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Abstract

In this paper, we present ViP-DeepLab, a unified model

attempting to tackle the long-standing and challenging in-

verse projection problem in vision, which we model as

restoring the point clouds from perspective image se-

quences while providing each point with instance-level se-

mantic interpretations. Solving this problem requires the vi-

sion models to predict the spatial location, semantic class,

and temporally consistent instance label for each 3D point.

ViP-DeepLab approaches it by jointly performing monocu-

lar depth estimation and video panoptic segmentation. We

name this joint task as Depth-aware Video Panoptic Seg-

mentation, and propose a new evaluation metric along with

two derived datasets for it, which will be made available

to the public. On the individual sub-tasks, ViP-DeepLab

also achieves state-of-the-art results, outperforming previ-

ous methods by 5.1% VPQ on Cityscapes-VPS, ranking 1st

on the KITTI monocular depth estimation benchmark, and

1st on KITTI MOTS pedestrian. The datasets and the eval-

uation codes are made publicly available1.

1. Introduction

The inverse projection problem, one of the most funda-

mental problems in vision, refers to the ambiguous mapping

from the retinal images to the sources of retinal stimula-

tion. Such a mapping requires retrieving all the visual infor-

mation about the 3D environment using the limited signals

contained in the 2D images [60, 62]. Humans are able to

easily establish this mapping by identifying objects, deter-

mining their sizes, and reconstructing the 3D scene layout,

etc. To endow machines with similar abilities to visually

perceive the 3D world, we aim to develop a model to tackle

the inverse projection problem.

As a step towards solving the inverse projection, the

problem is simplified as restoring the 3D point clouds with

semantic understandings from the perspective image se-

*Work done while an intern at Google.
1https://github.com/joe-siyuan-qiao/ViP-DeepLab
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Figure 1: Projecting 3D points to the image plane results in

2D images. We study the inverse projection problem: how

to restore the 3D points from 2D image sequences while

providing temporally consistent instance-level semantic in-

terpretations for the 3D points.

quences, which calls for vision models to predict the spatial

location, semantic class, and temporally consistent instance

label for each 3D point. Fig. 1 shows an example of the in-

verse projection problem we study in this paper. This sim-

plified problem can be formulated as Depth-aware Video

Panoptic Segmentation (DVPS) that contains two sub-tasks:

(i) monocular depth estimation [68], which is used to esti-

mate the spatial position of each 3D point that is projected to

the image plane, and (ii) video panoptic segmentation [42],

which associates the 3D points with temporally consistent

instance-level semantic predictions.

For the new task DVPS, we present two derived datasets

accompanied by a new evaluation metric named Depth-

aware Video Panoptic Quality (DVPQ). DVPS datasets are

hard to collect, as they need special depth sensors and a

huge amount of labeling efforts. Existing datasets usually

lack some annotations or are not in the format for DVPS.

Our solution is to augment and convert existing datasets

for DVPS, producing two new datasets, Cityscapes-DVPS

and SemKITTI-DVPS. Cityscapes-DVPS is derived from

Cityscapes-VPS [42] by adding depth annotations from

Cityscapes dataset [18], while SemKITTI-DVPS is derived

from SemanticKITTI [6] by projecting its annotated 3D

point clouds to the image plane. Additionally, the proposed

metric DVPQ includes the metrics for depth estimation and
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video panoptic segmentation, requiring a vision model to

simultaneously tackle the two sub-tasks. To this end, we

present ViP-DeepLab, a unified model that jointly performs

video panoptic segmentation and monocular depth estima-

tion for each pixel on the image plane. In the following, we

introduce how ViP-DeepLab tackles the two sub-tasks.

The first sub-task of DVPS is video panoptic segmen-

tation [42]. Panoptic segmentation [43] unifies semantic

segmentation [36] and instance segmentation [34] by as-

signing every pixel a semantic label and an instance ID.

