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Abstract

The effectiveness of learning-based point cloud upsampling

pipelines heavily relies on the upsampling modules and

feature extractors used therein. For the point upsampling

module, we propose a novel model called NodeShuffle,

which uses a Graph Convolutional Network (GCN) to better

encode local point information from point neighborhoods.

NodeShuffle is versatile and can be incorporated into any

point cloud upsampling pipeline. Extensive experiments

show how NodeShuffle consistently improves state-of-the-

art upsampling methods. For feature extraction, we also

propose a new multi-scale point feature extractor, called

Inception DenseGCN. By aggregating features at multiple

scales, this feature extractor enables further performance

gain in the final upsampled point clouds. We combine

Inception DenseGCN with NodeShuffle into a new point

upsampling pipeline called PU-GCN. PU-GCN sets new

state-of-art performance with much fewer parameters and

more efficient inference. Our code is publicly available at

https://github.com/guochengqian/PU-GCN .

1. Introduction

Point clouds are a popular way to represent 3D data. This

increasing popularity stems from the increased availability

of 3D sensors like LiDAR. Such sensors are now a critical

part of important applications in robotics and self-driving

cars. However, due to hardware and computational con-

straints, these 3D sensors often produce sparse and noisy

point clouds, which show evident limitations especially for

small objects or those far away from the camera. Therefore,

point cloud upsampling, the task of converting sparse, in-

complete, and noisy point clouds into dense, complete, and

clean ones, is attracting much attention.

Following the success in image super-resolution [4, 18,

13, 24], deep learning methods now achieve state-of-the-art

results in point cloud upsampling [39, 40, 38, 17]. Most
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Figure 1: Effectiveness of proposed NodeShuffle and In-

ception DenseGCN. We propose a Graph Convolutional

Network (GCN) based upsampling module NodeShuffle and

a multi-scale feature extractor Inception DenseGCN. Inte-

grating NodeShuffle into the 3PU [38] upsampling pipeline

allows for better upsampling and better structure preserva-

tion capability. We propose PU-GCN that combines both

Inception DenseGCN and NodeShuffle (NS) upsampling

modules. In PU-GCN, Inception DenseGCN can further

improve upsampling quality and generate fine-grained de-

tails (e.g. the neck and ball shape of the faucet). The origi-

nal 3PU uses duplicate-based upsampling.

deep upsampling pipelines comprise two major compo-

nents: feature extraction and point upsampling. The per-

formance of the point upsampling component tends to de-

fine the effectiveness of the final network. Current methods

use either multi-branch MLPs (PU-Net [40]) or a duplicate-

based approach (3PU [38] and PU-GAN [17]) to upsample

3D points. Multi-branch MLPs operate on each point sep-

arately, ignoring any neighborhood information, while du-

plicate upsampling methods tend to generate point patches

similar to the input point clouds. Although the feature ex-

traction modules used in their networks can encode the lo-

cality, these shortcomings of the upsampling modules still

lead to upsampled point clouds that lack local detail (see
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Figure 1). To better represent locality and aggregate the

point neighborhood information, we leverage the power

of graphs and specifically Graph Convolutional Networks

(GCNs). GCNs are considered a powerful tool to process

non-Euclidean data, and recent research on point cloud se-

mantic and part segmentation show their power in encod-

ing local and global information [32, 16, 15, 30]. In this

paper, we use GCNs to design a novel and versatile point

upsampling module called NodeShuffle (Figure 2), which

is better equipped at encoding local point information and

at learning to generate new points instead of merely repli-

cating parts of the input.

Point clouds often represent objects of variable part

sizes. Using multi-scale features is an effective way to

encode this property and is essential for obtaining point

clouds of high quality. Recent works like PU-Net [40] ex-

tract point features at different downsampled levels. While

such an architecture can encode multi-scale features, down-

sampling leads to loss of fine-grained details. In contrast,

3PU [38] proposes a progressive upsampling network using

different numbers of neighbors in subsequent upsampling

units. This achieves different receptive fields and encodes

multi-scale information. However, 3PU is computation-

ally expensive due to its progressive nature. In this paper,

we tackle this multi-scale feature learning problem using a

multi-path densely connected GCN architecture called In-

ception DenseGCN. Following its prevalent usage in image

recognition [27, 28, 26] for the merits of efficient extraction

of multi-scale image information, we adopt the Inception

architecture to encode multi-scale point features, after it is

modified to use densely connected GCNs instead of CNNs.

