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Abstract

Vehicle detection with visual sensors like lidar and cam-

era is one of the critical functions enabling autonomous

driving. While they generate fine-grained point clouds

or high-resolution images with rich information in good

weather conditions, they fail in adverse weather (e.g., fog)

where opaque particles distort lights and significantly re-

duce visibility. Thus, existing methods relying on lidar or

camera experience significant performance degradation in

rare but critical adverse weather conditions. To remedy

this, we resort to exploiting complementary radar, which

is less impacted by adverse weather and becomes prevalent

on vehicles. In this paper, we present Multimodal Vehicle

Detection Network (MVDNet), a two-stage deep fusion de-

tector, which first generates proposals from two sensors and

then fuses region-wise features between multimodal sen-

sor streams to improve final detection results. To evalu-

ate MVDNet, we create a procedurally generated training

dataset based on the collected raw lidar and radar signals

from the open-source Oxford Radar Robotcar. We show

that the proposed MVDNet surpasses other state-of-the-art

methods, notably in terms of Average Precision (AP), espe-

cially in adverse weather conditions. The code and data are

available at https://github.com/qiank10/MVDNet.

1. Introduction

As the holy grail of autonomous driving technology, Full

Driving Automation (Level 5) [20] relies on robust all-

weather object detection, which provides accurate bound-

ing boxes of surrounding objects even in the challenging

adverse foggy weather condition. Nowadays, autonomous

vehicles are equipped with multiple sensor modalities, such

as camera, lidar, and radar [12, 6, 48, 3]. Fusing multimodal

sensors overcomes any individual sensor’s occasional fail-

ures and potentially yields more accurate object detection

than using only a single sensor. Existing object detec-

tors [10, 21, 52, 38] mainly fuse lidar and camera, which

normally provide rich and redundant visual information.

However, these visual sensors are sensitive to weather con-

ditions and are not expected to work fully in harsh weather

like fog [4, 26], making the autonomous perception systems

unreliable. For example, Fig. 1a shows an example of a

driving scenario with ground-truth vehicles labeled. Fig. 1b

shows the detected vehicles using only lidar point cloud that

(a) Ground-truth (clear weather) (b) MVDNet (lidar-only)

(c) MVDNet (radar-only) (d) Complete MVDNet (Ours)

Figure 1. Performance overview of our proposed MVDNet. (a)

360◦ bird’s eye view of the 3D lidar point cloud and ground-truth

labels (colors represent different vehicles). The vehicle equipped

with lidar and radar is at the center. In foggy weather, (b) lidar-

only MVDNet misses vehicles at farthest range due to fog occlu-

sion and misclassifies background points as vehicles; (c) radar-

only MVDNet produces false alarms and inaccurate bounding

boxes due to noisy radar data; (d) By deeply fusing lidar and radar,

the complete MVDNet correctly detects vehicles.

is deteriorated by fog. Two farthest vehicles at the top are

missing due to the occlusion of fog.

Aside from lidar and camera, radar has been widely de-

ployed on autonomous vehicles [6, 3, 58] and has the po-

tential to overcome foggy weather. Specifically, radar uses

millimeter-wave signals whose wavelength is much larger

than the tiny particles forming fog, rain, and snow [14, 1],

and hence easily penetrates or diffracts around them. How-

ever, radars in the existing autonomous driving datasets are

still underexplored, mainly due to their significant data spar-

sity, as compared with camera and lidar. For example, the

nuScenes dataset [6] has about 35K lidar points but only 200

radar points on average in each data frame. The main reason

is that its radars use conventional electronically steerable
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antenna array, which tends to generate beam patterns with

wide beamwidth (3.2◦-12.3◦). In the DENSE [3] dataset,

a proprietary radar is mounted on the front bumper of the

vehicle. However, its angular field of view is only 35◦.

Fortunately, the recent Oxford Radar Robotcar [2] (ORR)

deploys a radar with a rotating horn antenna, which has

high directionality and much finer spatial resolution of 0.9◦,

and is mechanically rotated to achieve 360◦ field of view.

The ORR radar generates dense intensity maps, as shown

in Fig. 1c, where each pixel represents the reflected signal

strength. It creates a new opportunity for object detection

in foggy weather condition.