It has been recently extended to the video domain, result-

ing in video panoptic segmentation [42], which further de-

mands each instance to have the same instance ID through-

out the video sequence. This poses additional challenges

to panoptic segmentation as the model is now expected to

be able to track objects in addiction to detecting and seg-

menting them. Current approach VPSNet [42] adds a track-

ing head to learn the correspondence between the instances

from different frames based on their regional feature simi-

larity. By contrast, our ViP-DeepLab takes a different ap-

proach to tracking objects. Specifically, motivated by our

finding that video panoptic segmentation can be modeled

as concatenated image panoptic segmentation, we extend

Panoptic-DeepLab [17] to perform center regression for two

consecutive frames with respect to only the object centers

that appear in the first frame. During inference, this off-

set prediction allows ViP-DeepLab to group all the pixels

in the two frames to the same object that appears in the

first frame. New instances emerge if they are not grouped

to the previously detected instances. This inference pro-

cess continues for every two consecutive frames (with one

overlapping frame) in a video sequence, stitching panop-

tic predictions together to form predictions with temporally

consistent instance IDs. Based on this simple design, our

ViP-DeepLab outperforms VPSNet [42] by a large margin

of 5.1% VPQ, setting a new record on the Cityscapes-VPS

dataset [42]. Additionally, Multi-Object Tracking and Seg-

mentation (MOTS) [77] is a similar task to video panop-

tic segmentation, but only segments and tracks two classes:

pedestrians and cars. We therefore also apply our ViP-

DeepLab to MOTS. As a result, ViP-DeepLab outperforms

the current state-of-the-art PointTrack [92] by 7.2% and

2.5% sMOTSA on pedestrians and cars, respectively, and

ranks 1st on the leaderboard for KITTI MOTS pedestrian.

The second sub-task of DVPS is monocular depth es-

timation, which is challenging for both computers [68] and

humans [38]. The state-of-the-art methods are mostly based

on deep networks trained in a fully-supervised way [20, 21,

22, 26]. Following the same direction, our ViP-DeepLab

appends another depth prediction head on top of Panoptic-

DeepLab [17]. Without using any additional depth training

data, such a simple approach outperforms all the published

and unpublished works on the KITTI benchmark [30].

Specifically, it outperforms DORN [26] by 0.97 SILog, and

even outperforms MPSD that uses extra planet-scale depth

data [2], breaking the long-standing record on the challeng-

ing KITTI depth estimation [74]. Notably, the differences

between top-performing methods are all around 0.1 SILog,

while our method significantly outperforms them.

To summarize, our contributions are listed as follows.

• We propose a new task Depth-aware Video Panop-

tic Segmentation (DVPS), as a step towards solving

the inverse projection problem by formulating it as

joint video panoptic segmentation [42] and monocular

depth estimation [68].

• We present two DVPS datasets along with an eval-

uation metric Depth-aware Video Panoptic Quality

(DVPQ). To facilitate future research, the datasets and

the evaluation codes are made publicly available.

• We develop ViP-DeepLab, a unified model for DVPS.

On the individual sub-tasks, ViP-DeepLab ranks 1st on

Cityscapes-VPS [42], KITTI-MOTS pedestrian [77],

and KITTI monocular depth estimation [30].

2. Related Work

Panoptic Segmentation Recent methods for image panop-

tic segmentation can be grouped into two types: top-down

(proposal-based) methods and bottom-up (box-free) meth-

ods. Top-down methods employ a two-stage approach

which generates object proposals followed by outputting

panoptic predictions based on regional computations [16,

45,50,51,52,65,71,85,88]. For example, Panoptic FPN [43]

incorporates a semantic segmentation head into Mask R-

CNN [35]. Porzi et al. [63] proposes a novel segmenta-

tion head to integrate FPN [53] features by a lightweight

DeepLab-like module [13]. Bottom-up panoptic segmen-

tation methods group pixels to form instances on top of

semantic segmentation prediction [79, 80, 95]. For exam-

ple, SSAP [28] uses pixel-pair affinity pyramid [54] and a

cascaded graph partition module [41] to generate instances

from coarse to fine. BBFNet [9] uses Hough-voting [5, 48]

and Watershed transform [4, 76] to generate instance seg-

mentation predictions. Panoptic-DeepLab [17] employs

class-agnostic instance center regression [40, 59, 73] on top

of semantic segmentation outputs from DeepLab [12, 14].

Object Tracking One of the major tasks in video panop-

tic segmentation is object tracking. Many trackers use

tracking-by-detection, which divides the task into two sub-

tasks where an object detector (e.g. [25,66]) finds all objects

and then an algorithm associates them [8, 23, 46, 64, 69, 70,

72, 84, 91, 105]. Another design is transforming object de-

tectors to object trackers which detect and track objects at

the same time [7,24,61,82,101,102]. For example, Center-

Track [103] extends CenterNet [104] to predict offsets from

the object center to its center in the previous frame. STEm-

Seg [3] proposes to group all instance pixels in a video clip
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Image t

Semantic segmentation

Center prediction

Center regression

Semantic segmentation for image t and t+1

Center prediction for image t only

Center regression with the centers in image t 
as the target for both image t and image t+1

Image Panoptic Segmentation Video Panoptic Segmentation

Image t

Image t+1

Concat

Figure 2: Comparing image panoptic segmentation and video panoptic segmentation. Our method is based on the finding that

video panoptic segmentation can be modeled as concatenated image panoptic segmentation. Center regression is an offset

map from each pixel to its object center. Here we draw the predicted centers instead of the offsets for clearer visualization.

by learning a spatio-temporal embedding. By contrast, our

ViP-DeepLab implicitly performs object tracking by clus-

tering all instance pixels in two consecutive video frames.

