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Abstract

Vehicle detection with visual sensors like lidar and cam-

era is one of the critical functions enabling autonomous

driving. While they generate fine-grained point clouds

or high-resolution images with rich information in good

weather conditions, they fail in adverse weather (e.g., fog)

where opaque particles distort lights and significantly re-

duce visibility. Thus, existing methods relying on lidar or

camera experience significant performance degradation in

rare but critical adverse weather conditions. To remedy

this, we resort to exploiting complementary radar, which

is less impacted by adverse weather and becomes prevalent

on vehicles. In this paper, we present Multimodal Vehicle

Detection Network (MVDNet), a two-stage deep fusion de-

tector, which first generates proposals from two sensors and

then fuses region-wise features between multimodal sen-

sor streams to improve final detection results. To evalu-

ate MVDNet, we create a procedurally generated training

dataset based on the collected raw lidar and radar signals

from the open-source Oxford Radar Robotcar. We show

that the proposed MVDNet surpasses other state-of-the-art

methods, notably in terms of Average Precision (AP), espe-

cially in adverse weather conditions. The code and data are

available at https://github.com/qiank10/MVDNet.

1. Introduction

As the holy grail of autonomous driving technology, Full

Driving Automation (Level 5) [20] relies on robust all-

weather object detection, which provides accurate bound-

ing boxes of surrounding objects even in the challenging

adverse foggy weather condition. Nowadays, autonomous

vehicles are equipped with multiple sensor modalities, such

as camera, lidar, and radar [12, 6, 48, 3]. Fusing multimodal

sensors overcomes any individual sensor’s occasional fail-

ures and potentially yields more accurate object detection

than using only a single sensor. Existing object detec-

tors [10, 21, 52, 38] mainly fuse lidar and camera, which

normally provide rich and redundant visual information.

However, these visual sensors are sensitive to weather con-

ditions and are not expected to work fully in harsh weather

like fog [4, 26], making the autonomous perception systems

unreliable. For example, Fig. 1a shows an example of a

driving scenario with ground-truth vehicles labeled. Fig. 1b

shows the detected vehicles using only lidar point cloud that

(a) Ground-truth (clear weather) (b) MVDNet (lidar-only)

(c) MVDNet (radar-only) (d) Complete MVDNet (Ours)

Figure 1. Performance overview of our proposed MVDNet. (a)

360◦ bird’s eye view of the 3D lidar point cloud and ground-truth

labels (colors represent different vehicles). The vehicle equipped

with lidar and radar is at the center. In foggy weather, (b) lidar-

only MVDNet misses vehicles at farthest range due to fog occlu-

sion and misclassifies background points as vehicles; (c) radar-

only MVDNet produces false alarms and inaccurate bounding

boxes due to noisy radar data; (d) By deeply fusing lidar and radar,

the complete MVDNet correctly detects vehicles.

is deteriorated by fog. Two farthest vehicles at the top are

missing due to the occlusion of fog.

Aside from lidar and camera, radar has been widely de-

ployed on autonomous vehicles [6, 3, 58] and has the po-

tential to overcome foggy weather. Specifically, radar uses

millimeter-wave signals whose wavelength is much larger

than the tiny particles forming fog, rain, and snow [14, 1],

and hence easily penetrates or diffracts around them. How-

ever, radars in the existing autonomous driving datasets are

still underexplored, mainly due to their significant data spar-

sity, as compared with camera and lidar. For example, the

nuScenes dataset [6] has about 35K lidar points but only 200

radar points on average in each data frame. The main reason

is that its radars use conventional electronically steerable
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antenna array, which tends to generate beam patterns with

wide beamwidth (3.2◦-12.3◦). In the DENSE [3] dataset,

a proprietary radar is mounted on the front bumper of the

vehicle. However, its angular field of view is only 35◦.

Fortunately, the recent Oxford Radar Robotcar [2] (ORR)

deploys a radar with a rotating horn antenna, which has

high directionality and much finer spatial resolution of 0.9◦,

and is mechanically rotated to achieve 360◦ field of view.

The ORR radar generates dense intensity maps, as shown

in Fig. 1c, where each pixel represents the reflected signal

strength. It creates a new opportunity for object detection

in foggy weather condition.

