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Abstract

Video content is multifaceted, consisting of objects,

scenes, interactions or actions. The existing datasets mostly

label only one of the facets for model training, resulting

in the video representation that biases to only one facet

depending on the training dataset. There is no study yet

on how to learn a video representation from multifaceted

labels, and whether multifaceted information is helpful

for video representation learning. In this paper, we pro-

pose a new learning framework, MUlti-Faceted Integra-

tion (MUFI), to aggregate facets from different datasets for

learning a representation that could reflect the full spectrum

of video content. Technically, MUFI formulates the problem

as visual-semantic embedding learning, which explicitly

maps video representation into a rich semantic embedding

space, and jointly optimizes video representation from two

perspectives. One is to capitalize on the intra-facet supervi-

sion between each video and its own label descriptions, and

the second predicts the “semantic representation” of each

video from the facets of other datasets as the inter-facet su-

pervision. Extensive experiments demonstrate that learn-

ing 3D CNN via our MUFI framework on a union of four

large-scale video datasets plus two image datasets leads

to superior capability of video representation. The pre-

learnt 3D CNN with MUFI also shows clear improvements

over other approaches on several downstream video appli-

cations. More remarkably, MUFI achieves 98.1%/80.9%

on UCF101/HMDB51 for action recognition and 101.5%

in terms of CIDEr-D score on MSVD for video captioning.

1. Introduction

Deep Neural Networks have been proven to be highly

effective for learning vision models on large-scale datasets.

To date in the literature, there are various image datasets

(e.g., ImageNet [47], COCO [31], Visual Genome [25]) that

include large amounts of expert labeled images for train-
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Figure 1. Example illustrating the four facets of video content: ob-

ject (blue), scene (green), interaction (magenta), and action (red).

ing deep models. The well-trained models, on one hand,

manifest impressive classification performances, and on the

other, produce discriminative and generic representation for

image understanding tasks. Compared to static 2D images,

video has one more dimension (time) and is an information-

intensive media with large variations and complexities. As

a result, learning a powerful spatio-temporal video repre-

sentation is yet a challenging problem.

Capitalizing on the high capability of deep models, one

natural way to improve video representation is to acquire

more video data. For example, Tran et al. [50] devised

a widely-adopted 3D CNN, namely C3D, optimized on

a large-scale Sports1M dataset and a constructed I380K

dataset. Carreira et al. [2] built a popular pre-training

dataset, i.e., Kinetics, consisting of around 300K well-

annotated trimmed video clips. To expand the study in the

regime of web videos which is multiple orders of magnitude

larger, Ghadiyaram et al. [14] collected 65M web videos

for pre-training 3D CNN in a weakly-supervised manner.

Despite the tremendous progresses, performing learning on

a specific dataset usually focuses on a particular channel

of videos (e.g., action) and seldom explores other facets of

videos simultaneously. Taking a video of “making a cake”

from Kinetics dataset as an example (Figure 1), there are

a wide variety of facets, ranging from object, scene, inter-

action, to action. Nevertheless, Kinetics, as human action

dataset, mainly emphasizes the facet of action, making the

learnt representation mostly aware of the action informa-
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tion. A valid question is how to leverage multifaceted video

information for representation learning.

This paper explores the integration of six facets, i.e., ac-

tion (Kinetics [2]), event (Moments-In-Time [38]), interac-

tion (Something-Something [15]), sport (Sports1M [14]),

object (ImageNet [47]), and scene (Place365 [64]), and each

facet corresponds to one dataset. We aim for a model that

engages all the six facets (datasets) to learn video represen-

tation, ideally making the representation more discrimina-

tive and generic. The inherent difficulty of learning such

a representation is: how to execute effective representation

learning on various datasets with different labels in a uni-

fied framework? We propose to mitigate this issue through

visual-semantic embedding learning. The basic idea is to

learn a semantic space that bridges the labels from different

datasets. The model that generates the space is pre-trained

on a large-scale unannotated text data. The learning objec-

tive is to model the semantic relationships between labels

and embed the disjoint labels into semantically-meaningful

feature vectors. We project video representation into the

semantic space and optimize visual-semantic embedding to

enhance representation learning.

To materialize our idea, we present a new MUlti-Faceted

Integration (MUFI) framework for video representation

learning. Specifically, we employ off-the-shelf language

models such as BERT [6] to extract textual features and

build the semantic space, which is also taken as the em-

bedding space. Each video is fed into a 3D CNN to obtain

the video representation and then mapped into the embed-

ding space. The learning of visual-semantic embedding is

supervised by intra-facet embedding of a video and its class

label within a dataset, and inter-facet label prediction and

embedding across multiple datasets. Our MUFI framework

capitalizes on the two types of supervision to jointly learn

visual-semantic embedding and adjust 3D CNN through a

multi-attention projection structure, and performs the whole

training in an end-to-end manner. Note that the image

datasets only offer the inter-facet supervision to the videos

here and are not exploited as the network inputs.

