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Abstract

Caricature is an artistic representation that deliberately

exaggerates the distinctive features of a human face to con-

vey humor or sarcasm. However, reconstructing a 3D cari-

cature from a 2D caricature image remains a challenging

task, mostly due to the lack of data. We propose to fill

this gap by introducing 3DCaricShop, the first large-scale

3D caricature dataset that contains 2000 high-quality di-

versified 3D caricatures manually crafted by professional

artists. 3DCaricShop also provides rich annotations in-

cluding a paired 2D caricature image, camera parame-

ters and 3D facial landmarks. To demonstrate the ad-

vantage of 3DCaricShop, we present a novel baseline ap-

proach for single-view 3D caricature reconstruction. To

ensure a faithful reconstruction with plausible face defor-

mations, we propose to connect the good ends of the detail-

rich implicit functions and the parametric mesh represen-

tations. In particular, we first register a template mesh to

the output of the implicit generator and iteratively project

the registration result onto a pre-trained PCA space to re-

solve artifacts and self-intersections. To deal with the large

deformation during non-rigid registration, we propose a

novel view-collaborative graph convolution network (VC-

GCN) to extract key points from the implicit mesh for ac-

curate alignment. Our method is able to generate high-

fidelity 3D caricature in a pre-defined mesh topology that

is animation-ready. Extensive experiments have been con-

ducted on 3DCaricShop to verify the significance of the

database and the effectiveness of the proposed method. We

will release 3DCaricShop upon publication.

1. Introduction

A caricature is a vivid art form of depicting persons by

abstracting or exaggerating the peculiarities of the facial

features. As a way to convey humor or sarcasm, caricatures
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Figure 1: Left: the proposed 3DCaricShop, a large-scale

repository of 3D caricatures that are manually crafted by

professional artists. It’s richly annotated with 2D carica-

ture images, camera parameters, and 3D facial landmarks.

Right: the proposed baseline method that sets the new state

of the art in single-view 3D caricature reconstruction.

are widely used in entertainment, social events, electronic

games and a variety of artistic creations. While 2D carica-

tures have gained popularity in comic graphics, there exist

many scenarios, including cartoon character creation, game

avatar customization, custom-made 3D printing, etc., that

the 3D face caricatures remain the mainstream representa-

tions. However, creating a high-quality 3D caricature is a

labor-intensive and time-consuming task even for a skilled

artist. Thereby, generating expressive 3D face caricatures

from a minimal input, such as a single image, is a highly-

demanding but also challenging task.

Most of the prior works mainly focus on 2D caricature

generation [6, 33, 16], while research on reconstructing 3D

caricatures from 2D caricature images remains vary rare.

Wu et al. [39] propose the first work that creates 3D carica-

ture from 2D caricature images using an optimization based

approach. They formulate caricature generation as a prob-

lem of deforming the standard 3D face. In particular, they
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build a intrinsic deformation space based on the exaggerated

morphable models of standard faces [25]. The deforma-

tion coefficients are then optimized to reduce the landmark

fitting errors. Recently, in their follow-up work [42], they

employ CNN to automate the task of 2D facial landmark

prediction and deformation regression. However, previous

works [32, 18] have shown that the traditional 3D mor-

phable models (3DMM) of normal faces have very limited

expressiveness in modeling the intricate facial deformations

in reality. Thereby, the deformation space based on a syn-

thetically exaggerated 3DMM, as proposed in [39, 42], is

far from sufficient to capture realistic 3D caricatures, which

are even more diversified and complex than normal faces.

The key to tackling the above problem is a high-quality

3D caricature dataset created by artists that can provide real-

istic shape priors for both learning-based and optimization-

based approaches. However, there exist two challenges in

constructing such a dataset. First, the 3D models crafted

by artists are not topologically consistent, making it infea-

sible to many downstream applications, including blend-

shape creation, face animation, 3D landmark localization,

etc. Secondly, the manually created meshes are typically

not aligned with the corresponding images. While many

face reconstruction techniques require an accurate registra-

tion, such misalignment makes the dataset inapplicable to

projection-based applications such as landmark fitting, tex-

ture restoration and manipulation, etc.