Despite the richer information, the ORR radar is still sig-

nificantly coarser and noisier than its visual counterpart, i.e.,

lidar, as showcased in Fig. 1a and 1c. As a result, if it is pro-

cessed in the same way as the lidar point cloud, then false

alarms and large regression errors show up. To robustly de-

tect vehicles in foggy weather, one should take advantage of

both lidar (fine granularity within visible range) and radar

(immunity to foggy weather) while overcoming their short-

comings. To this end, we propose MVDNet, a multimodal

deep fusion model for vehicle detection in adverse foggy

weather condition. MVDNet consists of two stages. The

first stage generates proposals from the lidar and radar sep-

arately. The second stage employs the adaptive fusion of the

two sensors’ features via attention and the temporal fusion

using 3D convolutions. Such a late fusion scheme allows

the model to generate sufficient proposals while focusing

the fusion within the regions of interest (ROI). As shown in

Fig. 1d, MVDNet can not only detect the vehicles occluded

by fog in the lidar point clouds but also reject false alarms

in the noisy radar intensity maps.

To validate MVDNet, we create a procedurally gener-

ated training dataset based on the raw lidar and radar sig-

nals from ORR. Specifically, we manually generate oriented

bounding boxes for vehicles in the lidar point clouds, syn-

chronize the radar and lidar with the knowledge of visual

odometry, and simulate random fog effects using an accu-

rate fog model proposed in DEF [3]. We compare MVDNet

with the state-of-the-art lidar-alone detectors [55, 24, 46],

or lidar and radar fusion [3]. Evaluation results show that

MVDNet achieves notably better performance on vehicle

detection in foggy weather condition while requiring 10×
less computing resource.

Our core contributions are two folds. First, we propose

a deep late fusion detector that effectively exploits lidar

and radar’s complementary advantages. To our knowledge,

MVDNet represents the first vehicle detection system that

fuses lidar and high-resolution 360◦ radar signals for vehi-

cle detection. Second, we introduce a labeled dataset with

fine-grained lidar and radar point cloud in foggy weather

condition. We assess MVDNet on the proposed dataset and

demonstrate the effectiveness of the proposed fusion model.

2. Related Work

Vehicle detection from lidar signals. Depending on the

representations of point clouds, lidar-based object detec-

tion falls into two categories. On the one hand, lidar data

is formalized as point clouds by default and can be nat-

urally processed by architectures designed for unordered

point sets [39, 40]. Based on these architectures, end-to-end

learning for raw point clouds is enabled [52, 53, 46, 24].

PointRCNN [46] extracts point-wise features with Point-

Net [39] and combines features at different stages to rec-

ognize foregrounds. It then generates proposals and refines

final detection results. PointPillars [24] segments points

into pillars, where pillar-wise features are calculated using

PointNet to form a pseudo image. The image is then passed

to a CNN backbone and SSD [31] detection head. However,

point-wise features cannot be learned for areas occluded by

adverse weather due to the absence of any point there. On

the other hand, a lidar point cloud can be voxelized and pro-

cessed by standard image detection models [55, 47, 57, 33].

PIXOR [55] segments points and generates an occupancy

map for different heights. The voxel representation can be

easily combined with other regular image data, e.g., from

camera and lidar, and is exploited in MVDNet.

Denoising in foggy weather. Fog and haze reduce the

data quality of visual sensors such as camera and lidar,

due to loss of contrast [43, 5] and reduction in visible

range [18, 4]. On the one hand, sophisticated dehazing

methods [16, 11, 25, 32] for images have been proposed

to benefit learning tasks [15, 43]. These methods either es-

timate a transmission map between foggy and clear images

using hand-crafted [16, 11] or learned [25] priors or develop

an end-to-end trainable model. On the other hand, little re-

search has been done on lidar point cloud denoising [9, 17].

Due to the sparsity of lidar point cloud, existing denoising

methods for dense 3D point cloud [41, 45, 19] cannot be

directly applied to remove fog points. DROR [9] leverages

dynamic spatial vicinity of points for denoising. Due to the

lack of semantic information, it can mistakenly remove soli-

tary reflections from objects. Heinzler et al. [17] proposed

a CNN-based denoising model to understand and filter out

fog effect. Nonetheless, existing denoising methods cannot

compensate for the visibility reduction of lidar due to fog

without extra information. In contrast, MVDNet combats

foggy weather using high-resolution radar to complement

the weather-sensitive lidar point cloud.

Vehicle detection with sensor fusion. Multimodal sensors

provide redundant information, making it robust against

sensor distortions due to internal noises and bad weather.