The main contribution of this work is the exploration of

multifaceted video content from various datasets to improve

video representation learning. The novel idea leads to the

elegant views of how to relate the facets of videos from

different datasets, and how to consolidate various facets in

a unified framework for learning, which are problems not

yet fully understood. We demonstrate the effectiveness of

our MUFI framework on a union of four large-scale video

datasets plus two image datasets in the experiments.

2. Related Work

The early works of using Convolutional Neural Net-

works for video representation learning are mostly extended

from 2D CNN for image classification [7, 12, 24, 43, 48,

55, 56, 65]. These approaches often treat a video as a se-

quence of frames or optical flow images, while overlook-

ing the pixel-level temporal evolution across consecutive

frames. To alleviate this issue, 3D CNN [21, 50] is devised

to directly learn spatio-temporal representation from a short

video clip via 3D convolution, which shows good transfer-

ability to several downstream tasks [27, 28, 32, 33, 34, 44].

Despite having encouraging performances, the training of

3D CNN is computationally expensive and the model size

suffers from a massive growth. Later in [45, 52, 59], the

3D convolution is approximately decomposed into one 2D

spatial convolution plus one 1D temporal convolution. Re-

cently, more advanced techniques are presented for 3D

CNN, including inflating 2D kernels [2], non-local pooling

[57], local-and-global diffusion [46], and filter banks [36].

The aforementioned works predominately focus on the

designs of network architectures, and another direction

of video representation learning is to involve more data.

Ghadiyaram et al. [14] collect a large dataset with 65M

web videos, which is multiple orders of magnitude larger

than the existing video datasets. The 3D CNN in [14]

is trained on such large dataset in a weakly-supervised

manner and shows obvious improvements over other pre-

training strategies. Later, OmniSource [8] further improves

the work by utilizing weakly-labeled web images and ad-

ditional web videos. Instead of treating search queries as

weakly-supervised labels, the title of video in the website

can also be regarded as weak supervision. In [29], the corre-

lation between a video and its associated title is explored to

learn a rich semantic video representation. Inspired by the

recent advances of self-supervised learning, there are also

some approaches [42, 53, 60, 61] which propose to learn

video representation from unannotated video data.

In summary, our work belongs to supervised video repre-

sentation learning. Different from the existing methods that

focus learning on a particular facet of videos, our approach

contributes by studying how to present the facets of videos

from different datasets and proposing a novel video repre-

sentation learning framework to consolidate various facets.

3. Multi-Faceted Integration

In this paper, we devise MUlti-Faceted Integration

(MUFI) framework to integrate the rich facets from differ-

ent datasets to boost video representation learning. Specifi-

cally, MUFI formulates the problem as visual-semantic em-

bedding learning, which explicitly maps video representa-

tion into a rich semantic embedding space. We begin this

section by introducing the visual-semantic embedding for

video representation learning, followed by the two learning

perspectives, i.e., intra-facet supervision and inter-facet su-

pervision. Then, we propose a multi-attention projection

structure to embed the visual feature. Finally, we elaborate

the end-to-end optimization of our MUFI.
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Figure 2. The schematic illustration of video representation learning by (a) classification loss; (b) visual-semantic embedding; (c) multi-

faceted visual-semantic embedding with intra-facet supervision; (d) multi-faceted visual-semantic embedding with intra-facet supervision

and inter-facet supervision. For the multi-faceted frameworks, the arrows of data flow from an identical facet are in the same color.

3.1. From Classification to Embedding

We firstly study the most common single-facet represen-

tation learning problem. Suppose we have a labeled video

collection V = {(v, l)}, where l ∈ L is the assigned label to

describe the video content. The goal is to pre-train a visual

encoder F(·) on video data supervised by the semantic la-

bels. The pre-trained video encoder can be further utilized

to support several video downstream tasks. One conven-

tional way is to optimize the encoder F(·) with classifica-

tion loss, as shown in Figure 2(a). In our case, we choose

3D CNN as visual encoder and then append a linear classi-

fier C(·) on top of the network to predict the label. Hence,

the visual encoder and classifier are jointly optimized by

Softmax Cross-Entropy (SCE) loss as

Lclassification(v, l) = SCE (C(F(v)), l) . (1)

Instead, the multi-faceted learning involves N video col-

lections Vn|n=1,...,N and the corresponding label set Ln.

Eq.(1) can be straightforwardly extended by merging the

label sets or establishing multiple classifiers. Nevertheless,

these simple extensions treat each facet independently, but

ignore the semantic relationships between labels.

Inspired by deep visual-semantic embedding [13], learn-

ing is formulated as a problem of aligning video represen-

tation and label representation in a rich semantic embed-

ding space, as shown in Figure 2(b). Formally, the label

representation is achieved by a frozen language embedding

model S(·) (e.g., BERT) pre-trained on unannotated text

data. The objective of visual-semantic embedding is to min-

imize the distance between the projected video representa-

tion and the label representation:

Lembedding(v, l) = distance (P(F(v)),S(l)) , (2)

where P(·) is a projection function to embed the video rep-

resentation into the semantic space. As such, the labels from

different datasets share the same continuous feature space

and are comparable to each other.