In this work, we introduce 3DCaricShop, a large-scale

3D caricature dataset that simultaneously addresses the

above issues. First of all, 3DCaricShop contains 2,000

highly diversified and high-quality 3D caricature models

manually crafted by professional artists. It is constructed

by requesting artists to create 3D caricatures according

to 2,000 manually selected caricature images from Web-

Caricature [15], that span a wide range of shape exag-

gerations and texturing styles. Compared to the synthetic

datasets [13, 42], 3DCaricShop can provide shape priors

for 3D caricatures with much higher fidelity. Secondly, all

the 3D models in 3DCaricShop have been re-topologized to

a consistent mesh topology that paves the way to a num-

ber of future applications, including learning a paramet-

ric shape space, batch geometry processing, etc. Thirdly,

we provide accurate 3D face landmarks in 3DCaricShop,

which facilitates the use of landmark fitting technique that

is widely adopted in the state-of-the-art face reconstruc-

tion approaches. Last but not least, 3DCaricShop offers a

paired 2D caricature image and the camera parameters that

are used for mesh alignment. This enables a wide range of

techniques, such as differentiable rendering, landmark fit-

ting, etc., that rely on 2D-to-3D consistency.

To further exploit the power of 3DCaricShop, we pro-

pose a novel baseline approach to infer 3D caricatures from

a single caricature image. While the methods based on deep

implicit functions [14, 24] have shown promising capability

of modeling objects with arbitrary topologies,it is prone to

artifacts and self-intersections when applied to reconstruct

3D caricatures, which typically contain many extreme dis-

tortions. Though approaches using parametric mesh model

can ensure a generation of plausible 3D face, they strug-

gle to produce realistic faces with accurate geometry. We

advocate to connect the good ends of both worlds by trans-

ferring the high-fidelity geometry learnt from the implicit

reconstruction to a template mesh with a reasonable topol-

ogy. To enable a faithful transfer, we propose a novel view-

collaborative graph convolution network (VC-GCN) to ex-

tract key points from the implicit mesh for accurate mesh

alignment. To strike a balance between accuracy and ro-

bustness, we iteratively project the registered template mesh

onto a pre-trained PCA space using 3DCaricShop to avoid

overfitting to outliers. Our approach is able to generate

high-quality 3D caricatures in a pre-defined mesh topology

that is animation-ready.

We have conducted extensive benchmarking and abla-

tion analysis on the proposed dataset. Experimental results

show that the proposed approach trained on 3DCaricShop

sets new state of the art on the task of single-view 3D cari-

cature reconstruction from caricature images.

2. Related Work

Single-view Reconstruction Single-view reconstruction

(SVR) is a classic task in computer vision. Existing meth-

ods could be classified as reconstruction for general objects

[11, 36, 24] and for objects in specific categories[5, 3, 43].

It is an ill-posed problem due to the ambiguous nature. In

tradition, strong priors are introduced to constrain the space

of solutions. Shape-from-Shading (SfS) [26] is a kind of

physical based prior on the relation between illumination

and shape, which recovers the detailed shape in photos.

However, it fails to analyze artists works because of the

stylized shading effect. Most recently, with the success of

deep learning architectures and the release of large-scale

3D shape datasets such as ShapeNet [7], learning based

approaches have achieved great progress, by learning the

shape priors directly from the huge datasets. According

to the used 3D representations, these methods can be di-

vided into voxel-based [20, 8, 30], point-based [27, 28],

mesh-based [36, 23], and implicit-function-based frame-

works [21, 31]. Among these methods, PIFu [31], an al-

gorithm based on implicit functions, has been applied on

the reconstruction of human body and achieves impressive

results. In this paper, we employ PIFu to create the 3D mesh

for each single caricature image.