Most fusion methods [21, 52, 38, 10, 27] are proposed

for lidar and camera, due to their availability in common

datasets [12, 48]. MV3D [10] aggregates proposals of mul-

tiple views. PointFusion [52] combines feature vectors of

lidar and camera to predict 3D boxes of vehicles.
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(a) (b) (c)

Figure 2. Fog effect on lidar point cloud. (a) Synchronized radar intensity map not impact by fog. (b) Raw point cloud truncated within

32 m. (c) Foggy point cloud with scattering fog points (red) and reduced visible range.

Radar is gaining traction recently as an additional modal-

ity for autonomous perception [34, 8, 35, 28, 37, 22].

In [29], the sparse and noisy radar points are projected on

camera images to enhance depth estimation. In [23], the

Doppler frequency shifts measured by radar is exploited to

recognize pedestrians occluded in lidar’s view. DEF [3] de-

velops an early fusion detector with lidar, camera, and radar.

However, DEF’s radar has low quality, leading to inferior

performance when radar works alone. Besides, the radar

and camera of DEF have narrow angles of view, and the

detector is specially designed for front-views, which is non-

trivial to be adapted to 360◦ detection. RadarNet [54] fuses

the sparse radar points and lidar point clouds at the early

feature extraction stage via CNN to detect objects in 360◦

view and further associates sparse radar points with the de-

tections to refine motion prediction. LiRaNet [44] also fuses

sparse radar points with lidar point cloud and road map at

an early stage to predict trajectories of detected vehicles. In

contrast, MVDNet targets robust vehicle detection in foggy

weather condition. To achieve it, we exploit a state-of-the-

art imaging radar with much finer resolution than that used

in RadarNet and LiRaNet, and propose an effective deep

late fusion method to combine radar and lidar signals.

3. The MVDNet Design

3.1. Problem Statement and Overview

The adverse effects of fog have been well measured and

modeled [4, 3, 26]. Fig. 2 exemplifies the effects, where

we foggify a point cloud (i.e., Fig. 1b) from the ORR li-

dar (Velodyne HDL-32E lidar [49]), using the fog model

in [3] with fog density of 0.05 m−1. Due to its lower trans-

missivity than clear air, fog distorts lidar point clouds in

two aspects: (i) Lasers reflected by distant objects are at-

tenuated and become too weak to be acquired by lidar, re-

sulting in reduced visible range. (ii) The opaque fog back-

scatters laser signals, resulting in scattering fog points (red

points in Fig. 2c). These adverse effects can cause false

alarms and misdetections, as shown in Fig. 1b. In con-

trast, fog is almost transparent to radar [14, 1]. But radar

has intrinsically lower spatial resolution than lidar due to

its longer signal wavelength and wide beamwidth. There-

fore, to date, radar is mostly used for motion/speed tracking

(Sec. 2). Fortunately, emerging imaging radars, such as the

NavTech CTS350-X [36] used in ORR, enable point clouds

with comparable resolution and density as a low-grade li-

dar. For example, Fig. 2a shows an example bird’s eye view

intensity map of the ORR radar. The prominent intensity

peaks correspond to main objects on the road (e.g., vehi-

cles, walls, etc.) and match their lidar counterparts well.

MVDNet essentially deep fuses radar intensity maps

with lidar point clouds, to harness their complementary ca-

pabilities. As illustrated in Fig. 3, MVDNet consists of two

stages. The region proposal network (MVD-RPN) extracts

feature maps from lidar and radar inputs and generates pro-

posals from them. The region fusion network (MVD-RFN)

pools and fuses region-wise features of the two sensors’

frames and outputs oriented bounding boxes of detected ve-

hicles. We now introduce the detailed design of MVDNet.

3.2. MVD-RPN Backbone

Feature extractor. MVDNet uses two feature extractors

with the same structure for lidar and radar inputs. But the

number of feature channels of the lidar part is doubled due

to more lidar input channels (Sec. 4.2). As shown in Fig. 4a,

the feature extractor first uses 4 3×3 convolution layers to

extract features at input resolution. It then downsamples

the output by 2× via max-pooling and further extracts fea-

tures at a coarser resolution. In the bird’s eye view, vehicles

only occupy small areas. Specifically, the vehicles in ORR

have an average size of 2.5 m×5.1 m, which only occupies a

13×26 pixels area with an input resolution of 0.2 m. Down-

sampling the bird’s eye view map makes the region-wise

features vulnerable to quantization errors in the subsequent

proposal generator. MVDNet thus upsamples the coarse-

grained feature map via a transposed convolution layer and

concatenates the output with the fine-grained feature map

via a skip link. Each feature extractor is applied to all H in-

put frames of the corresponding sensor and generates a set

of H feature maps.

