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Abstract

Understanding the semantics of human movement – the

what, how and why of the movement – is an important prob-

lem that requires datasets of human actions with seman-

tic labels. Existing datasets take one of two approaches.

Large-scale video datasets contain many action labels but

do not contain ground-truth 3D human motion. Alterna-

tively, motion-capture (mocap) datasets have precise body

motions but are limited to a small number of actions. To

address this, we present BABEL, a large dataset with lan-

guage labels describing the actions being performed in mo-

cap sequences. BABEL consists of language labels for over

43 hours of mocap sequences from AMASS, containing over

250 unique actions. Each action label in BABEL is precisely

aligned with the duration of the corresponding action in the

mocap sequence. BABELalso allows overlap of multiple ac-

tions, that may each span different durations. This results

in a total of over 66000 action segments. The dense annota-

tions can be leveraged for tasks like action recognition, tem-

poral localization, motion synthesis, etc. To demonstrate

the value of BABEL as a benchmark, we evaluate the per-

formance of models on 3D action recognition. We demon-

strate that BABEL poses interesting learning challenges

that are applicable to real-world scenarios, and can serve

as a useful benchmark for progress in 3D action recogni-

tion. The dataset, baseline methods, and evaluation code

are available and supported for academic research pur-

poses at https://babel.is.tue.mpg.de/.

1. Introduction

A key goal in computer vision is to understand human

movement in semantic terms. Relevant tasks include pre-

dicting semantic labels for a human movement, e.g., action

recognition [12], video description [37], temporal localiza-

tion [26, 39], and generating human movement that is con-

ditioned on semantics, e.g., motion synthesis conditioned

∗ Denotes equal contribution.
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Figure 1. People moving naturally often perform multiple actions

simultaneously, and sequentially, with transitions between them.

Existing large-scale 3D mocap datasets, however, describe an en-

tire sequence with only a single action label. In BABEL, all frames

and all actions are labeled. Each frame label is precisely aligned

with the frames representing the action (colored wedge). This in-

cludes simultaneous actions (overlapping wedges) and transitions

between actions (gray wedges).

on actions [10], or sentences [3, 17].

Large-scale datasets that capture variations in human

movement and language descriptions that express the se-

mantics of these movements, are critical to making progress

on these challenging problems. Existing datasets contain

detailed action descriptions for only 2D videos, e.g., Activ-

ityNet [26], AVA [9] and HACS [39]. The large scale 3D

datasets that contain action labels, e.g., NTU RGB+D 60

[27] and NTU RGB+D 120 [40] do not contain ground truth

3D human motion but only noisy estimates. On the other

hand, motion-capture (mocap) datasets [2, 8, 11, 14] are

small in scale and are only sparsely labeled with very few

actions. We address this shortcoming with BABEL, a large

dataset of diverse, densely annotated, actions with labels for

all the actions in a motion capture (mocap) sequence.

We acquire action labels for sequences in BABEL, at

two different levels of resolution. Similar to existing mo-

cap datasets, we collect a sequence label that describes the

action being performed in the entire sequence, e.g., jump

over obstacle in Fig. 1. At a finer-grained resolution,

the frame labels describe the action being performed at each

frame of the sequence, e.g., stand, run, etc. The frame
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labels are precisely aligned with the corresponding frames

in the sequence that represent the action. BABEL also cap-

tures simultaneous actions, e.g., jump over obstacle

and support body with right hand. We ensure

that all frames in a sequence are labeled with at least one ac-

tion, and all the actions in a frame are labeled. This results

in dense action annotations for high-quality mocap data.

BABEL leverages the recently introduced AMASS

dataset [20] for mocap sequences. AMASS is a large corpus

of mocap datasets that are unified with a common represen-

tation. It has > 43 hours of mocap data (13220 sequences)

performed by over 346 subjects. The scale and diversity of

AMASS presents an opportunity for data-driven learning of

semantic representations for 3D human movement.

Most existing large-scale datasets with action labels

[2, 11, 19, 21, 26, 27, 39, 40] first determine a fixed set

of actions that are of interest. Following this, actors per-

forming these actions are captured (3D datasets), or videos

containing the actions of interest are mined from the web

(2D datasets). While this ensures the presence of the action

of interest in the sequence, all other actions remain unla-

beled. The sparse action label for a sequence, while useful,

serves only as weak supervision for data-driven models that

aim to correlate movements with semantic labels. This is

suboptimal. 3D datasets such as NTU RGB+D [19, 27] and

HumanAct12 [40] handle this shortcoming by cropping out

segments that do not correspond to the action of interest

from natural human movement sequences. While the action

labels for the short segments are accurate, the cropped seg-

ments are unlike the natural, continuous human movements

in the real-world. Thus, the pre-segmented movements are

less suitable as training data for real-world applications.