Single-view Face Modeling A closely-related task is

photo-realistic face reconstruction. Two mainstream

methodologies are developed to handle this problem, i.e.
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parametric based [5, 34, 10] and shape-from-shading

based [29, 35] methods, and remarkable results have been

achieved. However, both methods could not apply on our

task directly. Parametric methods suffer from the large di-

versity of geometry shapes in caricature cases. For SfS al-

gorithms, the underlying physical model could not capture

various painting styles of artists.

3D Caricature Generation Following the parametric

based methods of normal face reconstruction, researchers

further introduce deformation to enlarge the capability of

representation [19, 39, 42]. In [19], a semi-supervised man-

ifold regularization method is proposed to learn a regressive

model for mapping from 2D real faces to the enlarged train-

ing set with 3D caricatures. Wu et al. [39] formulate the 3D

caricature generation as a problem of deformation from the

standard 3D face. By introducing local deformation gradi-

ents, they build an intrinsic deformation representation with

the capability of extrapolation. With the deformation rep-

resentation, they construct an optimization framework to

create caricature model guided by the landmark constraint.

Following [39], Zhang et al. [42] employ CNN to learn the

deformation parameters of the intrinsic deformation repre-

sentations. However, due to the lack of 3D caricature data,

their works are still far from satisfaction.

3D Face datasets 3D face datasets are of great value in

face reconstruction tasks. In general, they could be catego-

rized into synthetic and real captured datasets. For normal

face, existing 3D datasets, including FaceWareHouse [5]

and Facescape [40], are built from scanned 3D data, hence

widely used in normal face tasks. They focus on the high

accuracy and photo reality of the meshes. However, they

could not be applied directly on caricature reconstruction.

Researchers [39, 42] tried to perform deformation on real

3D face models to construct synthetic exaggerated data.

Although some reasonable results are achieved, they still

suffer from the lack of diversity. To tackle this problem,

we propose 3DCaricShop, which is the first 3D caricature

dataset built by artists, composed pairs of caricature im-

ages and meshes. Based on the dataset, 3D caricature shape

could be learned in a model-free manner. We further pro-

pose a baseline method to reconstruct 3D mesh with uni-

form topology from single caricature image.

3. Dataset

We construct a dataset which contains 2,000 image-

model pairs in total. All of the 3D models are annotated

with 3D facial landmarks and poses w.r.t images. More de-

tails are introduced in the following aspects.

3D Model Collection WebCaricature [15] is the largest-

to-date dataset of 2D caricatures. It contains around 6,000

caricature images with diverse identities, geometry, and tex-

tural styles. We first selected 2,000 images from them, fur-

Figure 2: Sample caricature images and crafted 3D meshes

in 3DCaricShop. Images with diverse identities, geometry,

and textural styles are collected.

ther making them as diverse as possible. Then we recruited

4 paid expert Zbrush artists to create models according to

images. The modeling is required to be matched with the

image as much as possible, in projection manner. The con-

tour lines for matching include edges of silhouette, lips,

eyes, nose and ears. It takes around 40 minutes for each

model on average, and around 40 days are cost in total. Sev-

eral image-model pairs sampled from our dataset are shown

in Fig. 2. Each model consists of 300k ∼ 700k vertices.

Meshing Unification To support building parametric

space for our 3D caricature dataset, we unify the mesh

topology for all models in two steps: 1) We first manually

annotate 44 3D landmarks (see details in Fig. 3) for each

model; 2) The method of Non-rigid ICP [1, 9] is applied to

register a pre-defined template mesh to each model, guided

by the 3D landmarks. Due to the inherent difficulty to spec-

ify vertices on a 3D mesh, the landmark annotation is per-

formed on 3 rendered views of the 3D shape. As described

in [4], these 2D landmarks can be easily transformed into

their corresponding 3D positions. The template mesh we

use is from FaceWareHouse [5] that consists of 11,551 ver-

tices. This procedure is illustrated by an example in Fig. 3.