Proposal generator. As illustrated in Fig. 4b, the pro-
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Figure 3. Overview of MVDNet. MVDNet takes the bird’s eye view of both radar and lidar frames as input. It first extracts spatial feature

maps of two sensors (blue), generates and merges oriented 2D proposals, and extracts region-wise features of two sensors via ROI pooling

(green). A fusion network is used to combine the region-wise features for two sensors and across their temporal frames (red). The fused

features are used to jointly detect and localize objects (brown).
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Figure 4. Details of MVDNet. The fusion network consists of a

2-stage attention block for sensor fusion and 3D CNN layers for

temporal fusion. Each convolution layer is followed by batch nor-

malization and a leaky ReLU layer.

posal generator takes the streams of H feature maps as input

and generates proposals for MVD-RFN later. Since moving

vehicles are at varying locations in different sensor frames,

instead of generating proposals separately from the feature

map of each frame, MVDNet concatenates feature maps of

all frames of each sensor and fuses them via a convolution

layer. To fully exploit the individual sensors, the fused fea-

ture map of each sensor is used separately to infer objective-

ness scores and regress locations of proposals with K pre-

defined anchors. Finally, the proposals generated by both

sensors are merged via non-maximum suppression (NMS).

3.3. MVD-RFN Multimodal Fusion

The proposals generated by MVD-RPN are used in RoI

poolers to create region-wise features. For each proposal,

the pooling operation is applied to its region in the feature

map of every frame and sensor, resulting in 2H C×W ×L

feature tensors, where C is the number of channels in the

feature maps and W × L is the 2D pooling size. MVDNet

then fuses the feature tensors of each proposal via two steps,

i.e., sensor fusion and temporal fusion, as shown in Fig. 4c.

Sensor fusion. The sensor fusion merges the feature ten-

sors of synchronized pair of lidar and radar frames. Intu-

itively, lidar and radar are not always of equal importance,

and their contributions should be weighted accordingly. For

example, a vehicle fully occluded by fog returns zero li-

dar points, and the lidar’s feature tensors should thus be

weighted less. In contrast, a strong peak of some back-

ground area in the radar intensity map may resemble the

intensity peaks of vehicles. In such cases, the radar features

around this area should be deweighted with the cue from

the lidar features. MVDNet adaptively fuses lidar and radar

features by extending the attention block in [50]. It takes

as input the flattened feature tensor xin, calculates the simi-

larity between two embedding spaces θ and φ, and uses the

similarity to create an attention map for the third embedding

space g to generate the residual output, i.e.,

xout = σ
(

(Wθxin)
T Wφxin

)

Wgxin + xin, (1)

where Wθ,Wφ,Wg are linearly transformation to the em-

bedding spaces θ, φ, g respectively and σ represents the

softmax function. As shown in Fig. 4c, each branch of

the sensor fusion consists of two attention blocks. While

the self attention applies attention within individual sen-

sors, the cross attention further applies attention with the

guidance of the counterpart sensor. Specifically, for either

sensor s0 ∈ {lidar, radar} and its counterpart sensor s1:

x′s0 = σ
(

(Wθx′

s1
)T Wφx′s1

)

Wgx′

s0
+ x′s0 , (2)

where x′ represents the feature vector output from the self

attention of each branch. The output feature vectors from
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(a) (b) (c)

Figure 5. Data preprocessing. (a) Lidar points and ground truth

bounding boxes of vehicles. (b) Large offsets between radar in-

tensity peaks and labels of vehicles due to asynchronization. (c)

Accurate alignment between radar intensity peaks and labels of

vehicles after data preprocessing.

the cross attention of the two sensors are reshaped back to

feature tensors and concatenated for the temporal fusion.

Temporal fusion. The temporal fusion further merges the

attended feature tensors of different frames. As shown in

Fig. 4c, instead of using timing and memory intensive re-

current structures, MVDNet concatenates attended feature

tensors of different frames along a new dimension to form

4D feature tensors and applies 3D convolution layers to al-

low information exchange along the time dimension. The

last convolution layer compresses the time dimension and

outputs the fused feature tensor. MVDNet then flattens the

fused feature tensor and passes it to fully-connected layers

to infer objective scores and regress locations of final detec-

tions, as shown in Fig. 4d.

