynamic sequences is

challenging to acquire. On the contrary, unlabeled dynamic

sequences are much easier to capture, as they do not neces-

sitate staticity or tripods to acquire ground truth. Thus, they

can consist of diverse scenes with real-world representative

motion, without any constraints. In this work, we exploit the

hitherto dismissed potential of unlabeled data in enabling

few-shot HDR deghosting and achieve performance similar

to existing methods trained in a fully supervised setting.

Data distribution: In our approach, we make use of

three different types of sets: 1) Labeled (L): K dynamic

samples with ground truth HDR, 2) Static (S): Q static

samples, 3) Unlabeled (U): M dynamic samples without

ground truth. K is assumed to be less than or equal to 5; we

keep it minimal as L sequences are difficult to obtain. Q is

fixed at 5. Although easier to acquire, this set does not help

to learn HDR deghosting and only guides the initial HDR

merging process. For U, we use a pool of unlabeled data

available at hand. M is not fixed and is arbitrarily large, as

it is easiest to capture and represents real-world content.

Overview: The novelty of our work lies in effectively

utilizing the M unlabeled dynamic (U) sequences through

two stages of training (see Fig. 2a). In stage one, we train

a CNN model N with L and S using a supervised ℓ2-loss,

and U using a weak self-supervised loss. Then, we use the

trained N model to predict fused HDRs (Ŷ P ) for all un-

labeled dynamic sequences (U). We note that Ŷ P is im-

perfect and possesses minor discoloration and ghosting ar-

tifacts, and thus cannot be used as ground truth for U. To

resolve this mismatch, we propose a novel method to gen-

erate artificial dynamic inputs (P) from Ŷ P . Since Ŷ P is

used to generate P, it is used as ground truth for P. In stage

two, we train a new instance of N using both L and P with

ℓ2-loss.

Stage 1 Training: Set L consists of K dynamic

sequences: {(XL, Ŷ L)k}, k = (1, · · · ,K). Each

XL sequence has three varying exposure input LDRs:

(XL
1 , X

L
2 , X

L
3 ) and the corresponding ground truth HDR,
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Figure 2. (a) Overview of the proposed method. (b) N network architecture.

Ŷ L. In our experiments, we vary K between 1 and 5. Fol-

lowing the literature [19, 53, 55], in each XL sequence

we choose the middle image XL
2 as reference. The net-

work’s prediction will resemble the reference image in non-

saturated regions of the reference image. In saturated re-

gions, details are to be extracted from other images without

causing artifacts. The input images are assumed to be in the

linear domain; else, they are linearized with CRF [5].

Other images in the sequence (XL
1 , X

L
3 ) are aligned to

the reference image by estimating dense optical flow [27].

Each aligned LDR image is concatenated with their HDR

equivalents and fed as input to the model N , which consists

of a series of encoder convolution layers, as shown in Fig.

2b. The HDR equivalent of any LDR image I is obtained

by H = I2.2/tI , where tI is the exposure time of I . All

encoders’ output feature maps are concatenated and fed as

input to two Stacked and Dilated Convolution (SDC) blocks

[43]. The SDC block outputs are concatenated and passed

to a single convolution layer to generate the final predicted

HDR, Y L. We use LeakyRelu [54] activation in all layers

except in the last layer, where we use sigmoid activation to

predict output within 0 and 1 range.

Additionally, we utilize a small number (Q=5) of static

sequences S = {(XS)q}, q = (1, · · · , Q), to guide the

network to learn static HDR fusion. Each static sequence

XS , has three varying exposure LDRs: (XS
1 , X

S
2 , X

S
3 ).

Static images help the network to stabilize during train-

ing. Since static images do not have any motion, the ground

truth HDR (Ŷ S) can be obtained by merging the input im-

ages using a standard HDR merging technique [5]. In ad-

dition to L and S, we make use of a large pool of unla-

beled dynamic sequences (U) during stage one training of

N . U consists of M dynamic sequences {(XU )m},m =
(1, · · · ,M). Each sequence has three varying exposure im-

ages (XU
1 , XU

2 , XU
3 ), but no ground truth HDR. The steps

for input pre-processing, HDR equivalent concatenation,

and model predictions are the same for L, S, and U,

Y i = N (Xi, Hi), ∀i = {L,U, S}. (1)

For data from L and S, standard ℓ2 error between predic-

tion and ground truth is used as loss function (Eq. (2)).