Contributions. We summarize our contributions as three-

fold. (1) We propose NodeShuffle, a novel point cloud up-

sampling module using graph convolutions. We show how

NodeShuffle can be seamlessly integrated into current point

upsampling pipelines and consistently improve their per-

formance. (2) We design Inception DenseGCN, a feature

extraction block that effectively encodes multi-scale infor-

mation. We combine Inception DenseGCN and NodeShuf-

fle into a new architecture called PU-GCN. As compared

to the state-of-the-art, PU-GCN achieves better upsampling

quality, requires less parameters, and runs faster. Through

extensive quantitative and qualitative experiments and for

both synthetic and real data, we show the superior perfor-

mance of PU-GCN. (3) We compile PU1K, a new large-

scale point cloud upsampling dataset with various levels of

shape diversity. We show the challenge of PU1K to current

learning-based methods.

2. Related Work

Learning-based point cloud upsampling. Deep learn-

ing methods illustrate a promising improvement over their

optimization-based counterparts [1, 19, 11, 34] due to their

data-driven nature and the learning capacity of neural net-

works. Learning features directly from point clouds was

made possible by deep neural networks, such as PointNet

[6], PointNet++ [22], DGCNN [32], KPConv [30], etc. Yu

et al. [40] introduced PU-Net, which learns multi-scale fea-

tures per point and expands the point set via multi-branch

MLPs. However, PU-Net needs to downsample the input

first to learn multi-scale features, which causes unnecessary

resolution loss. Yu et al. [39] also proposed EC-Net, an

edge-aware network for point set consolidation. It uses an

edge-aware joint loss to encourage the network to learn to

consolidate points for edges. However, EC-Net requires a

very expensive edge-notation for training. Wang et al. [38]

proposed 3PU, a progressive network that duplicates the in-

put point patches over multiple steps. 3PU is computation-

ally expensive due to its progressive nature, and it requires

more data to supervise the middle stage outputs of the net-

work. Recently, Li et al. [17] proposed PU-GAN, a Gen-

erative Adverserial Network (GAN) designed to learn up-

sampled point distributions. While the major contribution

and the performance gain is from the discriminator part, the

generator architecture receives less attention in their work.

Recently, PUGeo-Net[23] proposes to upsample points by

learning the first and second fundamental forms of the lo-

cal geometry. However, their method needs additional su-

pervision in the form of normals, which many point clouds

like those generated by LIDAR sensors do not come with.

Our work tackles upsampling by leveraging a new Inception

based module to extract multi-scale information, and by us-

ing a novel GCN-based upsampling module to capture local

point information. This avoids the need for additional an-

notations (e.g. edges, normals, point clouds at intermediate

resolutions, etc.) or a sophisticated discriminator.

3D shape completion. 3D shape completion is inter-

twined with point cloud upsampling. Researching meth-

ods in shape completion can inspire the works of upsam-

pling, and vice versa. Earlier and some recent works

on shape completion are based on voxel representations

[35, 3, 10, 36] and implicit representations [25]. Point cloud

upsampling can also be tackled with these representations,

which could be an interesting research direction. More re-

lated to point cloud upsampling, point-based completion

methods [41, 37, 8, 29, 20, 33] that directly process on the

point clouds (point coordinates and the attributes) have re-

cently shown comparable or even superior performance to

those voxel or implicit representation based counterparts.

Graph convolutional networks (GCNs). To cope with the

increasing amount of non-Euclidean data in real-world sce-

narios, a surge of graph convolutional networks [14, 9, 31,

21, 32] have been proposed in recent years. Kipf et al. [14]

simplify spectral graph convolutions with a first-order ap-

proximation. DGCNN [32] propose EdgeConv to conduct

dynamic graph convolution on point clouds. DeepGCNs

[16, 15] introduce residual/dense connections and dilated

convolutions to GCNs, and successfully trained deep GCN
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architectures. Previous GCN works mainly investigate ba-

sic modules of discriminative models. However, due to

the unordered and irregular nature of graph data, genera-

tive tasks for this modality remain elusive. Recently, Graph

U-Nets [5] propose the graph unpooling operation, which

can only be used to restore the graph to its original struc-

ture and is not able to upsample nodes by an arbitrary ratio.