Our key idea with BABEL is that natural human move-

ment often involves multiple actions and transitions be-

tween them. Thus, understanding the semantics of natu-

ral human movement not only involves modeling the re-

lationship between an isolated action and its correspond-

ing movement but also the relationship between different

actions that occur simultaneously and sequentially. With

BABEL, our goal is to provide accurate data for statistical

learning, which reflects the variety, concurrence and tempo-

ral compositions of actions in natural human movement.

The current version of BABEL contains dense action an-

notations for about 43.5 hours of mocap from AMASS, with

9421 unique language labels. Via a semi-automatic process

of semantic clustering followed by manual categorization,

we organize these into 252 actions such as greet, hop,

scratch, dance, play instrument, etc. These ac-

tions belong to 8 broad semantic categories involving sim-

ple actions (throw, jump), complex activities (martial

arts, dance), body part interactions (scratch, touch

face), etc. (see Sec. 3.4). There are a total of 66289 action

segments, and a single mocap sequence has 5.01 segments

on average, with 3.4 unique actions. We collect the action

labels and alignments by adapting an existing web annota-

tion tool, VIA [6] (see Sec. 3.1). Labelling was done by

using Amazon Mechanical Turk [1].

We benchmark the performance of models on BA-

BEL for the 3D action recognition task [27]. The goal is to

predict the action category, given a segment of mocap that

corresponds to a single action span. Unlike existing datasets

containing carefully constructed segments for the actions of

interest, action recognition with BABEL more closely re-

sembles real-world applications due to the long-tailed dis-

tribution of classes in BABEL. We demonstrate that BA-

BEL presents interesting learning challenges for an exist-

ing action recognition model that performs well on NTU

RGB+D 60. In addition to being a useful benchmark for ac-

tion recognition, we believe that BABEL can be leveraged

by the community for tasks like pose estimation, motion

synthesis, temporal localization, few shot learning, etc.

In this work, we make the following contributions: (1)

We provide the largest 3D dataset of dense action labels

that are precisely aligned with their corresponding move-

ment spans in the mocap sequence. (2) We categorize the

raw language labels into over 250 action classes that can

be leveraged for tasks requiring categorical label sets such

as 3D action recognition. (3) We analyze the actions oc-

curring in BABEL sequences in detail, furthering our se-

mantic understanding of mocap data that is already widely

used in vision tasks. (4) We benchmark the performance of

baseline 3D action recognition models on BABEL, demon-

strating that the distribution of actions that resembles real-

world scenarios, poses interesting learning challenges. (5)

The dataset, baseline models and evaluation code are pub-

licly available for academic research purposes at https:

//babel.is.tue.mpg.de/.

2. Related Work

Language labels and 3D mocap data. We first briefly re-

view the action categories in large-scale 3D datasets, fol-

lowed by a more detailed comparison in Table 1. The

CMU Graphics Lab Motion Capture Database (CMU) [2]

is widely used, and has 2605 sequences. The dataset has

6 semantic categories (e.g., ‘human interaction’, ‘interac-

tion with environment’) that, overall, contain 23 subcat-

egories, e.g., ‘two subjects’, ‘playground’, ‘pantomime’.

Human3.6M [14] consists of 12 everyday actions in 6 se-

mantic categories such as ‘walking variations’ (‘walking

dog’, ‘walking pair’), ‘full body upright variations’ (‘greet-

ing’, ‘posing’), etc. MoVi [8] consists of everyday ac-

tions and sports movements e.g., ‘clapping hands’, ‘pre-

tending to take picture’, etc. KIT Whole-Body Human Mo-

tion Database (KIT) [21] focuses on both human move-

ment and human-object interaction [32] containing grasp-

ing and manipulation actions in addition to activities such
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Dataset GT motion? # Actions # Hours Per-frame? Continuous?

