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Abstract

We study a worst-case scenario in generalization: Out-
of-domain generalization from a single source. The goal is
to learn a robust model from a single source and expect it
to generalize over many unknown distributions. This chal-
lenging problem has been seldom investigated while existing
solutions suffer from various limitations. In this paper, we
propose a new solution. The key idea is to augment the
source capacity in both input and label spaces, while the
augmentation is guided by uncertainty assessment. To the
best of our knowledge, this is the first work to (1) access
the generalization uncertainty from a single source and (2)
leverage it to guide both input and label augmentation for
robust generalization. The model training and deployment
are effectively organized in a Bayesian meta-learning frame-
work. We conduct extensive comparisons and ablation study
to validate our approach. The results prove our superior
performance in a wide scope of tasks including image clas-
sification, semantic segmentation, text classification, and
speech recognition.

1. Introduction

Existing machine learning algorithms have achieved re-
markable success under the assumption that training and
test data are sampled from similar distributions. When this
assumption no longer holds, even strong models (e.g., deep
neural networks) may fail to produce reliable predictions. In
this paper, we study a worst-case scenario in generalization:
Out-of-domain generalization from a single source. A model
learned from a single source is expected to generalize over
a series of unknown distributions. This problem is more
challenging than domain adaptation [39, 42, 63, 34] which
usually requires the assessment of target distributions during
training, and domain generalization [41, 14, 33, 4, 9] which
often assumes the availability of multiple sources. For exam-
ple, there exists significant distribution difference in medical
images collected across different hospitals. The intelligent
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diagnosis system is required to process images unexplored
during training where model update is infeasible due to time
or resource limitations.

Recently, [59] casts this problem in an ensemble frame-
work. It learns a group of models each of which tackles
an unseen test domain. This is achieved by performing ad-
versarial training [15] on the source to mimic the unseen
test distributions. Yet, its generalization capability is lim-
ited due to the proposed semantic constraint, which allows
only a small amount of data augmentation to avoid semantic
changes in the label space. To address this limitation, [45]
proposes adversarial domain augmentation to relax the con-
straint. By maximizing the Wasserstein distance between
the source and augmentation, the domain transportation is
significantly enlarged in the input space.

However, existing data (domain) augmentation based
methods [59, 44, 8, 6, 22] merely consider to increase the
source capacity by perturbing the input space. Few of them
investigate the possibility of label augmentation. An ex-
ception is Mixup [66] which pioneers label augmentation
by randomly interpolating two data examples in both input
and label spaces. However, Mixup can hardly address the
out-of-domain generalization problem since it is restricted
in creating in-domain generations due to the linear interpo-
lation assumption. Besides, the interpolations are randomly
sampled from a fixed distribution, which also largely restricts
the flexibility of domain mixtures, yielding sub-optimal per-
formance for unseen domain generalization.

Another limitation of existing work [41, 14, 33,4, 9] is
they usually overlook the potential risk of leveraging aug-
mented data in tackling out-of-domain generalization. This
raises serious safety and security concerns in mission-critical
applications [ 1]. For instance, when deploying self-driving
cars in unknown environments, it is crucial to be aware of
the predictive uncertainty in risk assessment.

To tackle the aforementioned limitations, we propose un-
certain out-of-domain generalization. The key idea is to
increase the source capacity guided by uncertainty estima-
tion in both input and label spaces. More specifically, in the
input space, instead of directly augmenting raw data [59, 45],
we apply uncertainty-guided perturbations to latent fea-
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tures, yielding a domain-knowledge-free solution for var-
ious modalities such as image, text, and audio. In the label
space, we leverage the uncertainty associated with feature
perturbations to augment labels via interpolation, improving
generalization over unseen domains. Moreover, we explicitly
model the domain uncertainty as a byproduct of feature per-
turbation and label mixup, guaranteeing fast risk assessment
without repeated sampling. Finally, we organize the train-
ing and deployment in a Bayesian meta-learning framework
that is specially tailored for single source generalization. To
summarize, our contribution is multi-fold:

* To the best of our knowledge, we are the first to ac-
cess the uncertainty from a single source. We leverage
the uncertainty assessment to gradually improve the
domain generalization in a curriculum learning scheme.

¢ For the first time, we propose learnable label mixup
in addition to widely used input augmentation, further
increasing the domain capacity and reinforcing general-
ization over unseen domains.