As a focus in this paper, the point upsampling technique,

which is an indispensable component for generative mod-

els, is under-explored in the GCN domain. We propose a

GCN-based upsampling module to tackle the problem.

Multi-scale feature extraction. Inception architectures

[27, 28, 26] enable superior performance in image recog-

nition at relatively low computational cost. They extract

multi-scale information by using different kernel sizes in

different paths of the architecture. Inspired by the success

of the Inception architecture for CNNs, Kazi et al. [12]

proposed InceptionGCN, in which feature maps are passed

into multiple branches, then each branch applies one graph

convolution with a different kernel size. The outputs of

these branches are aggregated by concatenation. We also

adopt the Inception concept in our work to propose Incep-

tion DenseGCN, a GCN architecture that improves upon In-

ceptionGCN by leveraging dilated graph convolutions, skip

connections, and global pooling.

3. Methodology

We propose a novel GCN-based upsampling mod-

ule (called NodeShuffle) and multi-scale feature extrac-

tor (called Inception DenseGCN). We combine Inception

DenseGCN and Nodeshuffle into the proposed point cloud

upsampling pipeline: PU-GCN.

3.1. Upsampling Module: NodeShuffle

Inspired by PixelShuffle [24] from the image super-

resolution literature, we propose NodeShuffle to effectively

upsample point clouds. NodeShuffle is a graph convolu-

tional upsampling layer, illustrated in Figure 2. Given node

features Vl with shape N × C, the NodeShuffle operator

will output the new node features Vl+1 with shape rN × C

as follows (r is the upsampling ratio):

Vl+1 = PS(Wl+1 ∗ Vl + bl+1), (1)

where PS is a periodic shuffling operator that rearranges

the graph (e.g. point features) of shape N × rC to rN ×C.

The NodeShuffle operation can be divided into two steps.

(1) Channel expansion: we use a 1 layer GCN to expand

node features Vl to shape N × rC using learnable param-

eters Wl+1 and bl+1. (2) Periodic shuffling: we rearrange

the output of channel expansion to shape rN × C.

In contrast to multi-branch MLPs [40] or duplicate-based

upsampling [38, 17], NodeShuffle leverages graph convolu-

tions instead of CNNs. Although GCNs are common mod-

ules for feature extraction, to the best of our knowledge, we

are the first to introduce a GCN-based upsampling module.

Our GCN design choice stems from the fact that GCNs en-

able our upsampler to encode spatial information from point

neighborhoods and learn new points from the latent space

rather than simply duplicating the original points (as done

in 3PU [38] and PU-GAN [17]) or copying points after dif-

ferent transforms through multi-branch MLPs (as done in

PU-Net[40]). A more detailed comparison of these upsam-

pling modules can be found in the supplement.

N
 ×

 C

N
 ×

 rC shuffle

Input 
features

rN × C

N × C

N × C

N × C

N × C

GCN

Figure 2: Upsampling module: NodeShuffle. We expand

the number of input features by r times using a GCN layer,

and then apply a shuffle operation to rearrange the feature

map. r denotes the upsampling ratio.

3.2. Multi­scale Features: Inception DenseGCN

Point clouds scanned using 3D sensors often include ob-

jects of various sizes and point resolutions. In order to en-

code the multi-scale nature of point clouds, we propose a

new Inception DenseGCN feature extractor, which effec-

tively integrates the densely connected GCN (DenseGCN)

module from DeepGCNs [16] into the Inception module

from GoogLeNet [27]. Residual and dense connections

have proven to be useful at increasing point cloud process-

ing performance [16]. We favor dense over residual connec-

tions here, since the former utilizes features from previous

layers, as well as different inception paths.