CMU MoCap [2] X 23 9 ✗ X

MoVi [8] X 20 9 ✗ X

Human3.6M [14] X 17 18 ✗ X

LaFan1 [11] X 12 4.6 ✗ X

HumanAct12 [10] ✗ 12 6 ✗ ✗

NTU RGB+D 60 [27] ✗ 60 37 ✗ ✗

NTU RGB+D 120 [19] ✗ 120 74 ✗ ✗

BABEL (ours) X 252 43.5 X X

Table 1. Comparison of existing datasets containing action labels for human movement. GT motion indicates whether the human

movements are accurate (mocap) or noisy estimates (e.g., via tracking). # Actions indicates the total count of action categories in

each dataset. # Hours indicates the total duration of all sequences in the dataset. Per-Frame? indicates whether the action labels are

precisely aligned with the corresponding spans of movement in the sequence. Continuous? indicates whether the movement sequences

are original, continuous, human movements or short cropped segments containing specific actions. BABEL uniquely provides large-scale

dense (per-frame) action labels for natural, continuous, ground-truth human movement data.

as climbing and playing sports. LaFan1 [11] is a recent

dataset containing 15 different actions, including locomo-

tion on uneven terrain, free dancing, fight movements, etc.

These characterize the movement in the entire mocap se-

quence via simple tags or keywords. In contrast, the KIT

Motion-Language Dataset [21] describes motion sequences

with natural language sentences, e.g., ‘A person walks back-

ward at a slow speed’. While our motivation to learn seman-

tic representations of movement is similar, action labels in

BABEL are precisely aligned with the sequence.

Frame actions labels in 3D mocap. The CMU MMAC

dataset [30] contains precise frame labels for a fixed set of

17 cooking actions (including ‘none’). Arikan et al. [4] and

Muller et al. [23] partially automate labeling temporal seg-

ments for mocap using action classifiers. While these works

assume a known, fixed set of classes, in BABEL, we iden-

tify and precisely label all actions that occur in each frame.

Action labels and tracked 3D data. NTU RGB+D 60

[27] and 120 [19] are large, widely used datasets for 3D

action recognition. In NTU RGB+D, RGBD sequences are

captured via 3 Kinect sensors which track joint positions

of the human skeleton. NTU RGB+D has segmented se-

quences corresponding to specific actions. There are 3 se-

mantic categories – ‘Daily actions’ (‘drink water’, ‘taking

a selfie’), ‘Medical conditions’ (‘sneeze’, ‘falling down’)

and ‘Mutual actions’ (‘hugging’, ‘cheers and drink’). These

datasets contain short cropped segments of actions, which

differ from BABEL sequences, which are continuous, re-

flecting natural human movement data. The ability to model

actions that can occur simultaneously, sequentially and the

transitions between them is important for application to real

world data [26]. See Table 1 for further comparison.

2D temporal localization. Many works over the years

have contributed to progress in the action localization task

[13, 29, 38]. ActivityNet [26] contains 648 hours of videos

and 200 human activities that are relevant to daily life, or-

ganized under a rich semantic taxonomy. It has 19,994

(untrimmed) videos, with an average of 1.54 activities per

video. More recently, HACS [39] provides a larger tem-

poral localization dataset with 140,000 segments of actions

that are cropped from 50,000 videos that span over 200 ac-

tions. AVA [9] is another recent large-scale dataset that con-

sists of dense annotations for long video sequences for 80

atomic classes. In [36], the authors introduce a test recorded

by Kinect v2 in which they describe activities as composi-

tions of action interactions with different objects. While

BABEL also contains temporally annotated labels, it does

not assume a fixed set of actions that are of interest. On the

other hand, with BABEL, we elicit labels for all actions in

the sequence including high-level (‘eating’), and low-level

actions (‘raise right hand to mouth’).

3. Dataset

We first provide details regarding the crowdsourced data

collection process. We then describe the types of labels in

BABEL, and the label processing procedure.

3.1. Data collection

We collect BABEL by showing rendered videos of mo-

cap sequences from AMASS [20] to human annotators and

eliciting action labels (Fig. 2). We observe that a sequence

labeled as pick up object often also involves other ac-

tions such as walking to the object, bending down to pick

up the object, grasping the object, straightening back up,

turning around and walking away. We argue that labeling

the entire sequence with the single label is imprecise, and

problematic. First, many actions such as turn and grasp

are ignored and remain unlabeled although they may be

of interest to researchers [32]. Second, sequence labels

provide weak supervision to statistical models, which are

trained to map the concept of picking up object to

the whole sequence when it, in fact, contains many differ-

ent actions. To illustrate this point, we examine a typical se-

quence (see the Sup. Mat.), and find that only 20% of the du-
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ration of the sequence labeled as pick up and place

object corresponds to this action. Crucially, walking to-

wards and away from the object – actions that remain unla-

beled – account for 40% of the duration. While this makes

semantic sense to a human – picking up and placing an ob-

ject is the only action that changes the state of the world and

hence worth mentioning, this might be suboptimal training

data to a statistical model, especially when the dataset also

contains the confusing classes walk, turn, etc. Finally,

using noisy labels as ground truth during evaluation does

not accurately reflect the capabilities of models.