Pose Annotation 3D pose estimation from a single image

is the premise of our reconstruction method (see Sec. 4.1).

It usually requires pose information supervision of the 3D

face w.r.t the image. 3DCaricShop also provides accurate

pose labels for each mesh that annotated by artists manually.

Analysis of the dataset We quantitatively analyze our

dataset by comparing the shape variations with two nor-

mal face datasets (FaceWarehouse (FWH) and FaceScape),

as well as one synthetic caricature dataset, FaceWarehouse

with deformation (Aug. FWH). We measure the shape vari-

ation using global and part variance. In particular, the vari-

ance is computed between the models and their correspond-
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left front right (a) (b) 

(c) (d) (e) 

Figure 3: The process of 3D landmark annotation. A raw

mesh (a) is rendered from the front, left and right view.

Then 2D landmarks (b) are manually annotated for each

view image. 3D landmarks are obtained by projecting the

mesh into a specific view and searching for the closest point

on surface (d). Guiding by corresponding 3D landmarks,

the template mesh (e) is deformed into the shape of the raw

mesh (d), to generate mesh with correct topology (c).

ing mean shape of each dataset in terms of per-vertex dis-

placement. The results are presented in Table 1. The shape

diversity of our dataset is richer than the normal ones. For

most of the face regions, 3DCaricShop has larger shape

variance than Aug. FWH.

Dataset Global Eye Nose Mouth Ear Cheek Face

FWH 3.41 0.71 0.61 2.60 4.41 1.43 3.40

FaceScape 2.17 0.36 0.15 2.63 5.57 1.24 2.27

Aug. FWH 5.06 1.98 6.29 2.07 9.38 5.26 5.10

Ours 8.26 4.68 3.04 10.90 9.02 8.27 6.95

Table 1: Shape variance comparisons of 3D face datasets.

4. Methodology

Overview In this section, we introduce the proposed

baseline method. Given an input caricature image I, the

task is to generate the corresponding 3D mesh M. With

the topologically uniform 3D meshes in 3DCaricShop, a

straight forward way to tackle the task is to construct a PCA

basis using the 3D Morphable Model algorithm [2] to build

the caricature face space. However, such a space could not

handle the large variation in our data. To capture the di-

versity of geometry in caricature, we employ Pixel-aligned

Implicit Function (PIFu) [31] to generate the 3D shape MI

from I. Although the implicit function models the variation

in targets, it could not ensure a uniform topology for the

predictions. To achieve that, we register a template mesh

Mt to MI using non-rigid registeration (NICP) [1]. Then

the output of NICP is projected onto the pre-constructed

PCA space, to alleviate deformation artifacts, such as self-

intersections. We denote the output of NICP as MN and

that of PCA as MP. Considering the large difference be-

tween the template and target meshes, a sparse 3D landmark

is needed in the stage of NICP. We propose a novel view-

collaborative graph convolution network (VC-GCN) to pre-

dict key points k from the implicit mesh, where k ∈ R
44.

4.1. The Baseline Approach

Parametric Modeling Our parametric model space is

built with standard 3D Morphable Model (3DMM) [2] al-

gorithm. Given p caricature models with uniform topology

and N vertices on each mesh, principal component analy-

sis (PCA) is performed on the shape matrix SM ∈ R
3N×p,

which is formed by stacking the 3D coordinates of the N×p

vertices. The generated d eigen-vectors are employed as the

shape basis Si, i = 1, 2, ..., d, where d is a hyper-parameter.

The mean vector S represents the mean shape in the mesh

set. With this 3DMM, a novel caricature model SN could

be represented as follows: SN = S +
∑d

i=1 aiSi, where

a = [a1 · · · ad]
T is the vector of shape coefficients.