Figure 3 illustrates our Inception DenseGCN block. The

input features are compressed by a bottleneck layer (single

layer MLP) at first to reduce the computation in subsequent

layers. The compressed features are passed into two par-

allel DenseGCN blocks. Each DenseGCN block is com-

posed of three layers of densely connected dilated graph

convolutions (introduced in DeepGCNs [16]). DenseGCN

is defined by the number of node neighbors k (kernel size

for GCNs), dilation rate d, and growth rate c. The two

DenseGCN blocks inside the Inception DenseGCN have the

same kernel size (20) but different dilation rate (1, and 2,

respectively) to gain different respective fields without in-

creasing the kernel sizes and FLOPs. Similar to dilated

convolutions in the 2D case, the dilated graph convolution

efficiently increases the receptive field using the same ker-

nel size without reducing spatial resolution. Additionally,
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Figure 3: Multi-scale feature extractor: Inception

DenseGCN. We use the parameters (k, d, c) to define a

DenseGCN block. k is the number of neighbors (kernel

size), d is the dilation rate, and c is the number of out-

put channels. Green ⊲⊳ denotes feature-wise concatena-

tion. Note that the d is different in the different DenseGCN

blocks to achieve the goal of multi-scale feature extraction.

we add a global pooling layer to extract global contextual

information. The DenseGCN blocks and the global pooling

layer target different receptive fields and therefore allow the

Inception module to extract multi-scale information. Each

Inception block outputs a concatenation of the DenseGCN

blocks and the global pooling layer in addition to the input

features. KNN is used to build the graph, whose nodes are

the points and edges define the K nearest point neighbor-

hood. Note that KNN is only computed once at the first

layer of the Inception DenseGCN block. Experiments show

that making the graph dynamic in the later layers inside

an Inception DenseGCN module does not actually impact

performance much, but it does increase the model’s com-

putational footprint. So, the graph structure is designed to

be shared in subsequent DenseGCN layers inside Inception

DenseGCN.

The InceptionGCN proposed by Kazi et al. [12] is as

simple as concatenating multiple GCN layers with different

kernel sizes. In contrast, our Inception DenseGCN lever-

ages DenseGCN, global pooling, and skip connections to

improve the performance. We further use bottleneck layers

and dilated graph convolutions to reduce the computational

burden.

3.3. PU­GCN Architecture

We combine Inception DenseGCN, NodeShuffle, and a

standard coordinate reconstructor into a new upsampling

pipeline called PU-GCN (Figure 4). Given a point cloud of

size N×3, PU-GCN computes point features of size N×C

using the Inception DenseGCN feature extractor. Then, the

upsampler transforms the N ×C features to rN ×C ′ using

NodeShuffle. Finally, the coordinate reconstructor gener-

ates the rN × 3 upsampled point cloud. We use EdgeConv

(proposed in DGCNN [32]) as the default GCN layer.

Inception feature extractor. We use 1 GCN layer at the be-

ginning of PU-GCN to embed the 3D coordinates into latent

space. The point embeddings are passed through several

Inception DenseGCN blocks. We use two such blocks by

default in PU-GCN, and we experiment with the number of

Inception DenseGCN blocks in Section 4.6. The outputs of

these blocks are combined with residual connections. The

final output is passed to our NodeShuffle upsampler.

Upsampler. Our upsampler consists of three components: a

bottleneck layer, an upsampling module, and a feature com-

pression layer. Given the input features, we first shrink the

input to N ×C by a bottleneck layer (MLP) so as to reduce

the computation. Then, we use the proposed NodeShuffle

to generate denser features of size rN ×C. Finally, we use

two sets of MLPs to compress the features to rN × C ′.

Coordinate reconstructor. We reconstruct points from

latent space to coordinate space, resulting in the desired

denser point cloud of size rN × 3. We use the same coor-

dinate reconstruction approach as PU-GAN [17], in which

3D coordinates are regressed using two sets of MLPs.

4. Experiments

We compile a large-scale dataset for point cloud upsam-

pling called PU1K. Quantitative and qualitative results on

PU-GAN[17]’s dataset as well as PU1K show the superior

performance of PU-GCN. We also conduct extensive abla-

tion studies to show the benefits of the proposed Inception

DenseGCN and NodeShuffle upsampling modules.