We address this with action labels at two levels of res-

olution – a label describing the overall action in the entire

sequence, and dense action labels that are aligned with their

corresponding spans of movement in the mocap sequence.

3.2. BABEL action labels

We collect BABEL labels in a two-stage process – first,

we collect sequence labels, and determine whether the se-

quence contains multiple actions. We then collect frame

labels for the sequences containing multiple actions.

Sequence labels. In this labeling task, annotators answer

two questions regarding a sequence. We first ask annotators

if the video contains more than one action (yes/no).1 If the

annotator chooses ‘no’, we ask them to name the action in

the video. If they instead choose ‘yes’, we elicit a sequence

label with the question, “If you had to describe the whole

sequence as one action, what would it be?” Please see the

web-based task interface provided in the Sup. Mat.

We ask annotators to enter the sequence labels in a text-

box, with the option of choosing from an auto-complete

drop-down menu that is populated with a list of basic ac-

tions. We specifically elicit free-form labels (as opposed

to a fixed list of categories) from annotators to discover

the diversity in actions in the mocap sequences. We find

that in most cases, annotators tend to enter their own ac-

tion labels. This also presents a challenge, acting as a

source of label variance. Apart from varying vocabulary,

free-form descriptions are subject to ambiguity regarding

the ‘correct’ level in the hierarchy of actions [9], e.g.,

raise left leg, step, walk, walk backwards,

walk backwards stylishly, etc.

Overall, 2 annotators label each sequence, resulting in

13220 ∗ 2 = 16440 sequence labels. For 47.7% of the se-

quences, both annotators agree that they contain multiple

actions. These are further annotated with frame labels.

Frame labels. We obtain labels for all actions that occur

in the sequence, and precisely identify the span in the se-

quence that corresponds to the action. We leverage an ex-

isting video annotation tool, VIA [6], and modify the front-

end interface and back-end functionality to suit our anno-

1Note that the initial ‘T-pose’ for calibration, followed by standing are

considered separate actions with a transition between them.

Figure 2. BABEL annotation interface to collect frame-level ac-

tion labels. Annotators first name all the actions in the video. They

then, precisely align the length of the action segment (colored hor-

izontal bar) with the corresponding duration of the action in the

video. This provides dense action labels for the entire sequence.

tation purposes. For instance, we ensure that every frame

in the sequence is annotated with at least one action label.

This includes ‘transition’ which indicates a transition be-

tween two actions, or ‘unknown’ which indicates that the

annotator is unclear as to what action is being performed.

This provides us with dense annotations of action labels for

the sequence. Figure 2 shows a screenshot of the AMT task

interface for frame label annotation in BABEL.

To provide frame labels, an annotator first watches the

whole video and enters all the actions in the ‘List of Ac-

tions’ text-box below the video. This populates a set

of empty colored box outlines corresponding to each ac-

tion. The annotator then labels the span of an action by

creating a segment (colored rectangular box) with a but-

ton press. The duration of the segment and the start/end

times can be changed via simple click-and-drag operations.

The video frame is continuously updated to the appropri-

ate time-stamp corresponding to the end time of the current

active segment. This provides the annotator real-time feed-

back regarding the exact starting point of the action. Once

the segment is placed, its precision can be verified by a ‘play

segment’ option that plays the video span corresponding to

the current segment. In case of errors, the segment can be

further adjusted. We provide detailed instructions via text,

and a video tutorial that explains the task with examples,

and demonstrates operation of the annotation interface. The

web interface of the task is provided in the Sup. Mat.

Overall, BABEL contains labels for a total of 66289
segments2 that correspond to the 13220 sequences in the

dataset, with an average of 5.01 segments per sequence.

2Note that this includes labels collected via the ‘sequence label’ task.

If an entire sequence has only a single action, it counts as 1 segment.
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3.3. Annotators

We recruit all annotators for our tasks via the Amazon

Mechanical Turk (AMT)3 crowd-sourcing platform. These

annotators are located either in the US or Canada. In the

sequence label annotation task, we recruit 571 unique an-

notators with > 5000 HITs approved and an approval rate

> 95%. In the frame labeling task, which is more involved,

we first run small-scale tasks to recruit annotators. For fur-

ther tasks, we only qualify 133 annotators who demonstrate

an understanding of the task and provide satisfactory action

labels and precise segments in the sequence. In both tasks,

our median hourly pay is ∼ $12. We also provide bonus

pay as an incentive for thorough work in the frame labeling

task (details in Sup. Mat.).