Additionally, our method simply uses center regression and

achieves better results on MOTS [77].

Monocular Depth Estimation Monocular depth estima-

tion predicts depth from a single image. It can be learned

in a supervised way [10, 21, 26, 27, 47, 49, 68, 90, 96], by re-

constructing images in the stereo setting [29,31,32,44,87],

from videos [57, 78, 97], in relative order [15], or by joint

learning with other vision tasks [75, 81, 89]. ViP-DeepLab

models monocular depth estimation as a dense regression

problem, and we train it in a fully-supervised manner.

3. ViP-DeepLab

In this section, we present ViP-DeepLab, which extends

Panoptic-DeepLab [17] to jointly perform video panoptic

segmentation [42] and monocular depth estimation [68].

3.1. Video Panoptic Segmentation

Rethinking Image and Video Panoptic Segmentation In

the task of video panoptic segmentation, each instance is

represented by a tube on the image plane and the time axis

when the frames are stacked up. Given a clip It:t+k with

time window k, true positive (TP) is defined by TP =
{(u, û) ∈ U × Û : IoU(u, û) > 0.5} where U and Û are

the set of the ground-truth and predicted tubes, respectively.

False positives (FP) and false negatives (FN) are defined

accordingly. After accumulating the TPc, FPc, and FNc on

all the clips with window size k and class c, the evaluation

metric Video Panoptic Quality (VPQ) [42] is defined by

VPQk =
1

Nclasses

∑

c

∑

(u,û)∈TPc

IoU(u, û)

|TPc|+
1
2 |FPc|+

1
2 |FNc|

(1)

PQ [43] is thus equal to VPQ1 (i.e., k = 1).

Our method is based on the connection between PQ and

VPQ. For an image sequence It (t = 1, ..., T ), let Pt denote

the panoptic prediction and Qt be the ground-truth panoptic

segmentation. As VPQk accumulates the PQ-related statis-

tics from Pt and Qt within a window of size k, we have

VPQ
k

([

Pt, Qt

]T

t=1

)

= PQ
([

‖t+k−1

i=t Pi, ‖
t+k−1

i=t Qi

]T−k+1

t=1

)

(2)

where ‖t+k−1
i=t Pi denotes the horizontal concatenation of Pi

from t to t + k − 1, and
[

Pt, Qt

]T

t=1
denotes a list of pairs

of (Pt, Qt) from 1 to T as the function input.

Equ. (2) reveals an interesting finding that video panoptic

segmentation could be formulated as image panoptic seg-

mentation with the images concatenated. Such a finding

motivates us to extend image panoptic segmentation models

to video panoptic segmentation with extra modifications.

From Image to Video Panoptic Segmentation Panoptic-

DeepLab [17] approaches the problem of image panoptic

segmentation by solving three sub-tasks: (1) semantic pre-

dictions for both ‘thing’ and ‘stuff’ classes, (2) center pre-

diction for each instance of ‘thing’ classes, and (3) center

regression for each pixel of objects. Fig. 2 shows an exam-

ple of the tasks on the left. During inference, object cen-

ters with high confidence scores are kept, and each ‘thing’

pixel is associated with the closest object center to form ob-

ject instances. Combining this ‘thing’ prediction and the

‘stuff’ prediction from semantic segmentation, Panoptic-

DeepLab [17] generates the final panoptic prediction.

Our method extends Panoptic-DeepLab [17] to perform

video panoptic segmentation. As the right part of Fig. 2

shows, it also breaks down the task of video panoptic seg-

mentation into three sub-tasks: semantic segmentation, cen-

ter prediction, and center regression. During inference, our

method takes image t and t + 1 concatenated horizontally
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Figure 3: ViP-DeepLab extends Panoptic-DeepLab [17] (the gray part) by adding a depth prediction head to perform monoc-

ular depth estimation and a next-frame instance branch which regresses to the object centers in frame t for frame t+ 1.