4.1. Datasets

We propose a new dataset for point cloud upsampling,

denoted as PU1K. It is nearly 8 times larger than the

largest publicly available dataset collected by PU-GAN

[17]. PU1K consists of 1,147 3D models split into 1020

training samples and 127 testing samples. The training set

contains 120 3D models compiled from PU-GAN’s dataset

[17], in addition to 900 different models collected from

ShapeNetCore [2]. The testing set contains 27 models from

PU-GAN and 100 more models from ShapeNetCore. The

models from ShapeNetCore are chosen from 50 different

categories. We randomly choose 200 models from each cat-

egory to obtain 1,000 different models with various shape

complexities to encourage diversity. Overall, PU1K covers

a large semantic range of 3D objects and includes simple,

as well as complex shapes. To show the value of our pro-

posed dataset, we compare our PU-GCN with previous ap-

proaches on both PU1K and the latest dataset proposed by

PU-GAN, which contains only 120 3D models for training

and 27 models for testing.

For training and testing and following common practice,

we use Poisson disk sampling from the original meshes

to generate pairs of input and ground truth point clouds.

For training, we crop 50 patches from each 3D model as

the input to the network. In total, we obtain 51,000 train-

ing patches in PU1K. Each patch consists of 256 points
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Figure 4: PU-GCN architecture. PU-GCN uses an inception feature extractor consisting of one or more Inception

DenseGCN blocks, followed by the NodeShuffle based upsampler, and a coordinate reconstructor.

as low resolution input and 1024 points as ground truth.

As for testing data, we generate pairs of input point cloud

(2048 points) and ground truth (8096 points). In testing, we

use farthest point sampling at first to sample overlapping

patches (patch size is 256) of the input point cloud and en-

sure coverage of the entire input. The final result is obtained

by first merging the overlapping patch outputs and then re-

sampling with farthest point sampling. We will open-source

the original meshes of PU1K and the sampled point clouds

to standardize the dataset. More details of PU1K and a com-

parison with PU-GAN’s dataset are in supplement.

4.2. Loss Function and Evaluation Metrics

Loss Function. We use the Chamfer distance loss to mini-

mize the distance of the predicted point cloud and the refer-

enced ground truth in our experiments:

C(P,Q) =
1

|P |

∑

p∈P

min
q∈Q

||p− q||2
2
+

1

|Q|

∑

q∈Q

min
p∈P

||p− q||2
2 (2)

where P is the predicted point cloud, Q is the ground truth,

p is a 3D point from P , and q is a 3D point from Q. The

operator || · ||22 denotes the squared Euclidean norm.

Evaluation Metrics. Following previous work, we use

the Chamfer distance (CD), Hausdorff distance (HD), and

point-to-surface distance (P2F) w.r.t ground truth meshes as

evaluation metrics. The smaller the metrics, the better the

performance. We also report the parameter size (Params.)

and the inference time. The inference time is reported as

the average inference time (over the whole test set in 5 runs)

for a model processing one patch containing 256 points. All

models are tested on the same computer with one NVIDIA

TITAN 2080Ti GPU and an Intel Xeon E5-2680 CPU.

4.3. Implementation Details

We train PU-GCN for 100 epochs with batch size 64 on

an NVIDIA TITAN 2080Ti in all the experiments. We op-

timize using Adam with a learning rate of 0.001 and beta

0.9. Similar to previous work, we perform point cloud nor-

malization and augmentation (rotation, scaling, and random

perturbations). We train PU-Net [40], 3PU [38], and our

PU-GCN on both the PU1K dataset and PU-GAN’s dataset.

Here, we note that we are unable to reproduce PU-GAN’s

Table 1: Comparison of PU-GCN vs. state-of-the-art on

PU-GAN’s dataset. PU-GCN outperforms PU-Net, 3PU,

and PU-GAN on nearly all metrics with the least parameters

and fastest inference. Bold denotes the best performance.

Network
CD↓ HD↓ P2F↓ Param. Time

10−3 10−3 10−3 Kb ms

PU-Net [40] 0.556 4.750 4.678 814.3 10.04

3PU [38] 0.298 4.700 2.855 76.2 10.86

PU-GAN [17] 0.280 4.640 2.330 684.2 14.28

PU-GCN 0.258 1.885 2.721 76.0 8.83

[17] results from the code made available by its authors,

most probably because of the unstable nature of the inherent

GAN architecture in PU-GAN. Therefore, we only compare

with PU-GAN on PU-GAN’s dataset using their provided

pre-trained model. The very recent work PUGeo-Net[23] is

not included in the comparison for the following reasons:

(1) their code and pre-trained model are not available; (2)

they only conduct experiments on their own dataset that has

not been released; (3) they need additional supervision in

the form of normals, which are not directly accessible in

point clouds. As suggested by previous methods, we use

the model from the last epoch to perform the evaluation.