* We propose a Bayesian meta-learning method to effec-
tively organize domain augmentation and model train-
ing. Bayesian inference is crucial in maximizing the
posterior of domain augmentations, such that they can
approximate the distribution of unseen domains.

» Extensive comparisons and ablation study prove our
superior performance in a wide scope of tasks includ-
ing image classification, semantic segmentation, text
classification, and speech recognition.

2. Related Work

Out-of-Domain Generalization. Domain generaliza-
tion [14, 32, 18, 50, 4, 9, 58, 67] has been intensively stud-
ied in recent years. JiGen [4] proposed to generate jigsaw
puzzles from source domains and leverage them as self-
supervised signals. Wang et al. [61] leveraged both extrinsic
relationship supervision and intrinsic self-supervision for
domain generalization. Specially, GUD [59] proposed adver-
sarial data augmentation to solve single domain generaliza-
tion, and learned an ensemble model for stable training. M-
ADA [45] extended it to create augmentations with large do-
main transportation, and designed an efficient meta-learning
scheme within a single unified model. Both GUD [59] and
M-ADA [45] fail to assess the uncertainty of augmentations
and only augment the input, while our method explicitly
model the uncertainty and leverage it to increase the aug-
mentation capacity in both input and label spaces. Several
methods [38, 60, 21] proposed to leverage adversarial train-
ing [15] to learn robust models, which can also be applied
in single source generalization. PAR [60] proposed to learn
robust global representations by penalizing the predictive

power of local representations. [21] applied self-supervised
learning to improve the model robustness.

Adversarial training. Szegedy er al. [55] discovered
the intriguing weakness of deep neural networks to minor
adversarial perturbations. Goodfellow et al. [15] proposed
adversarial training to improve model robustness against ad-
versarial samples. Madry er al. [38] illustrated that adversar-
ial samples generated through projected gradient descent can
provide robustness guarantees. Sinha et al. [52] proposed
principled adversarial training with robustness guarantees
through distributionally robust optimization. More recently,
Stutz et al. [53] illustrated that on-manifold adversarial sam-
ples can improve generalization. Therefore, models with
both robustness and generalization can be achieved at the
same time. In our work, we leverage adversarial training to
create feature perturbations for domain augmentation instead
of directly perturbing raw data.

Meta-learning. Meta-learning [49, 56] is a long standing
topic on learning models to generalize over a distribution
of tasks. Model-Agnostic Meta-Learning (MAML) [10] is
a recent gradient-based method for fast adaptation to new
tasks. In this paper, we propose a modified MAML to make
the model generalize over the distribution of domain aug-
mentation. Several approaches [33, 1, 9] have been proposed
to learn domain generalization in a meta-learning framework.
Li et al. [33] firstly applied MAML in domain generalization
by adopting an episodic training paradigm. Balaji ef al. [1]
proposed to meta-learn a regularization function to train net-
works which can be easily generalized to different domains.
Dou et al. [9] incorporated global and local constraints for
learning semantic feature spaces in a meta-learning frame-
work. However, these methods cannot be directly applied
for single source generalization since there is only one distri-
bution available during training.

Uncertainty Assessment. Bayesian neural networks [23,

, 3] have been intensively studied to integrate uncer-
tainty into weights of deep networks. Instead, we ap-
ply Bayesian inference to assess the uncertainty of do-
main augmentations. Several Bayesian meta-learning frame-
works [16, 11, 64, 30, 36] have been proposed to model the
uncertainty of few-shot tasks. Grant et al. [16] proposed
the first Bayesian variant of MAML [10] using the Laplace
approximation. Yoon et al. [64] proposed a novel Bayesian
MAML with a stein variational inference framework and
chaser loss. Finn et al. [11] approximated MAP inference
of the task-specific weights while maintain uncertainty only
in the global weights. Lee et al. [30] proposed a Bayesian
meta-learning framework to deal with class/task imbalance
and out-of-distribution tasks. Lee et al. [3 1] proposed meta-
dropout which generates learnable perturbations to regularize
few-shot learning models. In this paper, instead of modelling
the uncertainty of tasks, we propose a novel Bayesian meta-
learning framework to maximize the posterior distribution
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Figure 1: The main and auxiliary models.

of domain augmentations.