As the HDR images are generally displayed after tonemap-

ping, the loss is also computed after tonemapping with µ-

law tonemapper. The µ-law tonemapping of any image I is

computed by, T (I)= log(1+µ × I)/log(1+µ), where µ=5000.

To compute error for U, we use a self-supervised Struc-

tural Consistency Loss (LSCL). As the network is trained

to predict Y U with structure similar to the reference image

(XU
2 ), LSCL computes ℓ2 loss between XU

2 and Y U at the

exposure level of XU
2 (Eq. (3)). LSCL offers ideal supervi-

sion in regions where reference image is well-exposed and

contains details. In regions where the reference is saturated,

it offers only a weak supervision as the predicted HDR loses

details in those regions after exposure adjustment and clip-

ping. For example, a model trained with only LSCL and U,

offers highly saturated HDR images (see Fig. 4).

A weighted sum of the supervised (Lsup) and self-

supervised (LSCL) loss is used to train N ,

Lsup = ℓ2(T (Y
L), T (Ŷ L)) + ℓ2(T (Y

S), T (Ŷ S)), (2)

LSCL = ℓ2(clip((Y
U× tXU

2

)
1/2.2), XU

2 ), (3)

LS1 = Lsup + α× LSCL. (4)

Stage one training is carried out for 75 epochs with 5000

batches per epoch using Adam optimizer [23], starting with
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Figure 3. Artificial static (S̃) and dynamic sequence (XP ) gener-

ated from an original unlabeled dynamic sample from XU . Note

the discoloration of sky and artifacts in the predicted HDR (Ŷ P )

and its reproduction in artificial sequences.

a learning rate of 1e−4. Each batch consists of 4 random

64× 64 patches cropped from an random image in either L

or S, and 4 random patches from U. The learning rate is

decayed by 0.75 every 10 epochs. The LSCL weight factor

α starts at 0.5 and is incremented by 0.1 every 10 epochs.

Labeled Artificial Input Synthesis: After stage one

training, we use N to predict M HDR images (Ŷ P )

for the M unlabeled dynamic sequences (U), Ŷ P =
N (XU , HU ). However, as N was trained using only lim-

ited supervised samples, Ŷ P contains ghosting artifacts,

discoloration and loss of detail in overexposed regions.

Thus, although Ŷ P is generated from U, it is not an ideal or

true ground truth and can potentially mislead the network if

used as a supervised label for U in stage two (see Fig. 3).

To overcome this mismatch, our proposed approach in-

verts the HDR merging pipeline to generate artificial dy-

namic input sequences (P) that form a proper pair with the

respective predicted HDRs (Ŷ P ) used to derive them. First,

we generate artificial static sequences with different expo-

sure levels from the M predicted HDRs (Ŷ P ), using the ex-

posure time of corresponding unlabeled dynamic sequence

images (tXU
j

). This is followed by gamma correction and

clipping of saturated pixels to generate an artificial static

input sequence (S̃1, S̃2, S̃3)m,

S̃j = clip
(
(Ŷ P ×tXU

j
)
1/2.2

)
, ∀j = (1, 2, 3). (5)

Motion transfer: These static sequences cannot be di-

rectly used as input training sequences as they lack dynamic

motion and cannot guide HDR deghosting. To induce mo-

tion, we make use of the dense backward optical flow F be-

tween the original unlabeled dynamic sequence images (U)
(Eq. (6)). That is, the flow from XU

2 to XU
1 is calculated as

F1,2 and used to warp S̃1 to obtain XP
1 . Similarly, the flow

from XU
2 to XU

3 is calculated as F3,2 and used to warp S̃3

to obtain XP
3 . The medium exposed reference static image

is considered as it is, without any motion, to remain struc-

turally consistent with the predicted ground truth (Ŷ P ).