3.4. Label processing

BABEL contains a total of 9421 unique raw action la-

bels. Note that while each action label is a unique string,

labels are often semantically similar (walk, stroll,

etc.), are minor variations of an action word (walking,

walked, etc.) or are misspelled. Further, tasks like classi-

fication require a smaller categorical label set. We organize

the raw labels into two smaller sets of semantically higher-

level labels – action categories, and semantic categories.

Action categories. We map the variants of an action into a

single category via a semi-automatic process that involves

clustering the raw labels, followed by manual adjustment.

We first pre-process the raw string labels by lower-

casing, removing the beginning and ending white-spaces,

and lemmatization. We then obtain semantic representa-

tions for the raw labels by projecting them into a 300D

space via Word2Vec embeddings [22]. Word2Vec is a

widely used word embedding model that is based on the dis-

tributional hypothesis – words with similar meanings have

similar contexts. Given a word, the model is trained to pre-

dict surrounding words (context). An intermediate repre-

sentation from the model serves as a word embedding for

the given word. For labels with multiple words, the over-

all representation is the mean of the Word2Vec embeddings

of all words in the label. Labels containing words that are

semantically similar, are close in the representation space.

We cluster labels that are similar in the representation

space via K-means (K = 200 clusters). This results

in several semantically meaningful clusters, e.g., walk,

stroll, stride, etc. which are all mapped to the same

cluster. We then manually verify the cluster assignments

and fix them to create a semantically meaningful organi-

zation of the action labels. Raw labels that are not rep-

resented by Word2Vec (e.g., T-pose) are manually orga-

nized into relevant categories in this stage. For each clus-

ter, we determine a category name that is either a syn-

3https://www.mturk.com/

onym (‘walk’ ← {walk, stroll, stride}) or hyper-

nym (‘walk’← {walk forward, walk around}) that

describes all action labels in the cluster.

Some raw labels, e.g., rotate wrists can be com-

posed into multiple actions like circular movement

and wrist movement. Thus, raw labels are occasion-

ally assigned membership to multiple action categories.

Overall, the current version of BABEL has 252 action

categories. Interestingly, the most frequent action in BA-

BEL is ‘transition’ – a movement that usually remains unla-

beled in most datasets. There are 17287 transitions between

different actions in BABEL. Unsurprisingly, the frequency

of actions decreases exponentially following Zipf’s law –

the 50th most frequent action sports moves occurs 280
times, the 100th most frequent action communicate, oc-

curs 52 times, and the 200th most frequent action lick, oc-

curs 5 times. We visualize the action categories containing

the largest number of raw labels (cluster elements) in Fig. 3

(outer circle). Raw labels corresponding to these categories

are shown on the right. We provide histograms of duration

and number of sequences per-action, in the Sup. Mat.

Semantic categories of labels. Action categories often re-

flect qualitatively different types of actions like interacting

with objects, actions that describe the trajectory of move-

ment, complex activities involving multiple actions, etc. We

formalize the different types of actions in BABEL into 8 se-

mantic categories (inner circle in Fig. 3):

1. Simple dynamic actions contain low-level atomic ac-

tions – walk, run, kick, punch, etc.

2. Static actions involve transitioning to and/or main-

taining a certain posture – sit, stand, kneel, etc.

3. Object interaction: e.g., place something,

move something, use object, etc.

4. Body part interaction contains actions like

touching face, scratch, etc. which typi-

cally involve self-contact of body parts.

5. Body part describes the movement of a specific

body part – raise arm, lower head, rotate

wrist, etc.

6. Type of movement contains actions that describe the

trajectory of movement of either a body part or the

whole body – twist, circular movement, etc.

7. Activity contains complex actions that often involve

multiple low-level actions – play sports={run,
jump}, dance={stretch, bend}, etc.

8. Abstract actions contain actions which often refer to

the emotional state of the person and whose physi-

cal realizations could have large variance – excite,

endure, learn, find, etc. There are only a few

abstract actions in BABEL.