3. Method

We first describe our problem setting and overall frame-
work design. The goal is to learn a robust model from a
single domain S and we expect the model to generalize over
an unknown domain distribution {77, 72, -+ } ~ p(T). This
problem is more challenging than domain adaptation (assum-
ing p(7) is given) and domain generalization (assuming mul-
tiple source domains {S1, Sa, - - - } are available). We create
a series of domain augmentations {S;7,S;,--- } ~ p(ST)
to approximate p(7 ), from which the backbone 6 can learn
to generalize over unseen domains.

Uncertainty-guided domain generalization. We as-
sume that S* should integrate uncertainty assessment for
efficient domain generalization. To achieve it, we intro-
duce the auxiliary ¢ = {¢p, ¢} to explicitly model the
uncertainty with respect to § and leverage it to create ST by
increasing the capacity in both input and label spaces. In
input space, we introduce ¢,, to create feature augmentations
h™* via adding perturbation e sampled from A (u, o). In
label space, we integrate the same uncertainty encoded in
(u, o) into ¢,,, and propose learnable mixup to generate y ™
(together with h™) through three variables (a, b, T), yielding
consistent augmentation in both input and output spaces. To
effectively organize domain augmentation and model train-
ing, we propose a Bayesian meta-learning framework to
maximizing a posterior of p(ST) by jointly optimizing the
backbone 6 and the auxiliary . The overall framework is
shown in Fig. 1 and full algorithm is summarized in Alg. 1.

Merits of uncertainty assessment. Assessing the uncer-
tainty of S plays a key role in our design. First, it provides
consistent guidance to the augmentation in both input and la-
bel spaces when inferring ST, which has never been studied
before. Second, we can gradually enlarge the domain trans-
portation by increasing the uncertainty of SV in a curriculum
learning scheme [2]. Last, we can easily assess the domain

Algorithm 1: Unseen Domain Generalization.
Input: Source domain S, # of MC samples K.
Output: Learned backbone # and auxiliary .

1 while not converged do

Meta-train: Compute 6* on S using Eq. 4

Generate S from S using Eq. |

fork=1,..., K do

Sample feature perturbation hz using Eq. 2

Generate label mixup y;’ using Eq. 3

Meta-test: Evaluate £(6*;S1) wrt. ST
end

9 Meta-update: Update 6 and v using Eq. 6

10 end

X 9 v B W N

uncertainty by checking the value of o, which measures how
unsure it is when deploying on unseen domains 7 (Sec. 3.3).

3.1. Uncertainty-Guided Input Augmentation

The goal is to create ST from S such that p(ST) can
approximate the out-of-domain distribution of S. One the
one hand, we expect a large domain transportation from
S to 8T to best accommodate the unseen testing distribu-
tion p(7). On the other hand, we prefer the transportation
is domain-knowledge-free with uncertainty guarantee for
broad and safe domain generalization. Towards this goal, we
introduce ¢, to create feature augmentation h* with large
domain transportation through increasing the uncertainty
with respect to 6.

Adversarial Domain Augmentation. To encourage
large domain transportation, we cast the problem in a worst-
case scenario [52] and propose to learn the auxiliary mapping
¢p via adversarial domain augmentation:

maximizeﬁ(@;S"‘)—ﬂ||z_z+||§’ (1)
p — ——
Main task Constraint

Here, £ denotes empirical loss such as cross-entropy
loss for classification. The second term is the worst-case
constraint, bounding the largest domain discrepancy between
S and ST in embedding space. z denotes the FC-layer output
right before the activation layer, which is distinguished from
h that denotes the Conv-layer outputs.

One merit of the proposed uncertainty-guided augmen-
tation is that we can effectively relax the constraint to en-
courage large domain transportation in a curriculum learning
scheme, which is significantly more efficient than [45] that
has to train an extra WAE-GAN [57] to achieve this goal.
We introduce the detailed form of h™ as follows.

Variational feature perturbation. To achieve adver-
sarial domain augmentation, we apply uncertainty-guided
perturbations to latent features instead of directly augment-
ing raw data, yielding domain-knowledge-free augmenta-
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tion. We propose to learn layer-wise feature perturbations
e that transport latent features h — h™ for efficient do-
main augmentation S — ST. Instead of a direct genera-
tion e = fy4 (x,h) widely used in previous work [59, 45],
we assume e follows a multivariate Gaussian distribution
N (p, o), which can be used to easily access the uncertainty.
More specifically, the Gaussian parameters are learnable via
variational inference (u, o) = f;,(S,0), such that:

ht < h + Softplus(e), where e ~ N (p,0),  (2)

where Softplus(-) is applied to stabilize the training. ¢,
can create a series of feature augmentations {h", hJ, -}
in different training iterations. In Sec. 4.5, we empirically
show that {h;", hJ, - -} gradually enlarge the transportation
through increasing the uncertainty of augmentations in a
curriculum learning scheme and enable the model to learn
from “easy” to “hard” domains.