3.2. Intra­Facet Supervision

To tackle the challenge of multi-faceted embedding, we

first introduce an intra-facet supervision that minimizes the

distance between video representation and label representa-

tion in the same facet, as illustrated in Figure 2(c). Given a

video-label pair (vn, ln) from the nth facet, the intra-facet

supervision can be formulated as minimizing the L2 dis-

tance between embedded representations:

Lintra−l2(v
n, ln) = ‖P(F(vn))− S(ln)‖

2
2 . (3)

However, minimizing the L2 loss only tends to make the

video representation close to the annotated label while ig-

noring other labels in the same facet. Such kind of training

may affect the discriminative capability of the learnt rep-

resentation in this facet, since other labels might be even

closer than the annotated label. Similar phenomenon is also

discussed in [13]. Here, we propose to address this issue

by the recent success of contrastive learning [16, 17, 40].

The basic principle is to make positive/negative query-key

pairs similar/dissimilar. In our case, the positive pair is

constructed by taking the embedded visual representation

P(F(vn)) as query and the representation of the annotated

label S(ln) as positive key. The representations from other

labels in the same facet are regarded as the negative keys.

Formally, by measuring the query-key similarity via dot

product, the intra-facet loss can be formulated based on a

softmax formulation:

Lintra−nce(v
n, ln) = −log

exp(P(F(vn)) · S(ln))
∑

l̂n∈Ln

exp(P(F(vn)) · S(l̂n))
,

(4)

which is similar as the prevailing form of contrastive loss in

InfoNCE [40] but without the temperature parameter. The

motivation behind Eq.(4) is to minimize the distance be-

tween a query (video representation) and its positive key

(the assigned label) while remaining to be distinct to nega-

tive keys (the other labels) in the meantime.

3.3. Inter­Facet Supervision

In the intra-facet supervision, each video is only super-

vised by a single label from one facet (its source facet),

while leaving the other information in the video unex-

ploited. Although we can pool the multiple datasets to-

gether by leveraging the single-faceted labels of a dataset
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at a time, learning is still based on single facet and mul-

tifaceted analysis is not exploited, resulting in data ineffi-

ciency. To alleviate the issue, we additionally involve the

inter-facet supervision on video data to explore the potential

of the other facets via transferring the pre-learnt knowledge,

as illustrated in Figure 2(d). Specifically, when transfer-

ring the knowledge of the mth facet to video vn ∈ Vn, we

utilize a classification model pre-trained on the mth facet

to predict the category probability of the input video as

pm(l̂m|vn). Our goal is to make the embedded video repre-

sentation close to the category with high probability in the

mth facet. Thus, we calculate the sum of label represen-

tations weighted by their label probabilities as the pseudo

“semantic representation” of video vn as

Sm(vn) =
∑

l̂m∈Lm

pm(l̂m|vn)S(l̂m).
(5)

The classification model can be considered as an expert “la-

beler” in mth facet, and the prediction from this “labeler”

is mapped to the semantic space. Then, the objective of

inter-facet supervision is to minimize the distance between

embedded video representation and pseudo representation:

Linter(v
n) =

∑

m 6=n

‖Pm(F(vn))− Sm(vn)‖
2
2 . (6)

Unlike intra-facet supervision with strict labels, we do not

require the embedded visual feature to become far apart

from the other labels for inter-facet supervision and thus

simply choose the L2 loss. By minimizing the loss in

Eq.(6), the videos from any dataset can be supervised by

all the facets. Moreover, our proposal also provides an el-

egant way to learn from image datasets by transferring the

pre-trained image classifier to video data.

3.4. Multi­Attention Projection

In many cases, each facet is only related to some lo-

cal regions that contain special objects or motion. There-

fore, directly using one global feature (e.g., feature from

global pooling layer) may lead to suboptimal results due

to the noises introduced from regions that are irrelevant to

the facet. In order to enable the framework to pinpoint the

spatio-temporal regions that are most indicative for each

facet, we devise a self-attention component plus a linear em-

bedding layer as the projection function Pn for each facet.

The self-attention assigns a positive weight score to each lo-

cal descriptor extracted from the last convolutional layer of

the 3D CNN. The score can be interpreted as the probability

that the spatio-temporal region should be attended for this

facet. Then the linear embedding layer maps the attended

feature to the semantic space.

Technically, given the feature map F(v) ∈ R
T×H×W

extracted from the 3D CNN, the weight-sum of local de-
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Figure 3. The overview of our MUFI framework for video repre-

sentation learning. In the figure, we take the video of “making

a cake” from facet 1 as an example. The video feature extracted

from a base 3D CNN is mapped into a semantic embedding space

by the multi-attention projection. The base 3D CNN and projec-

tion function is optimized in an end-to-end manner with both the

intra-facet supervision and inter-facet supervision.

scriptors by self-attention can be calculated by

∑

f(i)∈F(v)

ϕ(wn · f(i) + bn)f(i), (7)

where ϕ(·) is the softmax normalization across different

spatio-temporal positions to produce the positive attention

probabilities in the range of (0, 1). {wn, bn} are learnable

parameters to distinguish the important regions for the nth

facet. Please note that more complex projection functions,

e.g., Multiple Layer Perception (MLP), could improve the

embedding performance but meanwhile might influence the

learnt representation. In view that our goal is to train the

base 3D CNN for a better video representation, we choose

the relatively simple multi-attention projection.