XP
j =

{
W(S̃j , Fj,2), j = (1, 3),

S̃j , j = 2,
(6)

where W denotes the warping function. We perform this

operation for all M artificial static sequences to generate

M artificial dynamic sequences.

The generated M artificial dynamic sequences, XP =
(XP

1 , XP
2 , XP

3 ), agrees with the M predicted HDRs

(Ŷ P ), and forms a proper labeled training set, P =
{(XP , Ŷ P )m},m = (1, · · · ,M). The motion transferred

from real-world motion in U, ensures that input dynamic

motion stays meaningful and diverse. The artifacts present

in Ŷ P restrict it from functioning as a ground truth for U.

However, all those artifacts present in Ŷ P becomes part of

P and hence Ŷ P is a clean ground truth for P.

Stage 2 training: In this stage, we train a new instance

of N with the K labeled dynamic samples from L, along

with M artificially generated labeled samples from P in a

supervised fashion. Since both L and P have ground truths,

N can be trained using the standard ℓ2 loss function. We

do not use S in stage two training, as it does not help learn

HDR deghosting due to lack of motion. We also ignore

U, as the weak self-supervision (LSCL) does not support

convergence in the presence of P’s supervision. As in stage

1, the loss is computed between the tonemapped variants of

predicted and ground truth images.

Y i = N (Xi, Hi), ∀i = {L,P}. (7)

LS2 = ℓ2(T (Y
L), T (Ŷ L)) + ℓ2(T (Y

P ), T (Ŷ P )). (8)

In stage two, the model is trained for 75 epochs with

5000 batches per epoch. Each batch consists of 4 random

64 × 64 patches cropped from a randomly picked image

in P and L. Adam optimizer [23] is used with an initial

learning rate of 1e−4, which is decayed by a factor of 0.75

after every 10 epochs.

Stage 2 refinement (S2R): The stage two trained mod-

els can predict better quality HDRs for U than the stage one

models. Thus, we use second stage predicted HDRs to gen-

erate a new set of artificial dynamic inputs and refine the

model. We show in Fig. 5 (d, e) that there is only a minor

improvement in PSNRs. The scores reported in Tables 1
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Table 1. Quantitative comparison against five existing CNN-based

methods under constrained few-shot scenario. Refer Section 4 for

details. The best score is highlighted in bold.

Kalantari et al. [19] Prabhakar et al. [35]

1-shot

5-way

5-shot

5-way

1-shot

5-way

5-shot

5-way

PL Pµ PL Pµ PL Pµ PL Pµ

Kalantari

et al. [19]

39.32

±0.45

37.40

±1.28

40.08

±0.10

39.96

±0.16

33.63

±0.44

34.78

±0.72

34.32

±0.22

36.19

±0.18

Wu et al.

[53]

37.03

±0.71

36.44

±1.63

38.62

±0.27

38.03

±0.29

31.19

±0.98

33.09

±1.17

32.66

±0.65

35.28

±0.20

Prabhakar

et al. [35]

37.88

±0.12

35.54

±0.44

38.24

±0.06

36.14

±0.36

31.26

±0.83

31.52

±1.47

31.85

±0.47

33.65

±0.43

Yan et al.

[55]

37.81

±0.38

36.96

±1.06

39.37

±0.16

38.86

±0.34

31.73

±0.81

33.27

±1.24

33.14

±0.67

34.95

±0.48

Prabhakar

et al. [34]

39.82

±0.41

36.92

±1.09

40.54

±0.12

38.66

±0.34

32.34

±0.99

33.89

±1.18

32.95

±0.97

35.45

±0.29

Ours
41.04

±0.11

41.13

±0.07

41.39

±0.12

41.40

±0.11

35.74

±0.13

36.47

±0.16

35.86

±0.12

36.61

±0.10

and 2 correspond to stage 2 refined models, and inference

for any test sequence is done only with this model.