3.2. Uncertainty-Guided Label Mixup

Feature perturbations not only augment the input but also
yield label uncertainty. To explicitly model the label uncer-
tainty, we leverage the input uncertainty, encoded in (&, o),
to infer the label uncertainty encoded in (a,b, 7) through
o, as shown in Fig. 1. We leverage the label uncertainty to
propose learnable label mixup, yielding consistent augmen-
tation in both input and output spaces and further reinforcing
generalization over unseen domains.

Random Mixup. We start by introducing random
mixup [66] for robust learning. The key idea is to regu-
larize the training to favor simple linear behavior in-between
examples. More specifically, mixup performs training on
convex interpolations of pairs of examples (x;, x;) and their
labels (y;,y;):

xF =X+ (1= Nx;, y"=Xyi+(1-Ny;,,

where A ~ Beta(a, ) and the mixup hyper-parameter o €
(0, +00) controls the interpolation strength.

Learnable Label Mixup. We improve mixup by cast-
ing it in a learnable framework specially tailored for single
source generalization. First, instead of mixing up pairs of ex-
amples, we mix up S and S to achieve in-between domain
interpolations. Second, we leverage the uncertainty encoded
in (u, o) to predict learnable parameters (a, b), which con-
trols the direction and strength of domain interpolations:

h* =Xh+(1-Mh", y =X y+(1-Ny, Q)

where A ~ Beta(a, b) and § denotes a label-smoothing [54]
version of y. More specifically, we perform label smoothing
by a chance of 7, such that we assign p € (0, 1) to the true
category and equally distribute i:—’l’ to the others, where ¢
counts categories. The Beta distribution (a, b) and the lottery
T are jointly inferred by (a,b, 7) = fy,. (1, o) to integrate
the uncertainty of domain augmentation.

3.3. A Unified Framework

To effectively organize domain augmentation and model
training, we propose a Bayesian meta-learning framework
to maximize a posterior of p(ST) by jointly optimizing the
backbone # and the auxiliary ¢ = {¢,, #, }. Specifically,
we meta-train the backbone 6 on the source S and meta-
test its generalization capability over p(ST), where S7 is
generated by performing data augmentation in both input
(Sec. 3.1) and output (Sec. 3.2) spaces through the auxiliary
1. Finally, we meta-update {0,1)} using gradient:

V97¢]Ep(5+)[£(9*; S+)],Where 0" = ofoév‘gﬁ(a; S) (4)

Here 6* is the meta-trained backbone on S and « is the learn-
ing rate. After training, the backbone 6 is expected to bound
the generalization uncertainty over unseen populations p(7")
in a worst-case scenario (Sec. 3.1) while ¢ can be used to
access the value of uncertainty efficiently.

Bayesian Meta-learning. The goal is to maximize
the conditional likelihood of the augmented domain S™:
logp (yT|x,h';0*). However, solving it involves the true
posterior p (h™|x; 6* 1)), which is intractable [30]. Thus,
we resort to amortized variational inference with a tractable
form of approximate posterior ¢ (h™|x; 6*, ). The approxi-
mated lower bound is as follows:

p(y*|x,h*;0)
Loy =E 0 w1 .
6.0 = Eqnt x0+ ) [10g q (ht]x; 0%, ¥) ] )

We leverage Monte-Carlo (MC) sampling to maximize
the lower bound Lg ,, by:

K
1 .
tpinge 2 [~losp (vl b3 07)] +

KL [q (h*[x; 6%, ¢) |lp (h*|x;6*,v)]

where h) ~ ¢ (h*|x;60%,¢) and K is the number of MC
samples. For KL divergence, traditional Gaussian prior
N(0,1) [24] is not compatible with our setup, since it may
constrain the uncertainty of domain augmentations. Instead,
we let g (h™|x; 0*, 1)) approximate p (h™|x; 6*, ) through
adversarial training on ¢, in Eq. 1, so that the learned ad-
versarial distribution is more flexible to approximate unseen
domains. Thanks to the Bayesian meta-learning framework,
the generalization uncertainty on unseen domains is sig-
nificantly suppressed (Sec. 4.5). More importantly, a few
examples of the target domain can quickly adapt 6 to be
domain-specific, yielding largely improved performance for
few-shot domain adaptation (Sec. 4.1).