3.5. Overall Framework

Figure 3 shows the overall framework of our MUlti-

Faceted Integration (MUFI), which utilizes the proposed

intra-facet supervision, inter-facet supervision and multi-

attention projection. Considering that the ultimate goal of

MUFI is to train the base 3D CNN for video representation,

we fix the pre-trained language model, embedding layer for

language feature and the classification models, and only op-

timize the base 3D CNN and the multi-attention projection.

Specifically, the language model is BERT pre-trained on
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large-scale unannotated text data. The parameters of lan-

guage embedding layer is achieved by Principal Component

Analysis (PCA) across all the label representations. For the

base 3D CNN and the multi-attention projection, we update

the parameters according to the following overall loss as

L(vn, ln) = Lintra−nce(v
n, ln) + Linter(v

n). (8)

Here, we empirically treat each facet in MUFI equally.

4. Experiments

4.1. Dataset and Evaluation

We train our MUFI framework on a union of six

large-scale datasets: Kinetics [2], Moments-In-Time [38],

Something-Something [15], Sports1M [14], ImageNet [47]

and Place365 [64]. The first four are video recognition

datasets focusing on action, event, interaction and sport, re-

spectively. The last two are popular image datasets for ob-

ject recognition and scene recognition.

Kinetics is one of the large-scale video benchmarks for

action recognition on trimmed video clips. We utilize the

latest released version of the dataset, i.e., Kinetics-700,

which contains around 600K video clips from 700 action

categories. Moments-In-Time is a large-scale video event

recognition dataset with around 800K video moments (3-

second short videos) from 339 events. The Something-

Something dataset is firstly constructed in [15] to learn

fine-grained human-object interaction, and then extended to

Something-Something V2 recently. Sports1M dataset con-

sists of about 1.13M videos annotated with 487 sports la-

bels. Please note that some video URLs were dead when we

downloaded the videos. Hence, we only employ around 1M

available videos. For each raw video, we randomly sample

five 5-second short clips for efficient training. ImageNet

and Place365 are image benchmarks with over 1M images

from 1,000 object categories and 365 scene categories, re-

spectively. These two datasets are only exploited to provide

inter-facet supervision and never used as inputs to 3D CNN.

Per-facet evaluation. To thoroughly evaluate the learnt

representation with respect to every facet, we construct a

multifaceted evaluation metric on the classification of ac-

tion (act.), event (eve.), interaction (int.), sport (spo.), ob-

ject (obj.) and scene (sce.), respectively. For the first

four facets, we randomly sample 50 videos of each class

from the training/validation set of Kinetics-700, Moments-

In-Time, Something-Something V2 and Sports1M datasets

as the standalone training/validation set. The videos in

these four subsets will be only exploited to evaluate the

learnt representation and are not used to train MUFI. For

object recognition, we utilize the ImageNet object detec-

tion from video (VID) [47] dataset with 3,862 video clips

of 30 object categories. Please note that VID dataset pro-

vides the bounding box of each object and we only use the

most frequent object as the video label. For scene recog-

nition, we employ YUP++ [11] that contains 1,200 video

from 20 scene categories.

Downstream task evaluation. We also verify the merit

of MUFI in three downstream tasks: action recognition

(UCF101 [49], HMDB51 [26] and Kinetics-400), interac-

tion recognition (Something-Something V1 and V2) and

video captioning (MSVD [3]). For fair comparison, during

the training of MUFI, we remove the training videos that are

duplicate of validation videos of these datasets. Two videos

are judged to be duplicate if they share the same URL, or are

visually very similar. More details for video deduplication

will be given in the supplementary material.

4.2. Implementation Details

Language embedding. The 24-layer BERT [6] is uti-

lized as the language embedding model pre-trained on

unannotated text from BooksCorpus [67] and Wikipedia.

We extract the output of the last but one layer in BERT as a

sequence of 1,024-dimensional word representations. The

language representation is then produced by concatenating

the features max-pooled and average-pooled over all words,

resulting in 2,048-dimensional feature vector. Finally, the

language feature is reduced to 256 dimension by PCA to

construct the embedding space.

Training strategy. Our MUFI is implemented in Caffe

[22] and the weights are trained by SGD. We employ LGD-

3D [46] originated from the ImageNet pre-trained ResNet-

50 [19] as our backbone. During training, the dimension

of input video clip is set as 16 × 112 × 112, which is ran-

domly cropped from the non-overlapped 16-frame clip re-

sized with the short edge in [128, 170]. Random horizontal

flipping and color jittering are utilized for augmentation.