We report results using a ×4 upsampling rate, i.e. r = 4.

We did not experiment with a large upsampling factor like

r = 16, but one can simply apply our pretrain models twice.

4.4. Quantitative and Qualitative Results

Quantitative results on PU-GAN’s dataset. Table 1 re-

ports the performance of our PU-GCN compared to PU-

Net[40], 3PU[38], and PU-GAN[17] on PU-GAN’s dataset.

PU-GCN maintains significant improvement over 3PU and

PU-Net in all metrics, showing the importance of the Incep-

tion DenseGCN feature extractor and the NodeShuffle up-

sampling module. Although PU-GAN leverages an adver-

sarial loss for performance gains, we also outperform PU-

GAN in terms of CD and HD, without the need for a GAN

architecture. It is also important to mention that PU-GCN

is the most parameter-saving and the most efficient archi-

tecture among all the models. Compared to PU-GAN, our

PU-GCN uses only about 10% of the parameters and speeds
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(a) Input (b) PU-Net [40] (c) 3PU [38] (d) PU-GAN [17] (e) PU-GCN (Ours) (f) GT

Figure 5: Qualitative upsampling results. We show the ×4 upsampled results of input point clouds (2048 points) when

processed by different upsampling methods (PU-Net, 3PU, PU-GAN and our PU-GCN). PU-GCN produces the best results

overall, while generating less outliers and preserving fine-grained local details (refer to close-ups).

up inference time by more than 40%. For the P2F metric,

we do not outperform PU-GAN quantitatively. However,

the qualitative results in Figure 5 show that PU-GCN gener-

ates fewer outliers and higher quality local and fine-grained

details (e.g. the legs of the bird in row 1) than PU-GAN

in general, even though these upsampled point clouds have

higher P2F values than those of PU-GAN. This discrepancy

indicates that P2F might not be as reliable a metric as CD

and HD for point cloud upsampling, especially since the lat-

ter distances are meant for point clouds (the natural form of

the input/output in training) and not meshes (as is the case

for P2F). More examples and an analysis of this discrepancy

can be found in the supplement.

Quantitative results on the PU1K dataset. Table 2 com-

pares PU-GCN against PU-Net and 3PU on PU1K. We do

not compare against PU-GAN on this dataset for the rea-

son mentioned in Section 4.3. We observe that all methods

achieve lower performance overall (especially in CD and

HD) when trained and evaluated on PU1K as compared to

PU-GAN’s dataset. As such, PU1K presents a challenge to

state-of-the-art methods compared to the much smaller and

less diverse PU-GAN’s dataset. PU-GCN also clearly out-

performs PU-Net and 3PU in all three metrics on this new

challenging dataset.

Qualitative results. Figure 5 shows qualitative upsampling

results generated by PU-GCN and the state-of-the-art meth-

ods. We note that all models used here are trained on PU-

GAN’s dataset for a fair comparison with PU-GAN. Up-

Table 2: Comparison of PU-GCN vs. state-of-the-art on

PU1K. PU-GCN outperforms PU-Net and 3PU. We do not

compare against PU-GAN on this dataset, since we are un-

able to reproduce PU-GAN results from the publicly avail-

able code. Bold denotes the best performance.

Network
CD↓ HD↓ P2F↓ Param. Time

10−3 10−3 10−3 Kb ms

PU-Net[40] 1.155 15.170 4.834 814.3 10.04

3PU[38] 0.935 13.327 3.551 76.2 10.86

PU-GCN 0.585 7.577 2.499 76.0 8.83

sampled point clouds and their close-ups show that PU-

GCN produces fewer outliers, while preserving more fine-

grained details. Specifically, close-ups of the bird point

cloud (top row) show that PU-GCN successfully upsamples

intricate structures of input points. In addition, the statue

(second row) shows how PU-GCN succeeds in upsampling

with much fewer outliers. We also observe that other meth-

ods tend to merge originally separate structures as shown

in the example of the clock (third row), while our method

preserves this separation with high quality. The qualitative

results clearly show the effectiveness of our multi-scale fea-

ture extractor (Inception DenseGCN) and our GCN based

upsampling module (NodeShuffle) in capturing detailed lo-

cal information. More qualitative results (especially for

models trained on PU1K dataset) and a discussion of some

failure cases can be found in the supplement.
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4.5. Upsampling Real­Scanned Point Clouds

Figure 6 compares PU-GCN against its two most com-

petitive upsampling methods (3PU and PU-GAN) on real-

scanned data from the KITTI dataset [7]. KITTI contains

challenging real-world scenes and objects. All the models

are trained on PU-GAN’s dataset for a fair comparison with

PU-GAN. To ease visualization and since it consistently

produces worse results, PU-Net [40] is not included here.