 Pt

 Pt+1

 Rt

Propagate IDs of Rt to the best 
matches in Pt+1 based on mask IoU.

Figure 4: Visualization of stitching video panoptic predic-

tions. It propagates IDs based on mask IoU between re-

gion pairs. ViP-DeepLab is capable of tracking objects with

large movements, e.g., the cyclist in the image. Panoptic

prediction of Rt is of high quality, which is why a simple

IoU-based stitching method works well in practice.

as input, and only predict the centers in image t. The cen-

ter regression for both t and t+ 1 will regress to the object

centers in image t. By doing so, our method detects the ob-

jects in the first frame, and finds all the pixels belonging to

them in the first and the second frames. Objects that appear

only in the second frame are ignored here and will emerge

again when the model works on the next image pair (i.e.,

(t+1, t+2)). Our method models video panoptic segmen-

tation as concatenated image panoptic segmentation, highly

consistent with the definition of the metric VPQ.

Fig. 3 shows the architecture of our method. In order

to perform the inference described above, we take image t
and t + 1 as the input during training, and use the features

of image t to predict semantic segmentation, object centers

and center offsets for image t. In addition to that, we add

a next-frame instance branch which predicts the center off-

sets for the pixels in image t+ 1 with respect to the centers

in image t. The backbone features of image t and t+ 1 are

concatenated along the feature axis before the next-frame

instance branch. As their backbone features are separated

before concatenation, the next-frame instance branch needs

a large receptive field to perform long-range center regres-

sion. To address this, we use four ASPP modules in the

branch, the output of which are densely-connected [39, 94]

to dramatically increase the receptive field. We name this

densely-connected module as Cascade-ASPP. Its architec-

ture details are shown in Appendix. Finally, the decoder in

the next-frame instance branch uses the backbone features

of image t+ 1 while the other branches use those of image

t, as indicated by the colored arrows in the figure.

Stitching Video Panoptic Predictions Our method out-

puts panoptic predictions with temporally consistent IDs for

two consecutive frames. To generate predictions for the en-

tire sequence, we need to stitch the panoptic predictions.

Fig 4 shows an example of our stitching method. For each

image pair t and t + 1, we split the panoptic prediction of
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the concatenated input in the middle, and use Pt to denote

the left prediction, and Rt to denote the right one. By do-

ing so, Pt becomes the panoptic prediction of image t, and

Rt becomes the panoptic prediction of image t+ 1 with in-

stance IDs that are consistent with those of Pt. The goal of

stitching is to propagate IDs from Rt to Pt+1 so that each

object in Pt and Pt+1 will have the same ID.

The ID propagation is based on mask IoU between re-

gion pairs. For each region pair in Rt and Pt+1, if they

have the same class, and both find each other to have the

largest mask IoU, then we propagate the ID between them.

Objects that do not receive IDs will become new instances.

A formal algorithm can be found in Appendix.

3.2. Monocular Depth Estimation

We model monocular depth estimation as a dense regres-

sion problem [22], where each pixel will have an estimated

depth. As shown in Fig. 3, we add a depth prediction head

on top of the decoded features of the semantic branch (i.e.,

Semantic Decoder), which upsamples the features by 2x

and generates logits fd for depth regression:

Depth = MaxDepth × Sigmoid(fd) (3)

MaxDepth controls the range of the predicted depth, which

is set to 88 for the range (about 0 to 80m) of KITTI [74].

Many metrics have been proposed to evaluate the quality

of monocular depth prediction [30]. Among them, scale in-

variant logarithmic error [22] and relative squared error [30]

are popular ones, which could also be directly optimized as

training loss functions. We therefore combine them to train

our depth prediction. Specifically, let d and d̂ denote the

ground-truth and the predicted depth, respectively. Our loss

function for depth estimation is then defined by

Ldepth(d, d̂) =
1

n

∑

i

(

log di − log d̂i

)2

−
1

n2

(

∑

i

log di

− log d̂i

)2

+
( 1

n

∑

i

(di − d̂i
di

)2
)0.5

(4)

3.3. Depth­aware Video Panoptic Segmentation

Motivated by solving the inverse projection problem, we

introduce a challenging task, Depth-aware Video Panoptic

Segmentation (DVPS), unifying the problems of monocular

depth estimation and video panoptic segmentation. In the

task of DVPS, images are densely annotated with a tuple

(c, id, d) for each labeled pixel, where c, id and d denote

its semantic class, instance ID and depth. The model is ex-

pected to also generate a tuple (ĉ, îd, d̂) for each pixel.