Evaluation protocol. We exploit two evaluation pro-

tocols, i.e., linear model and network fine-tuning. In the

former protocol, we directly exploit the backbone learnt by

MUFI as the feature extractor, and verify the frozen rep-

resentation via linear classification. Specifically, we uni-

formly extract 20 clip-level representation and average all

the clip-level features to obtain the video-level representa-

tion. A linear SVM is trained on the training set and evalu-

ated on each validation set. In the latter one, the pre-trained

model by MUFI serves as the network initialization for fur-

ther fine-tuning in downstream tasks. At inference stage,

we employ the three-crop strategy in [10] that crops three

128× 128 regions from each video clip.

4.3. Evaluations on MUFI w.r.t Every Facet

We first examine the effectiveness of MUFI for video

representation learning with respect to every facet under

linear model protocol from three perspectives: (1) video

representations learnt on single/multiple facet(s) in differ-

ent ways, (2) difference between MUFI and training/fine-

14034



Table 1. Per-facet performance comparisons across video repre-

sentations learnt on single/multiple facet(s) in different ways.

Method act. eve. int. spo. obj. sce. avg

Video Representation Learning via Classification

action-only (K700) 57.6 17.9 17.8 53.1 74.2 93.1 52.2

event-only (MIT) 40.4 26.0 16.3 46.1 68.6 95.3 48.7

interaction-only (SSV2) 18.9 5.6 38.6 25.6 46.6 67.1 33.7

sport-only (S1M) 34.8 11.6 10.4 67.3 66.6 88.5 46.7

4facets 51.3 22.7 37.4 62.9 74.2 95.1 57.2

4facets+multi-fc 51.4 21.0 40.8 61.1 73.5 95.2 57.1

Video Representation Learning via Visual-Semantic Embedding

intraL2 52.3 23.2 32.0 63.8 73.2 95.1 56.6

intrance 55.6 25.9 42.4 65.3 74.7 95.6 59.9

intrance+intervideo 56.2 26.2 44.1 65.7 74.6 94.8 60.2

intrance+interall 55.7 26.2 44.3 65.6 76.7 96.9 60.9

MUFI (+attention) 57.8 27.0 47.8 67.7 77.8 97.5 62.6

tuning the network by considering one facet after another,

and (3) comparisons with video representations extracted

by off-the-shelf vision models.

Video representations learnt on single/multiple

facet(s) in different ways. We compare the follow-

ing runs for performance evaluation. The run of action-

only/event-only/interaction-only/sport-only performs video

representation learning via classification on Kinetics-700

(K700), Moments-In-Time (MIT), Something-Something

V2 (SSV2) and Sports1M (S1M), respectively, which lever-

ages only one facet for model training. The run, 4facets,

exploits one fc layer to execute classification on the union

of all annotated categories on four facets. A variant of

4facets, namely 4facets+multi-fc, separates the fc layer into

4 groups, each of which corresponds to the categories from

one specific facet. Another line to learn video represen-

tation delves into visual-semantic embedding. The meth-

ods, intraL2 and intrance, capitalize on intra-facet super-

vision of the four datasets. The former formulates the

embedding learning as minimizing L2 distance of video-

label pairs, while the latter exploits NCE loss in con-

trastive learning framework. The run of intrance+intervideo
and intrance+interall further take the inter-facet supervi-

sion across four video datasets and four video datasets plus

two image datasets into account for cross-view embedding

learning. MUFI is the proposal in the paper that involves

attention mechanism to reflect the focus of each facet.

Table 1 summarizes the result comparisons on the valida-

tion sets of different facets. Specifically, action-only/event-

only/interaction-only/sport-only method achieves the high-

est accuracy on its corresponding facet of evaluations, but

performs relatively poor on other facets. The results are ex-

pected as solely learning on one dataset biases video repre-

sentation to only one facet of the training dataset. Directly

treating the four datasets as a whole and implementing clas-

sification of 4facets and 4facets+multi-fc leads the accuracy

by 4.9%∼23.5% on average over single facet. The results

basically verify the merit of multi-faceted learning to en-

hance video representation. Though intraL2 and intrance in-

Table 2. Per-facet comparisons between MUFI and training/fine-

tuning the network by considering one facet after another.

Method act. eve. int. spo. obj. sce. avg

K700 57.6 17.9 17.8 53.1 74.2 93.1 52.2

K700+MIT 45.0 27.3 16.6 47.6 70.0 94.8 50.2

K700+MIT+SSV2 21.7 9.1 39.7 28.0 43.7 64.2 34.4

K700+MIT+SSV2+S1M 35.7 18.2 12.3 68.8 69.2 88.2 48.7

MUFI 57.8 27.0 47.8 67.7 77.8 97.5 62.6

volve the utilization of intra-facet supervision, they are dif-

ferent in the way that intraL2 exploits each video-label con-

nection independently, and intrance explores the influence

across different connections. As indicated by the results,

intrance leads to the boost against intraL2 by 3.3%.