The diversity in the types of action labels in BABEL can

be leveraged by tasks modeling movement at various lev-

els of semantic abstraction, e.g., movement of body parts

726

https://www.mturk.com/


bob head, head bang, nod head, nod, move head side 

ways, tilt head back, move head around, twist head, tilt 

head to the right, move head in a circle

pace quickly, walk away, runway walk, power walk, 

wobble walk, slow walk back and forth, speed walk, 

sidle, strolls, catwalk, walking backwards, walking in 

circles, zigzag, stride, saunter, plod, shamble, strut, 

wander, hobble, tread, swagger

dance with partner, ballet dancing, interpretive dancing, 

ginga dance, doing a nutty dance, expression dance, 

slow dancing with imaginary partner, teacup dance, 

waltz, fish flop, plie, shimmy, sway

scratch hands, scratch chin, scratch arm, scratch face, 

scratch head, scratch nose, scratching side, scratch 

waist with right hand, itch butt, itch leg

lean backwards to the left, lean to left, lean right, lean 

left knee forward, lean against object, tilt right

place object on upper shelf, put object on table, place 

ice in glass, put book on shelf, place drink, put box on 

shelf, place object on ground, place item in waist band, 

loading stuff into a truck

twist wrists in a circle, twist body to the left, twist body 

to the right, jump twist, whirl body, twirl leg, twist left 

leg, twist head, twist cork, twirl, barrel roll

Figure 3. Left. 2D t-SNE [34] visualization of the semantic space that we project raw labels into. Similar labels are grouped via K-means

clustering. The green shading and points represent the ‘dance’ cluster and its members respectively. Center. Distribution of (a subset

of) action categories (outer circle) under each semantic category (inner circle) in BABEL. The angle occupied by the action category is

proportional to the number of unique raw label strings associated with it. Action categories with a large number of fine-grained descriptions

are shown. Right. Subset of the fine-grained descriptions associated with selected action categories.

like circular movement of wrist at a low level,

or high-level semantic activities such as dancing the

waltz. Further, depending on the task and model, one

can exploit either the discrete set of action categories (e.g.,

action recognition), or embed the raw action labels into a

semantic space to provide a semantic representation of the

segment of movement (e.g., action synthesis).

We provide the full set of semantic categories, action cat-

egories, and raw action labels in BABEL in the Sup. Mat.

4. Analysis

Natural human movement often contains multiple ac-

tions and transitions between them. Modeling the likeli-

hood of simultaneous actions and action transitions has ap-

plications in reasoning about action affordances in robotics

and virtual avatars, motion synthesis [33], activity forecast-

ing [16], animation [31], and action recognition.

4.1. Simultaneous actions

Although people often perform multiple actions simul-

taneously in real life, this is rarely captured in labeled

datasets. Recall from Sec. 3.2 that in BABEL, we ask an-

notators to label all actions that are occurring in each frame

of the sequence. Overall, BABEL has 3208 simultaneous

actions, which are defined as actions that overlap for a dura-

tion of > 0.1 seconds. We exclude the overlap of an action

with transition since this implies adjacent actions.

Simultaneous actions often exhibit relationships such as:

1. Hierarchical. Some simultaneous actions reflect the

hierarchical structure in actions. For instance, a

complex activity & action comprising the activity,

e.g., eating food & raise right hand to

mouth, and dancing & extend arms.

2. Complementary. The two actions are independent,

e.g., hold with left hand & look right.

3. Superimposed. An action can move a certain body

part that partly modifies another action; e.g., carry

with right hand modifies the complex activity

walk, and right high kick partly modifies the

static (full body) action fight stance.

4. Compositional. Actions involving the same body

parts that result in a body or part movement that is a

function of both actions, e.g., walking & turn.

4.2. Temporally adjacent actions

The dense labels in BABEL capture the progression of

actions in mocap sequences. We analyze adjacent actions

where where action ai follows aj (denoted by aj → ai).

ai and aj denote action segments, i.e., a contiguous set of

frames corresponding to an action (and not the action for a

single frame). Thus, ai 6= aj if the actions are adjacent. We

say aj → ai if the frame succeeding the last frame of aj is

the first frame of ai. In practice, we account for imprecise

human temporal annotations by ignoring a small overlap in

duration (< 0.1 sec.) between ai and aj . We also disregard

the separation of actions by transition; i.e., aj → ai if

aj → at and at → ai, where at = transition.

We visualize the frequent transitions between actions,

i.e., aj → ai sorted by Count(aj → ai) in BABEL, in

Fig. 4. We observe that walk, unsurprisingly, has the most

diverse set of adjacent actions, i.e., Count(walk→ ai)

and Count(aj →walk) are large. While transitions be-

tween action pairs such as (jog, turn), (walk, t-pose)

are bidirectional (with ∼ equal frequency), others have
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walk

stand

turn

t-pose

catch

throw

place something

pick something up

knock

bend

jog

sit
stand up

Figure 4. Node represent actions, and an edge represents a transi-

tion between these actions in the mocap sequence. Edge thickness

∝ Count(ai → aj) (frequency of transition) in BABEL.