4. Experiments and Results

We perform extensive experiments to show our pro-

posed few-shot approach’s effectiveness compared to ex-

isting methods. Since there are no other few-shot HDR

deghosting approaches, we compare our approach against

five existing CNN-based methods [19, 34, 35, 53, 55], un-

der the constrained few-shot scenario. For comparison, we

make use of Kalantari et al. [19] dataset with 74 training and

15 validation sequences, and Prabhakar et al. [35] dataset

with 466 training and 116 validation sequences. We report

results in Table 1 with K ∈ {1, 5} and Q= 5 settings. For

each value of K, we report the average and 95% margin of

variation across 5 runs (denoted as 5-way in Table 1). In

each run, we randomly choose K different random labeled

dynamic sequences and 5 different static sequences. The

rest of the dataset sequences are used as unlabeled data (U)

without ground truth. It should be noted that all three sets

are maintained disjoint.

We train all five existing methods and our multi-stage ap-

proach with the same set of images for a fair and uniform

comparison. We train the existing methods using L and S

sequences but not U, as the existing methods are fully su-

pervised. We report average PSNR across all validation se-

quences in the linear (PL) and µ-law tonemapped domains

(Pµ). It is clear that all existing methods perform poorly

when trained with only a few labeled samples. However,

our proposed multi-stage training approach outperforms all

of them across both metrics by a significant margin with

only 1 labeled dynamic sample.

Table 2. Quantitative comparison against nine methods from three

different categories. Refer Section 4 for details. The best score is

highlighted in red and the second best in blue.

Kalantari et al. [19] Prabhakar et al. [35]

PL Pµ SL Sµ HV2 PL Pµ SL Sµ HV2

C1

Sen [44] 38.57 40.94 0.971 0.978 64.74 32.93 33.43 0.972 0.964 65.47

Hu [16] 31.25 35.75 0.941 0.963 62.07 29.47 32.58 0.954 0.949 63.50

Endo [8] 8.846 21.33 0.622 0.715 54.00 9.760 8.890 0.641 0.675 55.76

Eilertsen [7] 14.21 14.13 0.350 0.882 57.95 14.19 15.66 0.442 0.869 58.74

Ours (K=0) 40.97 41.11 0.989 0.987 67.08 35.06 36.25 0.976 0.946 67.42

C2
Ours (K=1) 41.04 41.13 0.988 0.987 67.19 35.74 36.47 0.978 0.947 67.53

Ours (K=5) 41.39 41.40 0.990 0.989 67.25 35.86 36.61 0.979 0.948 67.56

C3

Kalantari [19] 41.27 42.74 0.981 0.987 66.10 32.50 35.63 0.969 0.961 65.40

Wu [53] 40.91 41.65 0.986 0.986 67.44 34.40 38.03 0.977 0.971 66.59

Prabhakar [35] 39.68 40.47 0.980 0.975 66.50 32.74 36.08 0.967 0.959 66.10

Yan [55] 41.08 41.21 0.989 0.989 67.53 35.28 38.65 0.963 0.961 66.88

Prabhakar [34] 41.33 42.82 0.986 0.989 67.15 34.98 38.30 0.978 0.970 66.25

Ours 41.79 41.92 0.990 0.990 67.70 35.57 38.63 0.980 0.974 67.60

In Table 2, we exhaustively compare our approach

against all major HDR deghosting techniques. We use

PSNR and SSIM [50] in linear and µ-law tonemapped do-

mains, and HDR-VDP-2 (HV2) [28] as comparison met-

rics. We show comparison on three categories depending

upon the amount of labeled dynamic data used: C1 - zero-

shot, C2 - few-shot, and C3 - fully supervised. C1 con-

sists of two non-learning HDR deghosting methods [16,

44], two single-image HDR reconstruction techniques [7,

8]. It also contains our approach trained in a zero-shot set-

ting with K=0, averaged across 5 different S sets while the

rest of dataset is considered as U without using the ground

truth. C2 contains our proposed few-shot approach with

K ∈ {1, 5}, each averaged across 5 different {L, S, U} sets.