Implicit Reconstruction To capture the diversity of geo-

metric variation, we adopt Pixel-aligned Implicit Function

(PIFu) [31] to reconstruct the underlying 3D shape from im-

ages. PIFu performs 3D reconstruction by estimating the

occupancy of a dense 3D shape, which determines whether

a point in 3D space is inside the model or not. Given a RGB

image I, its normal maps from the front view F and back

view B are generated to strengthen the local details, by us-

ing a pixel2pixel-hd network [37]. Then the implicit binary

function f(X, I,F,B) could be written as:

f(X, I,F,B) =

{

1, if X is inside the mesh surface,

0, otherwise.

(1)

where X is a given 3D location in the continuous camera

space. This function is modeled by a neural network. The

loss function for training is formulated as:

L =
1

n

n
∑

i=1

|f(Xi, Ii,Fi,Bi)− f∗(Xi)|
2, (2)

where f∗(Xi) is the ground-truth occupancy.

3D Landmark Detection for Registration The output

meshes MI of the implicit function are not topologically

uniform. In order to unify the topology, we adopt non-rigid

registration[1] to deform a template Mt into the shape of

MI. As shown in [1], without landmarks the cost func-

tion of registration could run into a local minimum, where

the template is collapsed onto a point on the target surface.

Thus it is important to introduce the 3D landmarks of both

meshes to guide the deformation. We design a novel frame-

work to detect 3D landmarks for MI. In short, we propose
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Figure 4: Pipeline of our framework. A detail-rich mesh is generated by implicit reconstruction from 2D caricature and the

corresponding normal maps. Based on this mesh, 3D landmarks of the mesh are detected to guide the non-rigid registration,

which deforms a template mesh to the target one.

to perform detection on the rendered views of MI to lever-

age the effectiveness of image-based CNN techniques. The

process would be detailed in 4.2.

Landmark-guided Registration Since the huge differ-

ence between Mt and MI, the deformation is likely to

generate artifacts, such as self-intersection. To resolve this

problem, we iteratively perform NICP and PCA projection

to obtain MN and MP. After projection, we obtain a de-

formed template which is closer to MI in shape. Fig. 4

illustrates the process of the progressive deformation.

4.2. View-collaborative 3D Landmark Detection

In this section, we discuss more details about how to de-

tect 3D landmarks from MI, which is the key to supporting

the procedure of landmark-guided registration. A straight-

forward way for this detection is directly applying point-

based CNN (e.g., SparseConv [17]) to estimate landmark-

ware heatmap on mesh vertices. However, due to the in-

herent difficulty to conduct CNN on a mesh, this approach

tends to produce inaccurate results. We thus propose to per-

form detection on the rendered views of MI to leverage the

effectiveness of image-based CNN techniques. Coarse lo-

cations of the 3D landmarks can be obtained from detected

2D landmarks on those views. More importantly, a stack of

View-Collaborative GCN block (VC-GCN) is novelly de-

signed to aggregate and enhance information from multiple

views for accurate 3D landmarks locations. As illustrated

in Fig. 5, single view graph features (local features) are

first extracted for initialization. Then, these local features

are enhanced in a progressive manner by continually fusing

global information into each view. The final local features

are aggregated into the global graph feature for 3D land-

mark prediction.

Initialization Stage In this part, more details about local

feature initialization are introduced. Given 2D images ren-

dered from 3 views {front, left, right} ({f, l, r} for simplic-

ity), we first utilize a 2D landmark detector [12] to estimate

the 2D landmarks P̂v ∈ R
kv

×2, where kv denotes the key

point number under the view v ∈ {f, l, r}. Next, 3d land-

marks on the mesh are located using the projection matrix

of each view. We use the above landmarks which exist in all

local views to build local graphs. After that, to enrich the

information of each graph node, we extract features from

the feature maps generated by the landmark detector for

each node, according to their 2D coordinates. Eventually,

the initial local view features F
v
init ∈ R

kv

×(C+3) for VC-

GCN can be produced by concatenating the 3D landmark

locations Lv with related node features under each view v,

where C is the image feature dimension.