Despite the richer information, the ORR radar is still sig-

nificantly coarser and noisier than its visual counterpart, i.e.,

lidar, as showcased in Fig. 1a and 1c. As a result, if it is pro-

cessed in the same way as the lidar point cloud, then false

alarms and large regression errors show up. To robustly de-

tect vehicles in foggy weather, one should take advantage of

both lidar (fine granularity within visible range) and radar

(immunity to foggy weather) while overcoming their short-

comings. To this end, we propose MVDNet, a multimodal

deep fusion model for vehicle detection in adverse foggy

weather condition. MVDNet consists of two stages. The

first stage generates proposals from the lidar and radar sep-

arately. The second stage employs the adaptive fusion of the

two sensors’ features via attention and the temporal fusion

using 3D convolutions. Such a late fusion scheme allows

the model to generate sufficient proposals while focusing

the fusion within the regions of interest (ROI). As shown in

Fig. 1d, MVDNet can not only detect the vehicles occluded

by fog in the lidar point clouds but also reject false alarms

in the noisy radar intensity maps.

To validate MVDNet, we create a procedurally gener-

ated training dataset based on the raw lidar and radar sig-

nals from ORR. Specifically, we manually generate oriented

bounding boxes for vehicles in the lidar point clouds, syn-

chronize the radar and lidar with the knowledge of visual

odometry, and simulate random fog effects using an accu-

rate fog model proposed in DEF [3]. We compare MVDNet

with the state-of-the-art lidar-alone detectors [55, 24, 46],

or lidar and radar fusion [3]. Evaluation results show that

MVDNet achieves notably better performance on vehicle

detection in foggy weather condition while requiring 10×
less computing resource.

Our core contributions are two folds. First, we propose

a deep late fusion detector that effectively exploits lidar

and radar’s complementary advantages. To our knowledge,

MVDNet represents the first vehicle detection system that

fuses lidar and high-resolution 360◦ radar signals for vehi-

cle detection. Second, we introduce a labeled dataset with

fine-grained lidar and radar point cloud in foggy weather

condition. We assess MVDNet on the proposed dataset and

demonstrate the effectiveness of the proposed fusion model.

2. Related Work

Vehicle detection from lidar signals. Depending on the

representations of point clouds, lidar-based object detec-

tion falls into two categories. On the one hand, lidar data

is formalized as point clouds by default and can be nat-

urally processed by architectures designed for unordered

point sets [39, 40]. Based on these architectures, end-to-end

learning for raw point clouds is enabled [52, 53, 46, 24].

PointRCNN [46] extracts point-wise features with Point-

Net [39] and combines features at different stages to rec-

ognize foregrounds. It then generates proposals and refines

final detection results. PointPillars [24] segments points

into pillars, where pillar-wise features are calculated using

PointNet to form a pseudo image. The image is then passed

to a CNN backbone and SSD [31] detection head. However,

point-wise features cannot be learned for areas occluded by

adverse weather due to the absence of any point there. On

the other hand, a lidar point cloud can be voxelized and pro-

cessed by standard image detection models [55, 47, 57, 33].

PIXOR [55] segments points and generates an occupancy

map for different heights. The voxel representation can be

easily combined with other regular image data, e.g., from

camera and lidar, and is exploited in MVDNet.

Denoising in foggy weather. Fog and haze reduce the

data quality of visual sensors such as camera and lidar,

due to loss of contrast [43, 5] and reduction in visible

range [18, 4]. On the one hand, sophisticated dehazing

methods [16, 11, 25, 32] for images have been proposed

to benefit learning tasks [15, 43]. These methods either es-

timate a transmission map between foggy and clear images

using hand-crafted [16, 11] or learned [25] priors or develop

an end-to-end trainable model. On the other hand, little re-

search has been done on lidar point cloud denoising [9, 17].

Due to the sparsity of lidar point cloud, existing denoising

methods for dense 3D point cloud [41, 45, 19] cannot be

directly applied to remove fog points. DROR [9] leverages

dynamic spatial vicinity of points for denoising. Due to the

lack of semantic information, it can mistakenly remove soli-

tary reflections from objects. Heinzler et al. [17] proposed

a CNN-based denoising model to understand and filter out

fog effect. Nonetheless, existing denoising methods cannot

compensate for the visibility reduction of lidar due to fog

without extra information. In contrast, MVDNet combats

foggy weather using high-resolution radar to complement

the weather-sensitive lidar point cloud.

Vehicle detection with sensor fusion. Multimodal sensors

provide redundant information, making it robust against

sensor distortions due to internal noises and bad weather.