C3 contains 5 state-of-the-art CNN-based approaches [19,

34, 35, 53, 55] trained in fully-supervised setting with 100%

of labeled dataset (K =74 for [19] and K =466 for [35]).

We also include our approach trained in a fully-supervised

setting for one stage, which is using the entire dataset as L,

without S and U.

Our zero-shot approach outperforms other non-learning

and single-image HDR approaches by a large margin. It

outperforms some fully supervised methods like Wu et al.

[53] and Prabhakar et al. [35] in terms of PL and SSIM.

Also, it outperforms Kalantari et al. [19] and [35] in HDR-

VDP-2 metric. Our few-shot approach can match the per-

formance of many state-of-the-art fully-supervised tech-

niques while using less than or equal to 5 labeled dynamic

data. For instance, our few-shot approach with K=5 out-

performs all other fully supervised methods in PL and SL

metrics, and ties in first position with [55] and [34] for Sµ.

Comparatively, our fully supervised method outperforms all

existing methods in 3 out of 5 metrics among both datasets.

In Table 3, we compare the effectiveness of each com-

ponent of {L, S, U} in guiding convergence during stage
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Figure 4. Qualitative results of stage one training using different

combinations of {L,S,U}.

one training. We perform this ablation on [19]’s dataset for

3 sets of {L, S, U}. Using only S, the model learns only

static-HDR merging. Thus, resultant images have ghosting

artifacts, which is evident by the low Pµ value (see Fig. 4).

Using both S and U is essentially the stage one training of

zero-shot approach, which performs much better than using

only weakly self-supervised U. This shows that although S

does not help HDR deghosting, it guides the HDR merging

process in case of low dynamic labeled data.

For the remaining runs, we average 3 different sets, for

both K ∈ {1, 5}, and show that using both S and U helps

improve performance over direct few-shot training by a

large margin. Without S, the HDR merging process strug-

gles in low-data regime. Without LSCL and U, there are

only 1 or 5 dynamic sequences in the training set, which

leads to poor deghosting performance. In Fig. 4, we see

that using all 3 sets {L, S, U} achieves best deghosting

performance with minimal artifacts.

Qualitative Results: In Figure 1, we present results pro-

duced by major HDR deghosting methods on a test sam-

ple from the Kalantari et al. [19] dataset. Even though the

CNN-based methods were trained using 100% of labeled

dataset, our 5-shot model produces comparable, if not better

results in challenging regions. In Fig. 6, we present results

of CNN-based HDR deghosting methods under the con-

strained few-shot scenario, on 2 test samples from Kalantari

et al. [19]’s dataset. Trained with only 5 labeled dynamic

samples, existing methods produce lot of ghosting and dis-

coloration artifacts. However, our approach is capable of

reconstructing details in heavily saturated dynamic regions.

5. Discussion

Number of Samples: We ran multiple ablations to de-

termine the number of samples required from each set (S,

L, U). We perform all the ablation experiments and report

results on Kalantari et al. [19] dataset. Firstly, we fixed U at

M=20, L at K=1, and varied the number of static samples

(S) from Q ∈ {0, 5, 10, 20, 40, 74} in stage one training. As

seen in Fig. 5 (a), just 5 static samples are enough to guide

the HDR merging process. Using many static samples does

not offer any noticeable improvement in metrics. So we use

Q= 5 static samples for all our experiments.

Table 3. Ablation analysis to determine importance of each set dur-

ing stage one training. The numbers are reported on Kalantari et

al. [19]’s test set averaged over three different runs.

S L U PL Pµ HV2

✓ ✗ ✗ 38.33 34.88 61.27

✗ ✗ ✓ 33.51 37.37 61.79

✓ ✗ ✓ 39.84 39.92 65.68

1-shot 5-shot

S L U PL Pµ HV2 PL Pµ HV2

✗ ✓ ✗ 36.40 32.57 64.70 40.56 40.14 66.36

✓ ✓ ✗ 39.54 38.61 65.08 40.43 39.40 65.42

✗ ✓ ✓ 35.85 38.26 64.35 39.90 40.72 66.30

✓ ✓ ✓ 40.15 40.63 65.89 40.64 41.08 66.39

Secondly, we fixed S at Q = 20, L at K = 1, and var-

ied the number of unlabeled dynamic sequences (U) from

M ∈ {0, 5, 10, 20, 40, 74} in stage one training. Although

we usually use all unlabeled samples available at hand, Fig.