View-Collaborative GCN In order to provide global in-

formation for each view, we aggregate 3 local features into

a global graph feature. Then the global feature is fused into

each view to enhance the local view feature. This proce-

dure is performed by a View-Collaborative GCN block. In

each VC-GCN block, local features are first sent into sev-

eral GCN layers for better representations. The layer-wise

operation in GCN is defined as:

F
v
�+1 = σ

(

D
v−

1

2A
v
D

v−
1

2F
v
�W

v
�

)

(3)

where A
v is the adjacency matrix with self-loops, Dv is

its diagonal node degree matrix to normalize A
v , Fv

� rep-

resents the local feature in layer � ∈ {0, 1, . . . , �′} under

the view v, W� is a trainable parameter matrix for linear

projection, and σ(·) represents the non-linear activation op-

eration. Then the obtained local features are combined into

a global graph feature. For each node in the 3D landmark,

its feature can be drawn from the local feature of the corre-

sponding node under one view. Note that for the node that

shared in different views, its feature is set as the average of

multiple local features. The combined global graph feature

is then strengthened through several GCN layers, with same

operations as in Equation 3. Hence, the process of feature

aggregation now can be formulated as following:

F
v
�′ = GCNv(Fv

0), v = f, l, r;

F
g
�′ = GCNg(fcomb(F

f
�′ ,F

l
�′ ,F

r
�′)).

(4)

where fcomb(·) denotes the combination operation, F
g
�′ is the

strengthened global features. Note that the input Fv
0 is set
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Figure 5: The pipeline of View-collaborative 3D landmark Detection. The initial 3D landmaks are obtained by exploiting the

predicted 2D landmarks from 3 rendering views. A novel cascaded VC-GCN blocks is used to fuse the features form each

view and sends the aggregated features into a GCN head layer for 3D displacement decoding.

as the initial local view feature F
v
init in the first VC-GCN

block, and is set as the prior output features in subsequent

blocks.

In the second step, strengthened global features are fused

into local features of each view in a non-local manner [38],

so that global information can guide the model to learn more

representative local features. The enhanced local features

F
v
enh of the view v can be obtained as following, where the

non-local fusion operation is denoted as fn-loc:

F
v
enh = fn-loc(F

g
�′ ,F

v
�′), v = f, l, r. (5)

More details about the non-local fusion operation are de-

scribed in the supplementary materials.

It usually takes numerous glimpses to adjust key points

to construct a 3D face, even for an expert artist. Thus, sev-

eral VC-GCN blocks are stacked to progressively enhance

local features. In the connection of two blocks, the en-

hanced local features Fv
enh from the former block are taken

as the input Fv
0 of the later block.

Loss Function Given the enhanced local features from

the last VC-GCN block, we combine and strengthen them

using GCN layers to obtain the final global graph fea-

tures. Next, it is multiplied by a GCN head layer to get

the 3D landmark estimation L̂
g ∈ R

N×3. The predicted 3D

landmarks are supervised by 3D and 2D landmark ground

truth simultaneously, which leads to more accurate predic-

tion. We now formulate the loss function for the view-

collaborative 3D landmark detection training as following:

L =
∑

i∈Ω,v

(Ldetect(P̂
v
i ,P

v
i )

+L3D(L̂
g
i ,L

g
i )

+L2D(M
v(L̂g

i ),P
v
i )),

(6)

where Ω is the training set, i is the subscript indicating each

training sample, Ldetect denotes the 2D landmark detection

error in the initialization stage, L3D and L2D represents the

3D landmark prediction error in 2D and 3D space, respec-

tively, and M
v is the projection matrix to obtain 2D land-

marks from 3D landmarks under the view v. Note that all

loss terms are in smooth-l1 form.