4. Implementation

4.1. Loss Function and Training

Loss function. We adopt two commonly used multi-task

loss functions as in [13] for both MVD-RPN and MVD-

RFN. Specifically, we use binary cross-entropy loss for

the classification task LBCE,cls and smooth l1 loss for the

bounding box regression task Ll1,reg . The regression tar-

gets are transformations from anchor boxes to proposals

for MVD-RPN, and from proposals to final detections for

MVD-RFN. We represent the orientation of bounding boxes

with an angle in 180◦ and a binary direction parameter. For

MVD-RPN, we omit the classification of directions to re-

duce the number of oriented anchors by half in order to

save computing resource. For MVD-RFN, we use a sec-

ond cross-entropy loss, LBCE,dir, for direction classifica-

tion. Overall, the total loss of MVDNet is:

Ltotal = LRPN
BCE,cls + LRPN

l1,reg

+ LRFN
BCE,cls + LRFN

l1,reg
+ LRFN

BCE,dir.
(3)

Training details. The ORR dataset contains 8,862 sam-

ples, which are split into 7,071 for training and 1,791 for

testing, without geographic overlapping. We set the RoI

for the sensors to [-32,32] × [-32,32] m and run bird’s

eye view projection with a 0.2 m quantization. Similar to

PIXOR [55], we set the height range to [-2.5,1] m, divide

all lidar points into 35 slices with a bin size of 0.1 m, and

compute an intensity channel. On the other hand, the radar

only has one intensity channel. Thus, the input lidar and

radar representations have dimensions of 320×320×36 and

320×320×1, respectively. At most 5 frames of each sensor,

consisting of the current and historical 4 frames, are used as

input. To train models with foggy weather, we randomly

foggify the lidar point clouds in the training samples using

the fog model in DEF [3] with a probability of 0.5. Specifi-

cally, for each lidar point, the fog model calculates its maxi-

mum visible distance given the fog density. If the maximum

distance is smaller than the real distance, the point is either

lost or relocated as a scatter point. The fog density is uni-

formly selected from the typical range [0.005, 0.8]m−1.

We implement MVDNet with Detectron2 [51], an open-

source codebase for RCNN-based object detectors. For

MVD-RPN, the anchors are set to 3.68 m × 7.35 m, and

orientations in -90o, -45o, 0o and 45o. The matching of pos-

itive and negative samples uses thresholds of 0.55 and 0.45,

respectively. The IoU threshold of NMS is set to 0.7, and

1000 proposals are kept during training while 500 during in-

ference. For MVD-RFN, the pooling size of the RoI poolers

is set to 7 × 7. The batch size after pooling is 256. The IoU

threshold of NMS is set to 0.2. We use the SGD optimizer

with an initial learning rate of 0.01, decay the learning rate

by a factor of 0.1 every 40K iterations, and train the model

for 80K iterations from scratch. Each iteration takes the in-

put with a batch size of 1. Besides, we train a compressed

version of MVDNet, named as MVDNet-Fast, where we

reduce the size of the region fusion network by 8×, by re-

ducing the number of channels (features) in the convolution

and FC layers by 8×.

4.2. Dataset Preparation

The original ORR data are collected by a vehicle

equipped with a NavTech CTS350-X radar [36] at the roof

center, co-located with two Velodyne HDL-32E [49] lidars

whose point clouds are combined. In our dataset, we manu-

ally generate the ground-truth labels based on the ORR lidar

point clouds. Specifically, we create 3D bounding boxes

of vehicles in one out of every 20 frames (i.e., 1 s) using

Scalabel [56], an open-source annotation tool. Labels of

the remaining 19 frames are interpolated using the visual

odometry data provided in ORR and manually adjusted to

align with the corresponding vehicles.

The ORR radar [36] scans the 360o field of view at a step

of 0.9o every 0.25 s and lidar [49] at a step of 0.33o every

0.05 s. The radar and lidar scanning results are transformed

into a 2D intensity map and 3D point cloud, respectively.