To evaluate methods for DVPS, we propose a metric

called Depth-aware Video Panoptic Quality (DVPQ), which

extends VPQ by additionally considering the depth predic-

tion with the inlier metric. Specifically, let P and Q be the

prediction and ground-truth, respectively. We use P c
i , P id

i

and P d
i to denote the predictions of example i on the seman-

tic class, instance ID, and depth. The notations also apply

to Q. Let k be the window size (as in Equ. (2)) and λ be the

depth threshold. Then, DVPQk
λ(P,Q) is defined by

PQ
([

‖t+k−1
i=t

(

P̂ c
i , P

id
i

)

, ‖t+k−1
i=t

(

Qc
i , Q

id
i

)

]T−k+1

t=1

)

(5)

where P̂ c
i = P c

i for pixels that have absolute relative depth

errors under λ (i.e., |P d
i −Qd

i | ≤ λQd
i ), and will be assigned

a void label otherwise. In other words, P̂ c
i filters out pixels

that have large absolute relative depth errors. As a result,

the metrics VPQ [42] (also image PQ [43]) and depth inlier

metric (i.e., max(P d
i /Q

d
i , Q

d
i /P

d
i ) = δ < threshold) [22]

can be approximately viewed as special cases for DVPQ.

Following [42], we evaluate DVPQk
λ for four different

values of k (depending on the dataset) and three values of

λ = {0.1, 0.25, 0.5}. Those values of λ approximately

correspond to the depth inlier metric δ < 1.1, δ < 1.25,

and δ < 1.5, respectively. They are harder than the thresh-

olds 1.25, 1.252 and 1.253 that are commonly used in depth

evaluation. We choose harder thresholds as many methods

are able to get > 99% on the previous metrics [26, 47] .

Larger k and smaller λ correspond to a higher accuracy re-

quirement for a long-term consistency of joint video panop-

tic segmentation and depth estimation. The final number

DVPQ is obtained by averaging over all values of k and λ.

4. Datasets

To evaluate on the new task, Depth-aware Video Panop-

tic Segmentation, we create two new datasets, Cityscapes-

DVPS and SemKITTI-DVPS. Fig. 5 shows two examples,

one for each dataset. The details are elaborated below.

4.1. Cityscapes­DVPS

The original Cityscapes [18] only contains image-level

panoptic annotations. Recently, Kim et al. introduce a

video panoptic segmentation dataset Cityscapes-VPS [42]

by further annotating 6 frames out of each 30-frame video

sequence (with a gap of 5 frames between each annota-

tion), resulting in totally 3,000 annotated frames where the

training, validation, and test sets have 2,400, 300, and 300

frames, respectively. In the dataset, there are 19 semantic

classes, including 8 ‘thing’ and 11 ‘stuff’ classes.

Even though Cityscapes-VPS contains video panoptic

annotations, the depth annotations are missing. We find that

the depth annotations could be converted from the disparity

maps via stereo images, provided by the original Cityscapes

dataset [18]. However, the quality of the pre-computed dis-

parity maps is not satisfactory. To improve it, we select sev-

eral modern disparity estimation methods [33, 37, 99, 100]
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Figure 5: Dataset examples of Cityscapes-DVPS (top) and SemKITTI-DVPS (bottom). From left to right: input image, video

panoptic segmentation annotation, and depth map. Regions are black if they are not covered by the velodyne data or they are

removed by the data preprocessing step including disparity consistency check and non-foreground suppression.

Figure 6: Top: Removing occluded but falsely visible points

highlighted in red by disparity consistency check. Bottom:

Removing the invading background points in pink for the

thin object colored yellow by non-foreground suppression.

and follow the process similar to [18]. Nevertheless, to dis-

courage reproducing the depth generation process (so that

one may game the benchmark), we do not disclose the de-

tails (e.g., the exact employed disparity method). The depth

annotations are made publicly available.

4.2. SemKITTI­DVPS

SemanticKITTI dataset [6] is based on the odometry

dataset of the KITTI Vision benchmark [30]. The dataset

splits 22 sequences in to 11 training sequences and 11 test

sequences. The training sequence 08 is used for validation.

This dataset includes 8 ‘thing’ and 11 ‘stuff’ classes.