5. Experiments

Implementation details The proposed framework is

trained on our 3DCaricShop. The dataset is separated into

1,600 for training and 400 for testing. The weights of

Ldetect, L2D and L3D are set to 0.1, 0.8 and 1.0 respec-

tively. To train the network for learning the implicit recon-

struction, a RMSProp optimizer is adopted with learning

rate 0.001, and the network is pre-trained with the mini-

batch size 2 for 80 epochs. During the training of 2D land-

mark detection network, an Adam optimizer is used. The

learning rate is set to 0.0001 with a cosine decay, and the

mini-batch size is set to 24 for 30 epochs. After that, the

whole framework is trained in an end-to-end manner with

the same strategy as above.

Results Gallery We present some typical results of the

proposed framework in Fig. 6. As illustrated, our method

is robust to caricature images with diverse textures. It can

also recover diversified geometric features, such as the ex-

aggerated nose in the second sample of the first row, and the

sharp long chin in the third sample of the second row Fig. 6.

5.1. Comparisons with the State-of-the-arts

We qualitatively and quantitatively compare the results

of our method with a variety of state-of-the-art 3D car-

icature reconstruction approaches on 3DCaricShop test-

ing set, including linear parametric model (3DMM) [35,

2], depth map (DF2Net) [41], deformation representation

(AliveCaric-DL) [42], and implicit function (PIFu) [31]

based methods.
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Figure 6: Results gallery for our framework on 3DCaricShop. The framework has the capability to reconstruct 3D shapes

from caricature images with diverse texture and geometry shapes.

Qualitative results In Fig. 7, we visualize some results

of caricature reconstruction on images from 3DCaricShop.

Among the parametric methods, the nonlinear deformation

representation [42] based model outperforms the linear ones

on fitting the exaggerated input images, but it is still not pre-

cise enough due to its limited expressiveness. Besides, other

deep learning based approaches such as DF2Net and PIFu

unavoidably yield artifacts like hollows and spikes. How-

ever, our method introduces the constraint of PCA paramet-

ric space into the deep model, thus can produce highly ex-

aggerated local details upon the foundation of a plausible

global shape.

Quantitative Results Considering other methods for

comparison only reconstruct the face area, we adopt aver-

age point-to-surface Euclidean distance (P2S) as the eval-

uation metric, which measures the unidirectional distance

from the source set to the target set. The average point-to-

surface Euclidean distance can be computed as:

dP2S(P, S) =
1

‖P‖

∑

p∈P

min
p′∈S

‖p− p′‖2 (7)

where P is the vertex set of the reconstructed mesh and

S is the corresponding ground truth surface. Besides, due

to the mismatch in orientation and scale between the gen-

erated meshes and ground truth, before calculation, Pro-

crustes alignment is performed and scaling is estimated

based on least square error. As shown in Table 2, our

method achieves the smallest P2S on the 3DCaricShop.

5.2. Ablation Studies

In this section, we perform ablation studies on the pro-

posed 3D landmark detection framework and landmark

guided registration process. The results show the effective-

ness and robustness of our pipeline.

3D landmark detection We analyze five variants of our

framework: 1) directly using the 3D landmarks selected

from predicted 2D landmarks without subsequent refine-

ment, denoted as ‘w/o GCN refinement’; 2) utilizing voxel-

based method [22] to estimate 3D heatmaps, denoted as

Methods P2S Methods P2S

3DMMhuman 0.295 PiFuhead 0.153

3DMMcari 0.104 PiFuface 0.126

DF2Net 0.273 Ourshead 0.065

AliveCaric-DL 0.067 Oursface 0.037

Table 2: Quantitative evaluation on 3DCaricShop. Note

that the meshes generated by our method and PiFu contain

the entire head area which are the same with ground truth,

whereas the other methods in our experiment only recover

the frontal face, thus we provide two versions of results(i.e.

head and face) on our method and PiFu for a more solid

comparison. The results are averaged on test data.