Both share the same coordinate origin. However, the radar’s

considerable scanning delay and the lack of synchronization

with the lidar cause non-negligible misalignment especially
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Method

Train Clear+Foggy Clear-only

#ParamsTest Clear Foggy Clear Foggy

IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8

PIXOR [55] 72.76 68.25 41.15 62.59 58.89 35.74 70.97 67.15 40.62 61.77 58.27 35.70 2,135K

PointRCNN [46] 78.18 73.75 45.70 69.65 65.64 41.58 78.22 72.78 43.44 68.74 63.99 37.64 3,887K

PointPillars [24] 85.74 82.99 58.33 72.80 70.34 48.55 85.83 82.87 60.59 71.28 68.31 47.82 4,815K

DEF [3] 86.60 78.18 46.20 81.44 72.46 41.05 85.88 78.11 44.16 71.81 63.74 32.38 5,210K

DEF+MVD-RFN 87.69 85.52 67.49 82.23 79.18 61.05 86.18 84.07 69.57 71.83 69.96 56.72 13,730K

MVDNet (Ours) 90.89 88.82 74.63 87.40 84.61 68.88 87.22 86.06 72.63 77.98 75.89 61.55 8,591K

MVDNet-Fast (Ours) 88.99 86.20 68.30 85.58 82.25 62.76 88.91 85.96 68.15 76.30 73.97 56.96 977K
Table 1. Overall performance: AP of oriented bounding boxes in bird’s eye view. Bold numbers represent the best score among all the

methods. Underlined numbers represent the best one among the baseline methods.
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when moving. For example, the lidar points and labels of

two vehicles in Fig. 1a are shown in Fig. 5a and their radar

intensity maps in Fig. 5b, where large offsets exist between

prominent radar intensity peaks and labels.

To compensate for the misalignment, we estimate the

movement �δl = (δx, δy)
T and rotation δθ of the radar rela-

tive to the beginning of its successive scans via SLAM [7].

When scanning a point �pl = (px, py)
T in free space, the

instantaneous relative location and orientation of the radar

are linearly interpolated as t�δl and tδθ at time t, where

t ≈ ∠�pl

2π
T is the approximated scanning time of point �pl

and T is the scanning interval. We calculate the relative dis-

tance d′ = ||�pl − t�δl|| and angle θ′ = ∠�pl − tδθ between

the point �pl and the radar. The intensity at �pl is corrected as

I(px, py) = I(d′, θ′).
To synchronize the radar and lidar, instead of pairing

each radar scan with the closest lidar scan in time, we ag-

gregate all N = 5 lidar scans during this radar scan in-

terval. Specifically, we select a sector of points from each

lidar scan, where the selected sector is scanned by both li-

dar and radar at approximately the same time. Formally, for

a radar frame and its simultaneous N = 5 lidar frames, a

point �p in the i-th lidar frame is selected only if it falls in

the sector [ i−1

N+1
π, i+1

N+1
π]. Finally, all selected points are

transformed into the radar coordinate and combined as a li-

dar frame. Fig. 5c showcases the vehicles after correction,

whose radar intensity peaks and labels are well aligned.

5. Experiment

5.1. Baseline Comparison

We validate MVDNet in both clear and foggy weather

conditions, in terms of average precision (AP) using the

CoCo evaluation framework [30]. We compare MVDNet

against existing lidar-only detectors (PIXOR [55], PointR-

CNN [46], and PointPillars [24]), and the lidar-radar fusion

method in DEF [3]. Besides, we implement MVDNet-Fast

(Sec. 4.1) with a smaller model size and DEF+MVD-RFN

which combines the feature extractor of DEF with the pro-

posal generator and region fusion network of MVDNet.

As shown in Tab. 1, MVDNet and MVDNet-Fast consis-

tently outperform the other detectors within various train-

ing/testing settings and IoUs, thanks to the fusion model de-

sign. The trade-off between the detector’s cost and perfor-

mance can thus be made by selecting a proper model size.