We observe that the other methods tend to produce more

outliers and overfill holes (e.g. the first close up on the win-

dow of the car), while PU-GCN encodes local information

well and preserves these fine-grained details. Our method

also does very well when upsampling objects of interest,

such as motorcycle as shown in the second close up. While

other methods tend to merge the pedal and body of the mo-

torcycle and ruin its original shape, PU-GCN successfully

produces a higher level of detail and structure. More ex-

amples of real-scanned point clouds from different datasets

can be found in the supplement.

4.6. Ablation Study

We conduct ablation studies on NodeShuffle and Incep-

tion DenseGCN. The baseline model is PU-GCN equipped

with two Inception DenseGCN and the NodeShuffle upsam-

pler. All the models are trained and evaluated on PU1K.

Inception Modules. We validate the effectiveness of our

Inception DenseGCN by replacing it with a DenseGCN.

The results in Table 3 show that our Inception DenseGCN

outperforms the DenseGCN in all metrics. The second

row demonstrates that the Inception DenseGCN with mul-

tiple receptive fields achieved by using two DenseGCN

blocks improves the upsampling quality a lot with simi-

lar latency, compared to Inception DenseGCN with only a

single DenseGCN block. Additionally, using DenseGCN

in Inception DenseGCN works better by a large margin

than using GCN (Incpetion GCN) as expected (third row).

The fourth row shows that using dilated graph convolu-

tions can achieve better performance, while being more ef-

ficient compared to the Inception module using different

kernel sizes. We further show that using residual connec-

tions and global pooling inside Inception DenseGCN im-

proves performance with a negligible effect on inference

speed (row 5 and row 6). We also study the effect of the

number of Inception DenseGCN blocks. PU-GCN with two

Inception blocks outperforms PU-GCN with only one In-

ception block, thus showing that inserting one more Incep-

tion DenseGCN block can further improve upsampling per-

formance. We also experimented with using more blocks,

but performance did not improve while computational com-

plexity did. Therefore, we use two Inception DenseGCN

blocks in PU-GCN by default.

Upsampling Modules. We show the effectiveness of our

NodeShuffle by integrating it into different upsampling ar-

chitectures and replacing the original upsampling modules.

Table 3: Ablation study on Inception DenseGCN. Incep-

tion DenseGCN performs better than a DenseGCN. Using

two DenseGCN blocks in Inception DenseGCN to extract

multi-scale information is better than using only one block.

As expected, using DenseGCN in Inception DenseGCN

works better than using GCN (Inception GCN). Using di-

lated graph convolution instead of regular graph convolu-

tion with different kernel sizes also achieves better per-

formance with faster inference. Residual connections and

global pooling inside Inception DenseGCN further im-

prove performance. Increasing the number of Inception

DenseGCN blocks tends to improve PU-GCN performance.