The run of intrance+intervideo and intrance+interall fur-

ther employ the inter-facet supervision and improve the av-

erage accuracy from 59.9% to 60.2% and 60.9%. Note

that intrance+intervideo explores the inter-supervision from

the first four facets and emphasizes more on these facets.

As a result, it is not surprising that intrance+intervideo
exhibits consistently better performances than intrance on

these facets but with slightly worse performances on the

other two facets. In comparison, intrance+interall is bene-

fited from the inter-supervision among all the facets in both

video and image datasets and outperforms intrance across

all facets. With the multi-attention projection, MUFI nicely

balances the contribution of each facet for video represen-

tation learning and obtains a clear performance gain from

60.9% to 62.6%. More importantly, MUFI achieves the

highest accuracy across all the facets, showing the potential

of learning more discriminative and generalized features.

Difference between MUFI and training/fine-tuning

the network by considering one facet after another. One

common way in practice for video representation learning

on multiple datasets/facets is to pre-train the network on a

large-scale video dataset and then fine-tune the network by

other datasets one by one. We take K700 as the basis to pre-

train the network and fine-tune the architecture successively

with MIT, SSV2 and S1M. Table 2 details the changes of ac-

curacy as the network fine-tuning proceeds with one dataset

after another. An interesting observation is that the per-

formance gain tends to be large on the facet of dataset the

most recently used for fine-tuning while the performances

on other facets learnt before that drop significantly. For in-

stance, fine-tuning the network with S1M boosts up the ac-

curacy on the facet of sport from 28% to 68.8%. In the

meantime, the accuracy on the facet of action decreases

from 57.6% to 35.7%. We speculate that this may be the

result of local emphasis on the latest facet and the knowl-

edge learnt before may be partially “forgot.” In contrast,

MUFI explores the supervision among all the facets holis-

tically and performs the representation learning on multiple

datasets simultaneously. The results again demonstrate the

advantage of our MUFI on learning generalized representa-

tion across all the facets.
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Table 3. Per-facet comparisons with video representations ex-

tracted by off-the-shelf vision models.

Method act. eve. int. spo. obj. sce. avg

Image-based Representation

ResNet-50 [19] 33.1 10.5 11.1 42.5 80.5 89.0 44.4

SimCLR [5] (self-supervised) 31.4 10.8 12.2 42.4 75.3 89.7 43.6

MoCo v2 [18] (self-supervised) 32.0 11.2 12.1 42.7 79.4 90.0 44.5

Video-based Representation

C3D [50] 24.6 8.6 8.2 60.1 57.6 83.9 40.5

P3D ResNet-152 [45] 35.8 11.2 11.9 60.8 74.7 90.4 47.3

R(2+1)D-34-IG65M [14] 53.1 21.1 15.8 54.5 70.5 95.2 51.7

R(2+1)D-34-IG65M+K400 [14] 54.1 20.0 14.3 50.8 67.9 92.9 50.0

SeCo [61] (self-supervised) 34.3 11.8 11.5 45.2 63.7 88.7 42.5

MUFI 57.8 27.0 47.8 67.7 77.8 97.5 62.6

Comparisons with video representations extracted by

off-the-shelf vision models. Here, we include both image-

based and video-based models learnt in supervised, weakly-

supervised or self-supervised manner for comparison, and

Table 3 lists the results. In general, ResNet-50, SimCLR

and MoCo V2 all show good performances on the object

facet, and MoCo V2 slightly outdoes ResNet-50 on aver-

age. Compared to C3D, P3D devises a deeper network

and involves the pre-training on ImageNet, showing bet-

ter performances across all the facets. R(2+1)D-34-IG65M

model is trained on 65 million weakly-supervised social-

media videos and hashtags, and performs fairly well with

good generalization to all the facets. Further fine-tuning the

model with K400, improves feature discrimination on the

facet of action, but unfortunately, affects the generalization

on other facets. SeCo, as a self-supervised model on video

data, is superior to MoCo V2 on the motion-related facets,

e.g., action, event and sport, but inferior to MoCo V2 on the

appearance-related facets, e.g., object and scene. Note that

because MUFI only leverages the inter-facet supervision

from image data to strengthen the learning of object facet in

video representation, the learning on object facet may not be

utilized as fully as direct object classification in ResNet-50.

As such, MUFI performs slightly worse than ResNet-50 in

object facet. On other five facets, MUFI leads to significant

improvements against all the off-the-shelf models.

4.4. Experimental Analysis

Visualization of attention map in each facet. Multi-

attention projection is uniquely devised in MUFI to locate

the most indicative spatio-temporal regions from the view-

point of each facet. Figure 4 illustrates three video examples

with the attention maps of all the six facets and the nearest

label in terms of each facet in the embedding space. Over-

all, attention maps are expected to infer relevant video con-

tent in response to different facets. Taking the first video as

an example, MUFI focuses on the regions around the Bas-

ket from action facet and pinpoints the regions of driveway

with respect to the scene facet. Such multi-faceted integra-

tion equips video content understanding more comprehen-

dunking basketball dunkingNearest Category:
throwing something 

against something slamball mobile home driveway

Action Event Interaction Sport Object Scene

Nearest Category: riding a bike pedaling
moving something and 

something closer to each other unicycle bicycle-built-for-two promenade

Nearest Category: being in zero gravity lifting moving part of something walking stretcher engine room

Figure 4. Video examples with per-facet attention maps and the

nearest label from each facet in embedding space.