While PointPillars yields the highest performance among

all three lidar-only detectors, its performance is still signif-

icantly worse than MVDNet in foggy condition due to the

reduced range and scattering effect. With additional inputs

from radar, DEF can detect more vehicles, especially when

both training and testing sets contain foggy data. How-

ever, even with radar, DEF is still worse than PointPillars

in terms of localization accuracy, as indicated by AP with

higher IoU thresholds. The main reason is that DEF is

specialized for front-view images. Specifically, DEF pre-

processes the input images and creates local entropy maps,

which embodies dense information for front-view images,

but sparse and isolated information for bird’s eye view im-

ages. In contrast, with MVD-RFN appended, DEF+MVD-

RFN effectively fuses lidar and radar data and extracts more

useful features for accurate detection. Fig. 6 further shows

the fine-grained precision-recall curves of all detectors with

IoU averaged over [0.5, 0.8]. In foggy weather condition,

MVDNet shows significant advantages over other detectors,
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(a) Lidar input (b) Lidar gradient (c) Radar input (d) Radar gradient

Figure 9. Comparison of contribution of lidar and radar inputs to

fused features of detected vehicles with lidar’s visible range re-

duced by fog. The top vehicle (green) is outside the lidar’s visible

range, while the bottom one (orange) in the lidar’s visible range.

justifying the robustness of MVDNet’s late fusion design.

In practice, foggy weather is much rarer than normal

weather, leading to an imbalance of data. We further train

all detectors using only clear lidar point clouds and radar

intensity maps. The results are shown in Tab. 1. Comparing

to training using both clear and foggy lidar point clouds,

we observe slight performance loss for clear cases and a

significant loss for foggy cases. The result indicates that

augmenting the clear data with foggification is crucial for

robust all-weather detection.

To better understand the sensor fusion of MVDNet, we

visualize the gradients of fused feature vectors of detected

vehicles with respect to lidar and radar inputs. Fig. 9 com-

pares the gradients of two vehicles in Fig. 1a that are in and

outside of the visible range of the lidar respectively. For the

vehicle within the visible range of the lidar (orange), both

lidar and radar inputs contribute to the fused feature vector

of the vehicle. In contrast, for the vehicle outside of the

visible range of the lidar (green), only radar provides useful

information and contributes to the fused feature vector. It

validates the effectiveness of the proposed multimodal sen-

sor fusion against the reduced visible range of lidar. Fig. 10

further compares the gradients of the feature vector of a ve-

hicle in Fig. 1a with respect to its vehicle points and closed

fog points. Most fog points contribute nearly zero gradients

to the feature vector of the detected vehicle, demonstrating

the denoising capability of MVDNet.

Fig. 11 shows detection results of different detectors in

two scenes. All three lidar-only detectors miss some vehi-

cles and mistakenly recognize some background lidar points

as vehicles. In contrast, MVDNet detects vehicles with the

highest accuracy and least regression errors, thanks to the

design of deep late fusion.

5.2. Ablation on MVDNet Input

Impact of fog density. We now evaluate the performance

of all detectors against various fog densities. Fog reduces

the visible range of lidar. For example, the densest fog

(a) Lidar point cloud (b) Point-wise gradient

Figure 10. Comparison of the contribution of vehicle points and

fog points to learned features of a detected vehicle. (a) An example

vehicle (green) impacted by fog (red). (b) Vehicle points have a

large contribution (orange) to the learned features of MVDNet,

while fog points have little effect.

with a density of 0.08 m−1 reduces the visible range of the

Velodyne HDL32-E lidar within only 15 m. As a result,

detectors relying on lidar data will experience a significant

performance drop. This is verified in Fig. 7, which shows

the AP of all detectors working with common fog densities

from 0.005 m−1 to 0.08 m−1. While the performance of all

detectors drops with the increase of the fog density, MVD-

Net has the lowest dropping rate and still maintains an AP

around 0.75 with the densest fog, with the help of extra in-

formation from radar. In contrast, the 3 detectors using only

the lidar have a significant performance drop where the AP

reaches below 0.5 when the fog density reaches 0.08 m−1.

Impact of historical information. Historical data helps

detectors by encompassing the temporal correlation of sam-

ples. To evaluate the impact of historical information in our

MVDNet design, we vary the number of historical lidar and

radar frames. As shown in Fig. 8, whereas MVDNet con-

sistently receives performance gain with the increase of the

number of frames on both clear and foggy testing set, the

gain on the foggy case is more prominent, as the visible

range of lidar is “extended” with the area visible in the past

but occluded at present. The runtime of our proposed de-

tector increases from 54.9 ms (18 FPS) to 110.7 ms (9 FPS)

linearly as the number of historical frames increases from 0

to 4. Therefore, the history length can be a design knob to

navigate the trade-off between runtime and performance.