SemanticKITTI dataset provides perspective images and

panoptic-labeled 3D point clouds (i.e., semantic class and

instance ID are annotated). To convert it for our use, we

project the 3D point clouds into the image plane. How-

ever, there are two challenges when converting the dataset,

as presented in Fig. 6. The first problem is that some point

clouds are not visible to the camera but are recorded and

labeled. For example, the first row of Fig. 6 shows that

some regions behind the car become visible in the converted

depth map due to the alignment of different sensors. To

address this issue, we follow Uhrig et al. [74] and use the

same disparity methods for Cityscapes-DVPS to remove the

sampled points that exhibit large relative errors, which are

highlighted in red in the right figure. We refer to this pro-

cessing as disparity consistency check. The second problem

is that the regions of thin objects (e.g., poles) are usually in-

vaded by the far-away background point cloud after projec-

tion. To alleviate this problem, for a small image patch, the

projected background points are removed if there exists at

least one foreground point that is closer to the camera. We

refer to this processing as non-foreground suppression. In

practice, we use a small 7× 7 image patch. Doing so leaves

clear boundaries for thin objects so they can be identified

without confusion as shown in the second row of Fig. 6.

5. Experiments

In this section, we first present our major results on the

new task Depth-aware Video Panoptic Segmentation. Then,

we show our method applied to three sub-tasks, including

video panoptic segmentation [42], monocular depth estima-

tion [30], and multi-object tracking and segmentation [77].

5.1. Depth­aware Video Panoptic Segmentation

Tab. 1 shows our results on Depth-aware Video Panop-

tic Segmentation. We evaluate our method on the datasets

Cityscapes-DVPS and SemKITTI-DVPS so that the re-

search community can compare their methods with it.

The evaluation is based on our proposed DVPQk
λ metric

(Equ. (5)), where λ is the threshold of relative depth er-

ror, and k denotes the length of the short video clip used in

evaluation. The training time is about 1 day using 32 TPUs.

Following [42], we set k = {1, 2, 3, 4} out of the total 6

frames per video sequence for Cityscapes-DVPS. By con-

trast, we set k = {1, 5, 10, 20} for SemKITTI-DVPS which

contains much longer video sequences, and we aim to eval-

uate a longer temporal consistency. We study the drops of

DVPQk
λ as the number of frames k increases, where smaller

performance drops indicate higher temporal consistency.

Interestingly, as the number of frames k increases, the per-

formance drops on SemKITTI-DVPS are smaller than that

on Cityscapes-DVPS. For example, DVPQ1
0.5 - DVPQ2

0.5
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DVPQk

λ on Cityscapes-DVPS k = 1 k = 2 k = 3 k = 4 Average

λ = 0.50 68.7 | 61.4 | 74.0 61.7 | 48.5 | 71.3 58.4 | 42.1 | 70.2 56.3 | 38.0 | 69.5 61.3 | 47.5 | 71.2
λ = 0.25 66.5 | 60.4 | 71.0 59.5 | 47.6 | 68.2 56.2 | 41.3 | 67.1 54.2 | 37.3 | 66.5 59.1 | 46.7 | 68.2
λ = 0.10 50.5 | 45.8 | 53.9 45.6 | 36.9 | 51.9 42.6 | 31.7 | 50.6 40.8 | 28.4 | 49.8 44.9 | 35.7 | 51.5

Average 61.9 | 55.9 | 66.3 55.6 | 44.3 | 63.8 52.4 | 38.4 | 62.6 50.4 | 34.6 | 61.9 55.1 | 43.3 | 63.6

DVPQk

λ on SemKITTI-DVPS k = 1 k = 5 k = 10 k = 20 Average

λ = 0.50 54.7 | 46.4 | 60.6 51.5 | 41.0 | 59.1 50.1 | 38.5 | 58.5 49.2 | 36.9 | 58.2 51.4 | 40.7 | 59.1
λ = 0.25 52.0 | 44.8 | 57.3 48.8 | 39.4 | 55.7 47.4 | 37.0 | 55.1 46.6 | 35.6 | 54.7 48.7 | 39.2 | 55.7
λ = 0.10 40.0 | 34.7 | 43.8 37.1 | 30.3 | 42.0 35.8 | 28.3 | 41.2 34.5 | 26.5 | 40.4 36.8 | 30.0 | 41.9

Average 48.9 | 42.0 | 53.9 45.8 | 36.9 | 52.3 44.4 | 34.6 | 51.6 43.4 | 33.0 | 51.1 45.6 | 36.6 | 52.2

Table 1: ViP-DeepLab performance for the task of Depth-aware Video Panoptic Segmentation (DVPS) evaluated on