# Transition of actions

1 walk, transition, pick up, set down, transition,

walk clockwise, transition, stand

2 a-pose, transition, wave hands in and out, wave

arms in front of left, transition, cross left leg in

circle gesture series, transition, t-pose

3 looking left, standing, transition, looking right,

standing

4 stepping forward, standing, turning back, walking

back, walking forward, standing, losing balance,

transition, turning around, walking, standing

5 step back, stand, transition, walk to the left
Table 2. Random walk samples based on action transition proba-

bilities learned from BABEL. The generated samples are plausible

action sequences simulating natural human movement.

fewer adjacent actions. Some action categories with few

transitions illustrate semantically meaningful action chains,

e.g., sit→ stand up→ walk and walk→ bend→
pick something up → place something. Uni-

directional transitions such as sit → stand up and

walk → sit implicitly indicate the arrow of time [24].

Interestingly, the transition from sit → stand up, and

the lack of transition from sit → stand delineates the

subtle difference between the labels stand (static action

of ‘maintaining an upright position’) and stand up (dy-

namic action of ‘rising into an upright position’).

Given the temporally adjacent actions in BABEL,

we attempt to model the transition probabilities be-

tween actions, i.e., P (ai|aj). Concretely, we compute

P (ai|ai−1, ai−2, ai−3), an order 3 Markov Chain [7], and

observe in Table 2 that random walks along this chain gen-

erate plausible action sequences for human movement.

4.3. Bias

There are a few potential sources of bias in BABEL,

which we report in the Sup. Mat. Specifically, we dis-

cuss potential biases introduced by the interface design, pay

structure, and label processing method. We also analyze the

inter-annotator variation in BABEL labels by collecting 5
unique annotations for each of 29 sequences. We find that

for the same sequence, annotators vary in the labeled action

categories, the number of actions, and segments. In general,

the variance appears to be larger for sequences of longer du-

ration. We provide further details in the Sup. Mat.

5. Experiments

The dense action labels in BABEL can be leveraged for

multiple vision tasks like pose estimation, motion synthesis,

temporal localization, etc. In this section, we demonstrate

the value of BABEL for the 3D action recognition task [19,

27], where the goal is to predict a single action category

y ∈ Y , for a given motion segment (xt, · · · ,xt′).
Motion representation. A mocap sequence in AMASS,

is an array of poses over time, M = (p1, · · · ,pL), where

pi are pose parameters of the SMPL-H body model [25].

For consistency with prior work, we predict the 25-joint

skeleton used in NTU RGB+D [27] from the vertices of the

SMPL-H mesh; see Sup. Mat. Thus, we represent a move-

ment sequence as X = (x1, · · · ,xL), where xi ∈ R
J×3

represents the position of the J(= 25) joints in the skele-

ton, in Cartesian co-ordinates, (x, y, z).
Labels. In BABEL, a raw action label is mapped to the

segment of human movement Xs = (xts, · · · ,xte) corre-

sponding to the action. Recall that a raw action label for a

segment can belong to multiple action categories Ys (e.g.,

rotate wrists → circular movement, wrist

movement). Overall, BABEL contains N movement seg-

ments, and their action categories (Xs,Ys)
N .

Architecture. We benchmark performance on BA-

BEL with the 2-Stream-Adaptive Graph Convolutional Net-

work (2s-AGCN) [28], a popular architecture that performs

graph convolutions spatially (along bones in the skeleton),

and temporally (joints across time). Crucially, the graph

structure follows the kinematic chain of the skeleton in the

first layer but is adaptive – the topology is a function of

the layer and the sample. The model achieves good perfor-

mance on both 2D and 3D action recognition. GCNs remain

the architecture of choice even in more recent state-of-the-

art approaches [5].

A 2s-AGCN consists of two streams with the same archi-

tecture – one which accepts joint positions, and the other,

bone lengths and orientations, as input respectively. The

final prediction is the average score from the two streams.

On NTU RGB+D, 2s-AGCN achieves achieves an accuracy

of 88.5% on the cross-subject task. In our experiments, we

use only the joint stream, which achieves 2% lower accu-

racy compared to 2s-AGCN [28].