Data synchronization. To validate the contribution from

data synchronization in Sec. 4.2, we create the dataset with-

out correcting the misalignment between lidar and radar. As

shown in Tab. 2, the AP of MVDNet drops by about 9% on

average. The larger the IoU threshold is, the more the per-

formance drops. We conjecture that while the deep network

can learn to correct misalignment implicitly, it is still insuf-

ficient to compensate for the large misalignment between

lidar and radar data, as in Fig. 5. This result demonstrates

the necessity of explicit data synchronization.

5.3. Ablation on MVDNet Architecture

We show an extensive ablation study of MVDNet in

terms of contribution of individual fusion modules, contri-
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Ground-truth PIXOR [55] (Li) PointRCNN [46] (Li) PointPillars [24] (Li) DEF [3] (Li+Ra) MVDNet (Ours, Li+Ra)

Figure 11. Examples of 360◦ detection results of different detectors. The ground-truth is in various colors while the detection is in green.

Method IoU 0.5 0.65 0.8

No Data Sync (Sec. 4.2) 85.05 78.54 56.74

No Fusion (Sec. 3.3) 87.40 84.45 70.20

No Temporal Fusion (Sec. 3.3) 88.19 85.75 69.72

No Sensor Fusion (Sec. 3.3) 87.89 85.59 70.61

No Self Attention (Sec. 3.3) 88.19 85.88 71.41

No Cross Attention (Sec. 3.3) 88.31 85.95 70.88

MVDNet (Ours) 89.15 86.72 71.76

Radar-Only 73.04 68.27 43.25

Lidar-Only 82.28 80.72 67.83

Lidar Reconstruction 85.04 82.73 67.81

Table 2. Ablation study: AP of oriented bounding boxes in bird’s

eye view (averaged over both clear and fog testing sets).

bution of different sensors, and comparison between fusion

at different stages. Tab. 2 shows the AP of different ablation

schemes, averaged over both clear and foggy testing sets.

Individual fusion modules. MVDNet fuses lidar and

radar data via both sensor fusion and temporal fusion

(Sec. 3.3). To evaluate the benefits from the fusion, we re-

place each fusion block with a single convolution layer with

the same input and output shape. As shown in Tab. 2, MVD-

Net achieves average gains of 1.3%, 1.2% and 1.8% with

temporal fusion, sensor fusion and both, respectively. In

addition, the gains from individual self and cross attention

are 0.8% and 0.7% respectively, demonstrating that both at-

tention modules help sensor fusion.

Different sensors. We then evaluate the contribution of

sensors. Specifically, we keep the branch of one sensor and

remove the other one in both MVD-RPN and the sensor fu-

sion block in MVD-RFN. As shown in Tab. 2, the radar-

only model has a significant performance drop comparing

with the complete MVDNet, due to the coarse granularity

and lack of height information of the radar. In comparison,

the performance of the lidar-only model drops by 5.6% on

average, mainly due to the adverse impact of fog.

Fusion at different stages. To validate the late fusion of

multimodal sensors in MVDNet compared to early fusion,

we prepend a standard U-Net [42] to the lidar-only model.

The U-Net takes as input both radar and foggy lidar data

and outputs the reconstructed lidar data. The output is then

fed into the lidar-only model for detection. We first train

the U-Net with a binary cross-entropy loss between the oc-

cupancy maps and a smooth l1 loss between the intensity

map of the reconstructed and clear lidar data. Then we con-

nect the U-Net and the lidar-only model and jointly train

both with the loss function in Sec. 4.1. As shown in Tab. 2,

while the lidar reconstruction scheme achieves higher per-

formance than the radar-only and lidar-only models, its AP

is still lower than MVDNet by about 4%, indicating that the

early fusion is less effective than the late fusion. It is mainly

due to the low data quality of radar compared with lidar,

making the explicit reconstruction of lidar data ineffective.

6. Conclusion

We have introduced MVDNet to enable vehicle detec-

tion under adverse foggy weather condition. MVDNet ex-

ploits complementary advantages of lidar and radar via deep

late fusion across both the sensing modality and time di-

mensions. To evaluate MVDNet, we introduce a novel

procedurally generated training dataset with spatially fine-

grained mechanic radar and lidar. Experimental results

show that MVDNet achieves consistently high detection ac-

curacy than existing lidar-alone or multimodal approaches,

especially in foggy weather condition. In the future, we

plan to integrate a more diverse set of sensors, e.g., Doppler

radar and RGBD camera, and explore network compression

methods to enable real-time (≥30 FPS) vehicle detection.
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