Uncertainty Estimation. At testing time, given a novel
domain 7T, we propose a normalized domain uncertainty
% |, to estimate its uncertainty with respect
to learned 6. Considering 1 is usually much smaller than

(6)

score,

6793



0, this score can be calculated efficiently by one-pass data
forwarding through 1. In Sec. 4.1, we empirically prove
that our estimation is consistent with conventional Bayesian
methods [3], while the time consumption is significantly
reduced by an order of magnitude.

4. Experiments

To best validate the performance, we conduct a series of
experiments to compare our approach with existing methods
that can be roughly grouped in four categories: 1) Adver-
sarial training: PAR [60], Self-super [21], and PGD [38].
2) Data augmentation: Mixup [66], JiGen [4], Cutout [8],
and AutoAug [6]. 3) Domain adaptation: DIRT-T [51],
SE [12], SBADA [47], FADA [39], and CCSA [40]. 4)
Domain generalization: ERM [25], GUD [59], and M-
ADA [45]. The experimental results prove that our method
achieves superior performance on a wide scope of tasks,
including image classification [20], semantic segmenta-
tion [46], text classification [5], and speech recognition [62].
Please refer to supplementary for more details about experi-
ment setup.

4.1. Image Classification

Datasets. We validate our method on the following two
benchmark datasets for image classification. (1) Digits is
used for digit classification and consists of five sub-datasets:
MNIST [28], MNIST-M [13], SVHN [43], SYN [13], and
USPS [7]. Each sub-dataset can be viewed as a different do-
main. Each image in these datasets contains one single digit
with different styles and backgrounds. (2) CIFAR-10-C [20]
is a robustness benchmark consisting of 19 corruptions types
with five levels of severity applied to the test set of CIFAR-
10 [26]. The corruptions consist of four main categories:
noise, blur, weather, and digital. Each corruption has five-
level severities and “5” indicates the most corrupted one.

Setup. Digits: following the setup in [59], we use 10,000
samples in the training set of MNIST for training, and evalu-
ate models on the other four sub-datasets. We use a ConvNet
[27] with architecture conv-pool-conv-pool-fc-fc-softmax as
the backbone. All images are resized to 32x32, and the
channels of MNIST and USPS are duplicated to make them
as RGB images. CIFAR-10-C: we train models on CIFAR-10
and evaluate them on CIFAR-10-C. Following the setting
of [22], we evaluate the model on 15 corruptions. We train
models on AllConvNet (AllConv) [48] and Wide Residual
Network (WRN) [65] with 40 layers and width of 2.

Results. 1) Classification accuracy. Tab. 1 shows the
classification results of Digits and CIFAR-10-C. On the
experiment of Digits, GUD [59], M-ADA [45], and our
method outperform all baselines of the second block. And
our method outperforms M-ADA [45] on SYN and the av-
erage accuracy by 8.1% and 1.8%, respectively. On the
experiment of CIFAR-10-C, our method consistently outper-

forms all baselines on two different backbones, suggesting
its strong generalization on various image corruptions. 2)
Uncertainty estimation. We compare the proposed domain
uncertainty score (Sec.3.3) with a more time-consuming one
based on Bayesian models [3]. The former computes the
uncertainty through one-pass forwarding, while the latter
computes the variance of the output through repeated sam-
pling of 30 times. Fig. 2 show the results of uncertainty
estimation on Digits and CIFAR-10-C. As seen, our esti-
mation shows consistent results with Bayesian uncertainty
estimation on both Digits and CIFAR-10-C, suggesting its
high efficiency. 3) Few-shot domain adaptation. Although
our method is designed for single domain generalization, we
also show that our method can be easily applied for few-shot
domain adaptation [39] due to the meta-learning training
scheme. Following the setup in [45], the model is first pre-
trained on the source domain S and then fine-tuned on the
target domain 7. We conduct three few-shot domain adap-
tion tasks: USPS(U)—MNIST(M), MNIST(M)—SVHN(S),
and SVHN(S)—MNIST(M). Results of the three tasks are
shown in Tab. 2. Our method achieves the best performance
on the average of three tasks. The result on the hardest task
(M—S) is even competitive to that of SBADA [47] which
uses all images of the target domain for training. Full results
are provided in supplementary.