Ablation
CD↓ HD↓ P2F↓ Param. Time

10−3 10−3 10−3 Kb ms

DenseGCN (w/o Inception) 0.753 10.691 3.103 56.16 9.89

single DenseGCN block 0.630 9.428 2.608 56.32 8.82

Inception GCN 0.675 9.951 2.723 59.59 8.65

w/o dilated graph convolution 0.624 8.871 2.530 75.97 8.91

w/o residual connection 0.621 8.979 2.603 75.97 8.74

w/o global pooling 0.663 9.875 2.665 75.88 8.74

1 Inception DenseGCN 0.639 9.051 2.582 59.33 6.40

PU-GCN 0.585 7.577 2.499 75.97 8.83

Results in Table 4 clearly show that NodeShuffle helps both

PU-Net and 3PU reach better performance with less pa-

rameters and negligible computational overhead (≤ 1ms

latency). We also study the effectiveness of GCN inside

NodeShuffle by replacing it with a set of MLPs, called

MLPShuffle. GCN outperforms the MLPs counterpart. Ta-

ble 4 also shows that the proposed Inception DenseGCN

outperforms the feature extractors used in PU-Net and

3PU, when comparing PU-GCN (NodeShuffle) with PU-

Net (NodeShuffle) and 3PU (NodeShuffle). A qualitative

comparison of the original 3PU, 3PU (NodeShuffle), and

PU-GCN is shown in Figure 1. NodeShuffle shows a clear

improvement in generating samples with less noise and bet-

ter details, as compared to the original upsampling method

used in 3PU. Inception DenseGCN further improves the

performance by preserving better intricate structures.

Table 4: Ablation study on NodeShuffle. Results show

that NodeShuffle can transfer well to different upsampling

architectures in the literature. Replacing the original up-

sampling module with NodeShuffle improves upsampling

performance overall. The effectiveness of the GCN layer in

NodeShuffle is shown when replacing the GCN layer with

a set of MLPs (MLPShuffle).

Network
CD HD P2F Param. Time

10−3 10−3 10−3 Kb ms

PU-Net (Original) [40] 1.155 15.170 4.834 814.3 10.04

PU-Net (NodeShuffle) 0.974 13.522 4.474 462.1 11.04

3PU (Original) [38] 0.935 13.327 3.551 76.2 10.86

3PU (NodeShuffle) 0.780 10.462 3.228 71.4 11.78

PU-GCN (Duplicate) 0.788 11.269 3.031 74.2 8.63

PU-GCN (MLPShuffle) 0.682 10.692 2.586 76.2 8.87

PU-GCN (NodeShuffle) 0.585 7.577 2.499 76.0 8.83
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(a) Input (b) 3PU [38] (c) PU-GAN [17] (d) PU-GCN (ours)

Figure 6: Upsampling real-scanned point clouds from KITTI [7]. PU-GCN preserves intricate structures and generates

fine-grained details (e.g. the window of the car, the pedal of the motorcycle, etc.). Please zoom in to see details.

4.7. Effects of Additive Noise and Input Sizes

Upsampling noisy point clouds. To show the robustness

of PU-GCN, we perturb the input point cloud with additive

Gaussian noise at varying noise levels. We only compare

PU-GCN against PU-GAN[17] since PU-GAN is the state-

of-the-art. Both models are trained using the same aug-

mentation strategy of point cloud perturbation. Qualitative

results in Figure 7 show that PU-GCN can preserve fine-

grained details with very few outliers, even in the presence

of additive noise, while PU-GAN tends to produce more

outliers.

Upsampling point clouds of varying sizes. Figure 8 shows

qualitative examples of upsampling point clouds with PU-

GCN for different input sizes. Our PU-GCN always pro-

duces high quality point clouds for the range of input sizes.

This indicates that even if PU-GCN is trained on patches

with only 256 points, it can generalize to point clouds with

different sizes. As expected, PU-GCN generates better

quality results when the input point cloud is denser.
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Clean σ = 0.01 σ = 0.02

Figure 7: Effect of additive noise. The top row shows the

input point clouds with different additive noise levels. The

middle and bottom rows show the point clouds upsampled

by PU-GAN[17] and our PU-GCN, respectively. PU-GCN

preserves more fine-grained details with fewer outliers.
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Figure 8: Effect of input size. The top row shows the input

point clouds of different sizes, and the bottom row shows

the ×4 upsampled outputs of our PU-GCN. PU-GCN al-

ways produces high quality results regardless of input size.

5. Conclusion

We propose a novel GCN based point cloud upsampling

module called NodeShuffle, which improve state-of-the-art

upsampling pipelines when it is used in place of the original

upsampling. We also introduce the Inception DenseGCN

to encode multi-scale information. We further compile

and introduce a new large-scale dataset PU1K for point

cloud upsampling. Extensive experiments demonstrate that

our proposed PU-GCN pipeline, which integrates Incep-

tion DenseGCN and NodeShuffle, outperforms state-of-the-

art methods on PU1K and another dataset, while requiring

fewer parameters and being more efficient in inference. We

also show that PU-GCN produces higher upsamping quality

on real-scanned point clouds compared to other methods.
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