Cityscapes-DVPS and SemKITTI-DVPS. Each cell shows DVPQk
λ | DVPQk

λ-Thing | DVPQk
λ-Stuff where λ is the threshold

of relative depth error, and k is the number of frames. Smaller λ and larger k correspond to a higher accuracy requirement.

on Cityscapes-DVPS is 7%, while DVPQ1
0.5 - DVPQ5

0.5 on

SemKITTI-DVPS is 3.2%. We speculate that this is be-

cause the annotation frame rate is higher on SemKITTI-

DVPS (cf . only every 5th frame is annotated on Cityscapes-

DVPS), making our ViP-DeepLab’s offsets prediction eas-

ier for the following frames, despite the evaluation clip

length k is larger. At last, we use the mean of DVPSk
λ with

different λ and k as the final performance score. Fig. 7

visualizes the predictions of our method on the validation

set of Cityscapes-DVPS (top) and SemKITTI-DVPS (bot-

tom), where the second column shows Pt and Rt defined

in prediction stitching. Although the training samples of

SemKITTI-DVPS are sparse points, our method is able

to predict smooth and sharp predictions, as the points are

evenly distributed in the regions covered by the velodyne

data. Please see the supplementary material for more vi-

sualization results. After experimenting on DVPS, we com-

pare ViP-DeepLab with the previous state-of-the-arts on the

sub-tasks to showcase its strong performance.

5.2. Video Panoptic Segmentation

The first sub-task of DVPS is Video Panoptic Segmen-

tation (VPS). We conduct experiments on Cityscapes-VPS

following the setting of [42] with the depth head removed.

Tab. 2 shows our major results on their validation set (top)

and the test set where the annotations are missing (bottom).

As the table shows, our method outperforms VPSNet [42]

by 5.6% VPQ on the validation set and 5.1% VPQ on the

test set. STQ [83] comparisons are shown in Appendix.

Tab. 3 shows the ablation study on Cityscapes-VPS. The

baseline is our method with backbone WR-41 [11, 86, 98]

pre-trained on ImageNet [67]. Next, ‘MV’ initializes

the model with a checkpoint pretrained on Mapillary Vis-

tas [58]. ‘CS’ uses a model further pretrained on Cityscapes

videos with pseudo labels [11] on the train sequence. Both

‘MV’ and ‘CS’ only involve image panoptic segmenta-

tion pretraining. Hence, they mainly improves image PQ

Val set VPSNet [42] ViP-DeepLab

k = 1 65.0 | 59.0 | 69.4 70.4 | 63.2 | 75.7
k = 2 57.6 | 45.1 | 66.7 63.6 | 50.7 | 73.0
k = 3 54.4 | 39.2 | 65.6 60.1 | 44.0 | 71.9
k = 4 52.8 | 35.8 | 65.3 58.1 | 40.2 | 71.2

VPQ 57.5 | 44.8 | 66.7 63.1 | 49.5 | 73.0

Test set VPSNet [42] ViP-DeepLab

k = 1 64.2 | 59.0 | 67.7 68.9 | 61.6 | 73.5
k = 2 57.9 | 46.5 | 65.1 62.9 | 51.0 | 70.5
k = 3 54.8 | 41.1 | 63.4 59.9 | 46.0 | 68.8
k = 4 52.6 | 36.5 | 62.9 58.2 | 42.1 | 68.4

VPQ 57.4 | 45.8 | 64.8 62.5 | 50.2 | 70.3

Table 2: VPQ on Cityscapes-VPS. Each cell shows

VPQk | VPQk-Thing | VPQk-Stuff. VPQ is averaged over

k = {1, 2, 3, 4}. k = {0, 5, 10, 15} in [42] correspond to

k = {1, 2, 3, 4} in this paper as we use different notations.

Method k = 1 k = 2 k = 3 k = 4 VPQ

Baseline 65.7 58.9 55.8 53.6 58.5
+ MV 66.7 59.3 56.1 54.1 59.0
+ CS 67.9 60.4 56.8 54.7 59.9
+ DenseContext 68.2 61.3 58.2 56.1 60.9
+ AutoAug [19] 68.6 61.6 58.6 56.3 61.3
+ RFP [65] 69.2 62.3 59.2 57.0 61.9
+ TTA 70.3 63.2 59.9 57.5 62.7
+ SSL 70.4 63.6 60.1 58.1 63.1

Table 3: Ablation Study on Cityscapes-VPS.