4.2. Semantic Segmentation

Datasets. SYTHIA [46] is a synthetic dataset of urban
scenes, used for semantic segmentation in the context of
driving scenarios. This dataset consists of photo-realistic
frames rendered from virtual cities and comes with precise
pixel-level semantic annotations. It is composed of the same
traffic situation but under different locations (Highway, New
York-like City, and Old European Town are selected) and dif-
ferent weather/illumination/season conditions (Dawn, Fog,
Night, Spring, and Winter are selected).

Setup. In this experiment, Highway is the source domain,
and New York-like City together with Old European Town
are unseen domains. Following the protocol in [59, 45],
we only use the images from the left front camera and 900
images are randomly sample from each source domain. We
use FCN-32s [35] with the backbone of ResNet-50 [19].

Results. We report the mean Intersection Over Union
(mloU) of SYTHIA in Tab. 3. As can be observed, our method
outperforms previous SOTA in most unseen environments.
Results demonstrate that our model can better generalize
to the changes of locations, weather, and time. We provide
visual comparison in the supplementary.

4.3. Text Classification

Datasets. Amazon Reviews [5] contains reviews of prod-
ucts belonging to four categories - books(b), DVD(d), elec-
tronics(e) and kitchen appliances(k). The difference in tex-
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Domain | Mixup [66] PAR[60] ~ Self-super [21] JiGen [4] | ERM [25] GUD [59] M-ADA [45] | Ours
SVHN [28] 285 30.5 30.0 33.8 27.8 355 42.6 433
MNIST-M [13] 54.0 58.4 58.1 57.8 52.8 60.4 67.9 67.4
SYN [13] 412 44.1 419 43.8 39.9 453 49.0 57.1
USPS [7] 76.6 76.9 77.1 772 76.5 77.3 78.5 71.4
Avg. | 501 52.5 51.8 531 | 493 54.6 595 | 613
Model | Mixup [66] Cutout [3] AutoAug [6] PGD [38] | ERM[25] GUD [59] M-ADA [45] | Ours
AllConv [4] 75.4 67.1 70.8 71.9 69.2 73.6 75.9 79.6
WRN [65] 7.7 73.2 76.1 73.8 73.1 75.3 80.2 83.4

Table 1: Image classification accuracy (%) on Digits [
training (Columns 1-4) and domain generalization (Columns 5-7). For Digits,

CIFAR-10-C, two widely employed backbones are evaluated. Our method outperforms M-ADA [

consistently in all settings.

1 (top) and CIFAR-10-

C [20] (bottom). We compare with robust
all models are trained on MNIST [28]. For
] (previous SOTA)

Domain Domain

8> = s > = e 8§ 11\)4131;_){1“[ ] 7 MSZ; k A\_/g'
2 > ‘g sE[2] All | 140 704
£2 45 ¢ 6t SBADA [47] 611 783
£ 40 s5  FADA[Y] | 7 | 470 752
£1s s 5 CCSA[40] | 10| 376 760
E == Time: 0.13 ms/batch A= Time: 0.16 ms/batch % Ours 7 58.1 8071

s ~®- Time: 3.95 mebatch | R - Time: 5.04 mefbatch | 10 59.8 81.5

USPS MNIST-M SYN SVHN 1 2 3 4 5

Unseen Datasets Level of Corruption Severity
Figure 2: Uncertainty estimation on Digits (left) and CIFAR-10-C (right).
Our prediction of domain uncertainty is consistent with Bayesian uncer-
tainty, while our method is an order of magnitude faster since we forward

Table 2: Few-shot domain adaptation
accuracy (%) on MNIST(M), USPS(U),
and SVHN(S). |T| denotes the number
of target samples (per class) used during

data only once.

tual description of the four product categories manifests as
domain shift. Following [13], we use unigrams and bigrams
as features resulting in 5000 dimensional representations.

Setup. We train the models on one source domain (books
or dvd), and evaluate them on the other three domains. Simi-
lar to [13], we use a neural network with two hidden layers
(both with 50 neurons) as the backbone.

Results. Tab. 4 shows the results of text classification
on Amazon Reviews [5]. It appears that our method outper-
form previous ones on all the three unseen domains when
the source domain is “books”. We note that there is a lit-
tle drop in performance on “electronics” when the source
domain is “dvd”. One possible reason is that “electronics”
and “dvd” may share a similar distribution. And our method
creates large distribution shift, degrading the performance
on “electronics”.