Most fusion methods [21, 52, 38, 10, 27] are proposed

for lidar and camera, due to their availability in common

datasets [12, 48]. MV3D [10] aggregates proposals of mul-

tiple views. PointFusion [52] combines feature vectors of

lidar and camera to predict 3D boxes of vehicles.
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(a) (b) (c)

Figure 2. Fog effect on lidar point cloud. (a) Synchronized radar intensity map not impact by fog. (b) Raw point cloud truncated within

32 m. (c) Foggy point cloud with scattering fog points (red) and reduced visible range.

Radar is gaining traction recently as an additional modal-

ity for autonomous perception [34, 8, 35, 28, 37, 22].

In [29], the sparse and noisy radar points are projected on

camera images to enhance depth estimation. In [23], the

Doppler frequency shifts measured by radar is exploited to

recognize pedestrians occluded in lidar’s view. DEF [3] de-

velops an early fusion detector with lidar, camera, and radar.

However, DEF’s radar has low quality, leading to inferior

performance when radar works alone. Besides, the radar

and camera of DEF have narrow angles of view, and the

detector is specially designed for front-views, which is non-

trivial to be adapted to 360◦ detection. RadarNet [54] fuses

the sparse radar points and lidar point clouds at the early

feature extraction stage via CNN to detect objects in 360◦

view and further associates sparse radar points with the de-

tections to refine motion prediction. LiRaNet [44] also fuses

sparse radar points with lidar point cloud and road map at

an early stage to predict trajectories of detected vehicles. In

contrast, MVDNet targets robust vehicle detection in foggy

weather condition. To achieve it, we exploit a state-of-the-

art imaging radar with much finer resolution than that used

in RadarNet and LiRaNet, and propose an effective deep

late fusion method to combine radar and lidar signals.

3. The MVDNet Design

3.1. Problem Statement and Overview

The adverse effects of fog have been well measured and

modeled [4, 3, 26]. Fig. 2 exemplifies the effects, where

we foggify a point cloud (i.e., Fig. 1b) from the ORR li-

dar (Velodyne HDL-32E lidar [49]), using the fog model

in [3] with fog density of 0.05 m−1. Due to its lower trans-

missivity than clear air, fog distorts lidar point clouds in

two aspects: (i) Lasers reflected by distant objects are at-

tenuated and become too weak to be acquired by lidar, re-

sulting in reduced visible range. (ii) The opaque fog back-

scatters laser signals, resulting in scattering fog points (red

points in Fig. 2c). These adverse effects can cause false

alarms and misdetections, as shown in Fig. 1b. In con-

trast, fog is almost transparent to radar [14, 1]. But radar

has intrinsically lower spatial resolution than lidar due to

its longer signal wavelength and wide beamwidth. There-

fore, to date, radar is mostly used for motion/speed tracking

(Sec. 2). Fortunately, emerging imaging radars, such as the

NavTech CTS350-X [36] used in ORR, enable point clouds

with comparable resolution and density as a low-grade li-

dar. For example, Fig. 2a shows an example bird’s eye view

intensity map of the ORR radar. The prominent intensity

peaks correspond to main objects on the road (e.g., vehi-

cles, walls, etc.) and match their lidar counterparts well.

MVDNet essentially deep fuses radar intensity maps

with lidar point clouds, to harness their complementary ca-

pabilities. As illustrated in Fig. 3, MVDNet consists of two

stages. The region proposal network (MVD-RPN) extracts

feature maps from lidar and radar inputs and generates pro-

posals from them. The region fusion network (MVD-RFN)

pools and fuses region-wise features of the two sensors’

frames and outputs oriented bounding boxes of detected ve-

hicles. We now introduce the detailed design of MVDNet.

3.2. MVD-RPN Backbone

Feature extractor. MVDNet uses two feature extractors

with the same structure for lidar and radar inputs. But the

number of feature channels of the lidar part is doubled due

to more lidar input channels (Sec. 4.2). As shown in Fig. 4a,

the feature extractor first uses 4 3×3 convolution layers to

extract features at input resolution. It then downsamples

the output by 2× via max-pooling and further extracts fea-

tures at a coarser resolution. In the bird’s eye view, vehicles

only occupy small areas. Specifically, the vehicles in ORR

have an average size of 2.5 m×5.1 m, which only occupies a

13×26 pixels area with an input resolution of 0.2 m. Down-

sampling the bird’s eye view map makes the region-wise

features vulnerable to quantization errors in the subsequent

proposal generator. MVDNet thus upsamples the coarse-

grained feature map via a transposed convolution layer and

concatenates the output with the fine-grained feature map

via a skip link. Each feature extractor is applied to all H in-

put frames of the corresponding sensor and generates a set

of H feature maps.

Proposal generator. As illustrated in Fig. 4b, the pro-
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