(i.e. k = 1) but increases the gaps between VPQk (e.g.,

VPQ1 - VPQ2), showing the temporal consistency benefits

less from the pretrained models. Then, ‘DenseContext’ in-

creases the number of the context modules (from 1 to 4) for

the next-frame instance branch, which narrows down the

gaps between VPQk. ‘AutoAug’ uses AutoAugment [19]

to augment the data. ‘RFP’ adds Recursive Feature Pyramid

(RFP) [65] to enhance the backbone. ‘TTA’ stands for test-

time augmentation, which includes multi-scale inference at
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Figure 7: Prediction visualizations on Cityscapes-DVPS (top) and SemKITTI-DVPS (bottom). From left to right: input

image, temporally consistent panoptic segmentation prediction, monocular depth prediction, and point cloud visualization.

Method Rank SILog sqRel absRel iRMSE

DORN [26] 10 11.77 2.23 8.78 12.98
BTS [47] 9 11.67 2.21 9.04 12.23
BANet [1] 8 11.61 2.29 9.38 12.23
MPSD [2] 2 11.12 2.07 8.99 11.56

ViP-DeepLab 1 10.80 2.19 8.94 11.77

Table 4: KITTI Depth Prediction Leaderboard. Ranking

includes published and unpublished methods.

scales 0.5:1.75:0.25 and horizontal flipping. In ‘SSL’, we

follow Naive-Student [11] to generate temporally consistent

pseudo labels on the unlabeled train sequence in Cityscapes

videos [18], which adds more training samples for tempo-

ral consistency, as demonstrated by +0.1% on VPQ1 and

+0.6% on VPQ4.

5.3. Monocular Depth Estimation

The second sub-task of DVPS is monocular depth esti-

mation. We test our method on the KITTI depth bench-

mark [74]. Tab. 4 shows the results on the leaderboard. Our

model is pretrained on Mapillary Vistas [58] and Cityscapes

videos with pseudo labels [11] (i.e., the same pretrained

checkpoint we used in the previous experiments). Then the

model is fine-tuned with the training and validation set pro-

vided by KITTI depth benchmark [74]. However, the model

is slightly different from the previous ones in the follow-

ing aspects. It does not use RFP [65]. In TTA, it only has

horizontal flipping. We use ±5 degrees of random rotation

during training, which improves SILog by 0.27. The pre-

vious models use a decoder with stride 8 and 4. Here, we

find it useful to further exploit decoder stride 2, which im-

proves SILog by 0.17. After the above changes, our method

achieves the best results on KITTI depth benchmark.

5.4. Multi­Object Tracking and Segmentation

Finally, we evaluate our method on the KITTI MOTS

benchmark [77]. Tab. 5 shows the leaderboard results. Dif-

ferent from the previous experiments, this benchmark only

Pedestrians Cars

Method Rank sMOTSA MOTSA Rank sMOTSA MOTSA

TrackR-CNN [77] 20 47.3 66.1 19 67.0 79.6

MOTSFusion [55] 13 58.7 72.9 12 75.0 84.1

PointTrack [92] 11 61.5 76.5 5 78.5 90.9

ReMOTS [93] 6 66.0 81.3 9 75.9 86.7

ViP-DeepLab 67.7 83.4 80.6 90.3

ViP-DeepLab + KF 1 68.7 84.5 3 81.0 90.7

Table 5: KITTI MOTS Leaderboard. Ranking includes pub-

lished and unpublished methods.

tracks pedestrians and cars. Adopting the same strategy

as we used for Cityscapes-VPS, ViP-DeepLab outperforms

all the published methods and achieves 67.7% and 80.6%

sMOTSA for pedestrians and cars, respectively. To further

improve our results, we use Kalman filter (KF) [82] to re-

localize missing objects that are occluded or detection fail-

ures. This mechanism improves the sMOTSA by 1.0% and

0.4% for pedestrians and cars, respectively.

6. Conclusion

In this paper, we propose a new challenging task

Depth-aware Video Panoptic Segmentation, which com-

bines monocular depth estimation and video panoptic seg-

mentation, as a step towards solving the inverse projection

problem in vision. For this task, we propose Depth-aware

Video Panoptic Quality as the evaluation metric along with

two derived datasets. We present ViP-DeepLab as a strong

baseline for this task. Additionally, our ViP-DeepLab also

achieves state-of-the-art performances on several sub-tasks,

including monocular depth estimation, video panoptic seg-

mentation, and multi-object tracking and segmentation.
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