4.4. Speech Recognition

Datasets. Google Commands [62] contains 65000 utter-
ances (one second long) from thousands of people. The

model training.

goal is to classify them to 30 command words. There are
56196, 7477, and 6835 examples for training, validation, and
test. To simulate domain shift in real-world scenario, we
apply five common corruptions in both time and frequency
domains. This creates five test sets that are “harder” than
training sets, namely amplitude change (Amp.), pitch change
(Pit.), background noise (Noise), stretch (Stretch), and time
shift (Shift).

Setup. We train the models on the clean train set, and
evaluate them on the corrupted test sets. We encode each
audio into a mel-spectrogram with the size of 1x32x32 and
feed them to LeNet [29] as one-channel input.

Results. Tab. 5 shows the results of speech recognition
on Google Commands [62]. Our method outperforms the
other three methods on all the five corrupted test sets, in-
dicating its strong generalization ability in both time and
frequency domain. In detail, our method outperforms the
second best by 0.8% on “amplitude change”, 1.4% on “pitch
change”, 0.4% on “background noise”, 1.2% on “stretch”,
and 1.1% on “time shift”, respectively. We can see that the
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New York-like City Old European Town
Source Domain  Method Dawn Fog Night Spring Winter Dawn Fog Night Spring Winter Avg.
ERM [25] 27.8 27 0.9 6.8 1.7 528 314 159 33.8 13.4 18.7
Highway/Dawn GUD [59] 27.1 4.1 1.6 7.2 2.8 52.8 344 182 33.6 14.7 19.7
M-ADA [45] 29.1 44 4.8 14.1 5.0 543 360 232 37.5 149 223
Ours 293 7.6 2.8 12.7 10.2 549 37.0 253 37.2 17.7 23.5
ERM [25] 172 348 124 26.4 11.8 337 550 262 41.7 12.3 27.2
Highway/Fog GUD [59] 188 356 128 26.0 13.1 373 56.7 28.1 43.6 13.6 28.5
M-ADA [45] 21.7 320 9.7 264 133 428 56.6 318 42.8 12.9 29.0
Ours 23.0 362 135 27.6 14.2 431 574 310 44.6 13.1 304

Table 3: Semantic segmentation mloU (%) on SYNTHIA [

]. All models are trained on the single source from Highway and

evaluated on unseen environments from New York-like City and Old European Town.

books dvd Time Frequency
Method d k e b k e Method Amp. Pit. Noise Stretch Shift
ERM [25] 787 746 63.6 785 821 752 ERM]|[25] 63.8 71.6 739 72.9 70.5
GUD [59] 79.1 756 647 781 820 746 GUD[59] 64.1 72.1 748 73.1 70.9
M-ADA [45] 79.4 76.1 653 78.8 82.6 743 M-ADA[45] 645 719 754 73.8 71.4
Ours 80.2 768 67.1 801 835 750 Ours 65.3 735 758 75.0 725

Table 4: Text classification accuracy (%) on Amazon Reviews.

Models are trained on one text domain and evaluated on
unseen text domains. Our method outperforms others in all

settings except “dvd — electronics”.

Table 5: Speech recognition accuracy (%) on Google Com-
mands. Models are trained on clean set and evaluated on five
corrupted sets. Results validate our strong generalization on

corruptions in both time and frequency domains.

Digits [59] CIFAR-10-C [20]
Full Model 61.3+0.73 70.2+0.62
Random Gaussian 51.0+0.36 64.04+0.18
Determ. perturb. 59.7+0.70 67.0+0.57
Random g 60.5+0.75 69.1+0.61
Random o 60.740.65 69.54+0.60

Table 6: Ablation study of feature perturbation.

improvements on “pitch change”, “stretch”, and “time shift”
are more significant than those on “amplitude change” and

“background noise”.

4.5. Ablation Study

In this section, we perform ablation study to investigate

key components of our method. For Digits [

], we report

the average performance of all unseen domains. For CIFAR-

10-C[

], we report the average performance of all types of

corruptions at the highest level of severity.
Uncertainty assessment. We visualize feature pertur-

bation |e| = |h* — h| and the embedding of domains at
different training iterations 7" on MNIST [28]. We use t-
SNE [37] to visualize the source and augmented domains
without and with uncertainty assessment in the embedding

space. Results are shown in Fig. 3. In the model without
uncertainty (left), the feature perturbation e is sampled from
N(0,I) without learnable parameters. In the model with
uncertainty (right), we observe that most perturbations are lo-
cated in the background area which increases the variation of
ST while keeping the category unchanged. As a result, mod-
els with uncertainty can create large domain transportation
in a curriculum learning scheme, yielding safe augmentation
and improved accuracy on unseen domains. We visualize the
density of yT in Fig. 4. As seen, models with uncertainty
can significantly augment the label space.