Action: Event: Interaction: Sport: Object: Scene:

Action: Event: Interaction: Sport: Object: Scene:

driving car: 0.93

pushing car: 0.54

steering car: 0.49

racing: 0.97

crashing: 0.33

driving: 0.32

Showing something to the 

camera: 0.93

Showing a photo of something 

to the camera: 0.73

Turning the camera upwards 

while filming something: 0.66

dirt track racing: 0.85

stock car racing: 0.76

short track motor 

racing: 0.62

racer: 0.97

sports car: 0.33

streetcar: 0.32

raceway: 0.88

volcano: 0.30

cemetery: 0.28

coloring in: 0.99

mixing colours: 0.30

looking in mirror: 0.27

drawing: 0.96

painting: 0.41

sketching: 0.31

Hitting something with 

something: 0.71

Throwing something against 

something: 0.59

Pushing something with 

something: 0.54

yoga: 0.39

angling: 0.34

dodgeball 0.32

ballpoint: 0.46

rubber eraser: 0.43

pick: 0.40

art studio: 0.65

jewelry shop: 0.57

art school: 0.51

Action: Event: Interaction: Sport: Object: Scene:

jumping bicycle: 0.46

riding mule: 0.43

riding elephant: 0.42

hiking: 0.70

bicycling: 0.66

riding: 0.34

Approaching something with 

your camera: 0.84

Moving away from something 

with your camera: 0.73

Turning the camera upwards 

while filming something: 0.60

freeride: 0.46

downhill mountain 

biking: 0.41

canyoning: 0.38

valley: 0.70

lakeside: 0.30

cliff: 0.30

rainforest: 0.71

forest path: 0.70

bamboo forest: 0.67

Figure 5. Video examples with the top-3 relevant labels in the em-

bedding space from every facet.

sive and endows video representation with more power.

Examples of visual-semantic embedding. Next, we

qualitatively study the learnt visual-semantic embedding by

MUFI. Figure 5 showcases three video clips with the top-3

relevant labels in the embedding space from every facet and

each video clip is presented by six frames. As shown in the

Figure, most labels are appropriate for describing the video

content from different facets. For example, driving car in

action facet, racing from event standpoint, racer from ob-

ject perspective and raceway with respect to scene facet are

all correlated with the first video and offer more dimensions

of knowledge for video representation learning.

4.5. Evaluations on Downstream Tasks

We compare with several state-of-the-art methods on

three downstream tasks: action recognition on UCF101,

HMDB51 and Kinetics-400, interaction recognition on

Something-Something V1/V2 (SS-V1/V2), and video cap-

tioning on MSVD. Table 4 shows the comparisons on both

UCF101 and HMDB51, and the performances of all the

methods are reported with RGB input. MUFI+fine-tuning

consistently outperforms other methods in the two datasets.

In particular, MUFI+fine-tuning leads the accuracy by 1.1%
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Table 4. Performance comparisons with the state-of-the-art meth-

ods with RGB input on UCF101 (3 splits) & HMDB51 (3 splits).

Method Backbone Pre-train UCF101 HMDB51

Linear/Fine-tuning Protocol

I3D [2] BN-Inception Kinetics-400 95.4 74.5

ARTNet [54] BN-Inception Kinetics-400 94.3 70.9

R(2+1)D [52] ResNet-34 Kinetics-400 96.8 74.5

S3D-G [59] BN-Inception Kinetics-400 96.8 75.9

STM [23] ResNet-50 Kinetics-400 96.2 72.2

LGD-3D [46] ResNet-101 Kinetics-600 97.0 75.7

MUFI+linear ResNet-50 Multi-Faceted 95.7 72.2

MUFI+fine-tuning ResNet-50 Multi-Faceted 98.1 80.9

Zero-shot Protocol

SAOE [37] GoogLeNet ImageNet 32.8 –

CPD [29] 3D ResNet50 Kinetics-210k 39.9 –

MUFI ResNet-50 Multi-Faceted 56.3 31.0

Table 5. Performance comparisons with the state-of-the-art meth-

ods with RGB input on Kinetics-400.