5 (b) suggests that a handful of M =20 unlabeled dynamic

sequences is enough to achieve reported stage one results.

Finally we vary |L| from K ∈ {1, 2, 3, 4, 5, 7, 18, 37},

while all remaining samples are used as U. We kept S fixed

at Q=74, whose quantity, as we have already established,

does not affect performance. For each K value, we average

across 3 different sets of L, whose results are shown in Fig.

5 (c). We also show direct few-shot training scores, where

the model is trained only on L. With just K =1, our stage

one training achieves over 4 to 8dB improvement in PSNRs

and almost matches fully supervised performance.

Stage 2 Ablations: Conventional pseudo-labeling [4,

14, 26] self-supervision suggests that the predicted HDRs

(Ŷ P ) can be used as a label for U during stage two. How-

ever, a model trained using only {U,L} with {Ŷ P , Ŷ L}
as labels gave PL of only 40.65dB compared to our pro-

posed approach improving up to 41.30dB in stage two. This

indicates that naively pseudo-labeling is flawed for HDR

deghosting. The model gets incorrectly penalized for the

artifacts present in predicted HDRs that are not a part of

the input sequence. In contrast, our artificial sequences stay

true to the predicted HDRs and form valid training pairs. In

addition, including the LSCL self-supervision loss in stage

two, gave even worse PL of 40.45dB. This is due to the

conflict between LSCL and L2 losses in saturated regions

which misleads network convergence.

We also tried including S during stage two training, but it

decreased Pµ by over 0.4dB. In stage two, when the model

is fine-tuning its deghosting performance, including static

sequences proves detrimental. Finally, while we align the

input sequences in L to their respective reference images

using optical flow [27], we do not perform the same for

the generated dynamic sequences (P). We found that doing
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Figure 5. Ablation on number of samples and stages. Please refer to Section 5 for details.
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Figure 6. Qualitative comparison of existing CNN-based methods against proposed 5-shot approach on two challenging examples from

Kalantari et al. [19]’s validation set. The results for existing methods are generated after training them with 5 labeled dynamic examples

(refer Section 4).

so resulted in aggravated warping artifacts, which rendered

learning difficult and lead to a drop of 0.3dB PL. However,

for real dynamic images from L and U, we always perform

optical flow alignment before merging.

Few Shot HDR Video: We manually annotate HDR

frames for the first 4 frames of two LDR videos provided

by [20], and use them as labeled sequences. The remaining

unlabeled frames are used as unlabeled dynamic sequences.

This way, we extend our few-shot two-stage approach to

HDR video and generate 2 HDR videos. The resultant

videos and training details are included in supplementary.

6. Conclusion

In this paper, we propose a novel few-shot HDR deghost-

ing method using unlabeled data through self-supervision.

In the first stage, we train a model with limited dynamic

labeled data and boost performance using unlabeled data

with a self-supervision loss. In stage two, we found that

performance can be further improved with the help of our

proposed novel approach to generate labeled data from un-

labeled samples. Such an approach brings up a promising

paradigm shift and can be extended to many other image en-

hancement and photography applications. We have shown

that as low as 5 labeled dynamic samples and a pool of

unlabeled samples is sufficient to achieve deghosting per-

formance comparable to a model trained with fully super-

vised data. Finally, our work eliminates the necessity to

capture ground-truth for all sequences, and utilizes few la-

beled dynamic data and unlabeled data to achieve similar,

if not better, results. Our few-shot approach saves much

tedious effort, time, and manual scrutiny in collecting accu-

rate ground truth for large-scale HDR deghosting dataset.
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