Variational feature perturbation. We investigate differ-
ent designs of feature perturbation: /) Random Gaussian:
the feature perturbation e is sampled from A(0, I) without
learnable parameters. 2) Deterministic perturbation: we
directly add the learned g to h without sampling, yielding
h* < h + Softplus(u). 3) Random p.: the feature perturba-
tion e is sampled from A (0, o), where po = 0. 4) Random
o: e is sampled from N (u,I), where o = I. Results on
these different choices are shown in Tab. 6. As seen, Ran-
dom Gaussian yields the lowest accuracy on both datasets,
indicating the necessity of learnable perturbations. Deter-
ministic perturbation is inferior to Random p and Random
o, suggesting that sampling-based perturbation can effec-
tively increase the domain capacity. Finally, either Random
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Figure 3: Visualization of feature perturbation |e| = |h* — h| (Top) and em-
bedding of domains (Bottom) at different training iterations 7" on MNIST. Left:
Models w/o uncertainty; Right: Models w/ uncertainty. Most perturbations are
located in the background area and models w/ uncertainty can create large domain

transportation in a curriculum learning scheme.

Digits [59] CIFAR-10-C [20]

Full Model 61.3+0.73 70.2+0.62
w/0 mixup 60.6+0.76 67.41+0.64
Random mixup 60.9+1.10 69.41+0.58

Table 7: Ablation study of label mixup.

p or Random o is slightly worse than the full model. We
conclude that both learnable p and learnable o contribute to
the final performance.

Learnable label mixup. We implement two variants of
label mixup: 1) Without mixup: the model is trained without
label augmentation. 2) Random mixup: the mixup coefficient
A is sampled from a fixed distribution Beta(1, 1). Results
on the two variants are reported in Tab. 7. We notice that
Random mixup achieves better performance than without
mixup. The results support our claim that label augmentation
can further improve the model performance. The learnable
mixup (full model) achieves the best results, suggesting that
the proposed learning label mixup can create informative
domain interpolations for robust learning.

Training strategy. At last, we compare different train-
ing strategies. 1) Without adversarial training: models are
learned without adversarial training (Eq. 1). 2) Without meta-
learning: the source S and augmentations S™ are trained
together without the meta-learning scheme. 3) Without mini-
mizing ¢p: ¢, is not optimized in Eq. 6. Results are reported
in Tab. 8. The adversarial training contributes most to the
improvements: 9.5% on Digits and 10.2% on CIFAR-10-C.
Meta-learning consistently improve the accuracy and reduce
the deviation on both datasets. We notice that the accuracy
is slightly dropped without minimization of ¢,,, possibly due

m with uncertainty
B without uncertainty

"0.90 0.92 0.94 0.96 0.98 1.00

Figure 4: Visualization of label mixup
y+ on MNIST. Models w/ uncertainty
can encourage more smoothing labels
and significantly increase the capacity of
label space.

Digits [59] CIFAR-10-C [20]

Full Model 61.3+0.73 70.2+0.62
w/o adv. training 51.84+0.71 60.04+0.55
w/o meta-learning ~ 60.9+1.24 68.7£0.81
w/o minimizing ¢, 60.6+0.91 69.64+0.75

Table 8: Ablation study of training strategy.

to the excessive accumulation of perturbations.

5. Conclusion

In this work, we introduced uncertainty-guided model
generalization to unseen domains to tackle the problem of
single source generalization. Our method explicitly model
the uncertainty of domain augmentations in both input and
label spaces. In input space, the proposed uncertainty-guided
feature perturbation resolves the limitation of raw data aug-
mentation, yielding a domain-knowledge-free solution for
various modalities. In label space, the proposed uncertainty-
guided label mixup further increases the domain capacity.
Finally, the proposed Bayesian meta-learning framework
can maximize the posterior distribution of domain augmen-
tations, such that the learned model can generalize well on
unseen domains. The experimental results prove that our
method achieves superior performance on a wide scope of
tasks, including image classification, semantic segmentation,
text classification, and speech recognition.
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