‘V2V’; 3) employing a global graph to refine the 3D land-

marks from the first setting, without using VC-GCN block,

which denoted as ‘Global only’; 4) Only using local index

to gather local features from global view, rather than using

non-local operations for local feature enhancement, denoted

as ‘w/o G2L’; 5) The basic setting, denoted as Basic.

The metric we evaluate the results is mean per joint posi-

tion error (MPJPE) which is defined as a Euclidean distance

between predicted and ground truth 3D landmarks after root

joint alignment. The root joint we define is the top of nose.

This metric measures how accurately the root-relative 3D

landmark estimation is performed. The quantitative results

are listed in Table. 3. It confirm the effectiveness of each

components in the design of our 3D landmark detector.

On landmark guided registration We evaluate three

kinds of registration process: 1) directly perform NICP

without landmarks information; 2) perform landmark-

guided NICP without PCA projection; 3) the process used

in our method. The visualized results are shown in Fig. 9.

As [1] suggested, without landmark information, NICP

could not capture the large discrepancy between Mt and

MI. Besides, the deformation without PCA projection is

likely to generate meshes with self-intersection. In contrast,

our method could obtain meshes with higher quality, and

capture enough shape information in MI. For example, the

artifacts on ears in Fig. 9(d) are eliminated, while the shape
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(f) Ground truth (a) 3DMM-Human (b) 3DMM-Cari (c) DF2Net (d) AliveCaric-DL (e) PIFu (g) Our method 

Figure 7: Qualitative results of our method compared with state-of-the-art methods, including (a) 3DMM-Human [35], (b)

3DMM-cari [2], (c) DF2Net [41], (d) AliveCaric-DL [42] and (e) PiFu [31], on 3DCaricShop. By incorporating deep models

with parametric space constraint, our method (g) can reconstruct highly exaggerated geometry without distinct artifacts.

(a) (b) (c) (d) (e) (f) 

Figure 8: Ablation experiments on 3D landmark detection:

(a) input; (b) ground truth; (c) pure projection; (d) global

only; (e) w/o G2L; (f) ours. Our method could capture the

face geometry more accurately.

Methods MPJPE Methods MPJPE

w/o GCN Refinement 0.451 Global only 0.373

V2V [22] 0.407 w/o G2L 0.358

Basic 0.291

Table 3: Ablation study for 3D landmark detection.

(a) (b) (c) (d) (e)

Figure 9: Ablation experiments on registration: (a) input;

(b) GT; (c) NICP w/o landmark; (d) NICP w/o PCA pro-

jection; (e) ours. A better result is obtained with reasonable

topology (e.g., the nose) by using PCA projection.

of nose is more consistent with both the groud truth mesh

and the input caricature image.

6. Conclusions

We construct a new dataset and benchmark, called

3DCaricShop, for single-view 3D reconstruction from car-

Methods P2S

Ours w/o Landmark 0.074

Ours w/o PCA projection 0.076

Ours 0.065

Table 4: Ablation study for landmark-guided registration.

The similar data implies the improvement of our method

concentrate on the detail structures.

icature images. 3DCaricShop is the largest collection by

far of 3D caricature models crafted by professional artists.

It consists of 2,000 high-quality and diversified 3D carica-

tures that are richly labeled with paired 2D caricature im-

age, camera parameters, and 3D facial landmarks. A novel

baseline approach is also presented to validate the useful-

ness of the proposed dataset. It combines the merits of flexi-

ble implicit functions and the robust parametric mesh repre-

sentation. Specifically, we transfer the details from implicit

reconstruction to a template mesh with the help of VC-GCN

that accurately predicts 3D landmarks for the implicit mesh.

Extensive benchmarking on our dataset has been performed

including a variety of popular approaches. We found that

reconstructing 3D caricature from a single 2D caricature

image is a highly challenging task with ample opportunity

for improvement. We hope 3DCaricShop and our baseline

approach could shred light on future research in this field.
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