Data pre-processing. We normalize the input skeleton by

transforming the coordinates such that the joint position

of the middle spine is the origin, the shoulder blades are

parallel to the X-axis and the spine to the Y-axis, similar
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# actions Loss type Top-1 Top-5 Top-1-norm

60
CE 44.87 71.78 17.16

Focal 37.52 71.22 25.73

120
CE 43.55 69.54 11.32

Focal 31.72 59.29 19.32

150
CE 42.08 67.29 9.61

Focal 27.79 52.57 14.50
Table 3. 3D action recognition performance on different subsets

of BABEL with 2s-AGCN [28]. CE indicates Cross-Entropy loss

and Focal indicates Focal loss [18].

to Shahroudy et al. [27]. We follow the 2s-AGCN pre-

processing approach and divide a segment Xs into con-

tiguous, non-overlapping 5 sec. chunks, Xi
s, at 30fps, i.e.,

Xs = (X1

s, · · · ,X
K
s ). Note that the number of chunks per

segment, K = ⌈ te
5∗30
⌉. If the Kth chunk XK

s has duration

< 5 sec., we repeat XK
s , and truncate at 5 sec.

Thus, a single sample in action recognition is a 5 sec.

motion chunk Xi
s ∈ Xs, and the action category labeled for

its corresponding segment y ∈ Ys in BABEL.

BABEL action recognition splits. BABEL contains 252
action categories with a long-tailed distribution of sam-

ples per class, unlike other popular 3D action recognition

datasets NTU RGB+D [19, 27]. To understand the chal-

lenge posed by the long-tailed distribution of action cate-

gories in BABEL, we perform experiments with 3 different

datasets containing 60, 120 and 150 action categories (see

Table 3). While BABEL-60 is already long-tailed, BABEL-

150 is contains both extremely frequent and extremely rare

classes. We randomly split the 13220 sequences in BA-

BEL into train (60%), val. (20%) and test (20%) sets. We

choose the model with best performance on the val. set, and

report performance on the test set. We provide the pre-

cise distribution of action categories for each split in the

Sup. Mat.

Metrics. Top-1 measures the accuracy of the highest-

scoring prediction. Top-5 evaluates whether the ground-

truth category is present among the top 5 highest-scoring

predictions. It accounts for labeling noise and inherent label

ambiguity. Note that it also accounts for the possible pres-

ence of multiple action categories Ys, per input movement

sequence. Ideal models will score all the categories rele-

vant to a sample highly. Top-1-norm is the mean Top-1

across categories. The magnitude of (Top-1-norm) -

(Top-1) illustrates the class-specific bias in the model per-

formance. In BABEL, it reflects the impact of class imbal-

ance on learning.

Training. We experiment with two losses – standard cross-

entropy loss, and the recently introduced focal loss [18]

which compensates for class imbalance by weighting the

cross-entropy loss higher for inaccurate predictions. We use

the Adam optimizer [15] with a learning rate of 0.001. We

train models for ∼ 250 epochs with batch size = 64.

Results. We observe that the decrease in Top-1 and

Top-5 performance with the increase in number of classes

is relatively small, in Table 3. Importantly, we note that

Top-1-norm is much lower than Top-1. This clearly

points to inefficient learning from the long-tailed class dis-

tribution in BABEL. Training with Focal significantly im-

proves Top-1-norm performance on all BABEL subsets.

This is encouraging for efforts to learn models with lower

class-specific biases despite severe class imbalance.

BABEL as a recognition benchmark. On the widely used

NTU RGB+D benchmark, Top-1 recognition performance

approaches 87% with 2s-AGCN [28]. Note that unlike

NTU RGB+D whose distribution of motions and actions

is carefully controlled, the diversity and long-tailed distri-

bution of samples in BABEL makes the recognition task

more challenging. The few-shot recognition split of NTU

RGB+D 120 partly addresses this issue. However, consid-

ering few-shot learning as a separate task typically involves

measuring performance on only the few-shot classes, ignor-

ing the larger distribution. Models in the real world ideally

need to learn and perform well on both the frequent and

infrequent classes of an imbalanced distribution [35]. We

present BABEL as an additional benchmark for 3D action

recognition, which evaluates the ability of models to learn

from more realistic distributions of actions.

6. Conclusion

We presented BABEL, a large-scale dataset with dense

action labels for mocap sequences. Unlike existing 3D

datasets with action labels, BABEL has labels for all actions

that occur in the sequence including simultaneously occur-

ring actions, and transitions between actions. We analyzed

the relationships between temporally adjacent actions and

simultaneous actions occurring in a sequence. We demon-

strated that the action recognition task on BABEL is chal-

lenging due to the label diversity and long-tailed distribu-

tion of samples. We believe that BABEL will serve as a

useful additional benchmark for action recognition since it

evaluates the ability to model realistic distributions of data.

We hope that this large-scale, high quality dataset will ac-

celerate progress in the challenging problem of understand-

ing human movement in semantic terms.
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