Method Backbone Pre-train top-1 top-5

I3D [2] BN-Inception ImageNet 72.1 90.3

R(2+1)D [52] ResNet-34 Sports1M 74.3 91.4

S3D-G [59] BN-Inception ImageNet 74.7 93.4

NL I3D [57] ResNet-101 ImageNet 77.7 93.3

LGD-3D [46] ResNet-101 ImageNet 79.4 94.4

SlowFast [10]

ResNet-50 – 77.0 92.6

ResNet-101 – 78.9 93.5

ResNet-101+NL – 79.8 93.9

R(2+1)D [14]
ResNet-34 IG65M 79.6 93.9

ResNet-152 IG65M 81.3 95.1

irCSN [51]

irCSN-152 none 76.8 92.5

irCSN-152 Sports1M 79.0 93.5

irCSN-152 IG65M 82.6 95.3

MUFI+linear ResNet-50 Multi-Faceted 79.0 92.3

MUFI+fine-tuning ResNet-50 Multi-Faceted 81.1 95.1

MUFI+linear ResNet-101 Multi-Faceted 79.8 93.2

MUFI+fine-tuning ResNet-101 Multi-Faceted 82.3 95.3

and 5.2% over LGD-3D which uses a deeper backbone of

ResNet-101. In addition to linear model and network fine-

tuning protocols, we also include zero-shot protocol here,

which performs classification by retrieving the nearest class

based on the cosine distance between video clip and class

labels in the embedding space. MUFI is again superior to

SAOE and CPD. The results basically verify the generaliza-

tion of the embedding space learnt by MUFI. Table 5 sum-

marizes the performances on Kinetics-400 dataset. Sim-

ilarly, the performance gain of MUFI+fine-tuning against

LGD-3D is 2.9%, based on the same backbone of ResNet-

101. MUFI+fine-tuning exhibits better performances than

R(2+1)D-ResNet-152 with deeper network training on a

much larger dataset of IG65M and performs comparable to

irCSN trained on IG65M.

Table 6 and Table 7 list the comparisons on SS-V1/V2

and MSVD for interaction recognition and video caption-

ing, respectively. The top-1 accuracy of MUFI+fine-tuning

achieves 51.2% and 64.8% on SS-V1 and SS-V2, making

the absolute improvement over the best competitor STM by

0.5% and 0.6%. For video captioning, we exploit MUFI

model to extract video representation and feed the repre-

sentation into a transformer-based encoder-decoder struc-

Table 6. Performance comparisons with state-of-the-art methods

with RGB input on Something-Something V1/V2 (SS-V1/V2).

Method Pre-train
SS-V1 SS-V2

Top-1 Top-5 Top-1 Top-5

NL I3D+GCN [58] ImageNet+K400 46.1 76.8 – –

TSM [30] ImageNet+K400 47.2 77.1 63.4 88.5

bLVNet-TAM [9] ImageNet 48.4 78.8 61.7 88.1

ABM-C-in [66] ImageNet 49.8 – 61.2 –

I3D+RSTG [39] ImageNet+K400 49.2 78.8 – –

GST [35] ImageNet 48.6 77.9 62.6 87.9

STDFB [36] ImageNet 50.1 79.5 – –

STM [23] ImageNet 50.7 80.4 64.2 89.8

MUFI+linear Multi-Faceted 45.1 73.4 55.2 81.8

MUFI+fine-tuning Multi-Faceted 51.2 81.0 64.8 90.0

Table 7. Performance comparisons with state-of-the-art methods

for video captioning on MSVD. (Evaluation metrics: BLEU@4

(B@4), METEOR (M), ROUGE-L (R) and CIDEr-D (C)).

Method Backbone B@4 M R C

MARN [41] ResNet-101+C3D 48.6 35.1 71.9 92.2

OA-BTG [62] ResNet-200+Mask-RCNN 56.9 36.2 - 90.6

GRU-EVE [1] IncResV2+C3D+YOLO 47.9 35.0 71.5 78.1

MGSA [4] IncResV2+C3D 53.4 35.0 - 86.7

POS+VCT [20] IncResV2+C3D 52.5 34.1 71.3 88.7

ORG-TRL [63] IncResV2+C3D+FasterRCNN 54.3 36.4 73.9 95.2

MUFI ResNet-50 56.9 37.4 74.2 101.5

ture to produce the sentence. As shown in the table, video

representation learnt by MUFI leads to a CIDEr-D score

boost of 6.3% over the state-of-the-art model of ORG-TRL

which fuses multiple video features extracted by Inception-

ResNet-v2, C3D and Faster RCNN. This confirms the ad-

vantage of integrating multi-faceted information into video

representation learning in our MUFI.

5. Conclusion

We have presented MUlti-Faceted Integration (MUFI)

framework, which explores various facets in videos to boost

representation learning. Particularly, we study the prob-

lem from the viewpoint of integrating the knowledge from

different datasets to represent multi-faceted information of

a video. We first exploit the pre-trained language model

to extract textual features of labels and build the seman-

tic space across all the datasets as the embedding space.

Each video representation is then mapped into the embed-

ding space. Both intra-facet connection between a video

and its own labels, and inter-facet predictions from other

datasets are taken into account as multi-faceted supervi-

sion to optimize the visual-semantic embedding and eventu-

ally improve video representation. Experiments conducted

on a union of four large-scale video datasets and two im-

age datasets validate our proposal. More remarkably, our

MUFI constantly obtains superior results over state-of-the-

art methods in several downstream tasks.
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