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Abstract

Given the prominence of current 3D sensors, a fine-

grained analysis on the basic point cloud data is worthy of

further investigation. Particularly, real point cloud scenes

can intuitively capture complex surroundings in the real

world, but due to 3D data’s raw nature, it is very challeng-

ing for machine perception. In this work, we concentrate on

the essential visual task, semantic segmentation, for large-

scale point cloud data collected in reality. On the one hand,

to reduce the ambiguity in nearby points, we augment their

local context by fully utilizing both geometric and seman-

tic features in a bilateral structure. On the other hand, we

comprehensively interpret the distinctness of the points from

multiple resolutions and represent the feature map follow-

ing an adaptive fusion method at point-level for accurate

semantic segmentation. Further, we provide specific abla-

tion studies and intuitive visualizations to validate our key

modules. By comparing with state-of-the-art networks on

three different benchmarks, we demonstrate the effective-

ness of our network.

1. Introduction

As 3D data acquisition techniques develop rapidly, dif-

ferent types of 3D scanners, e.g. LiDAR scanners [22] and

RGB-D cameras [10] are becoming popular in our daily

life. Basically, 3D scanners can capture data that enables

AI-driven machines to better see and recognize the world.

As a fundamental data representation, point clouds can be

easily collected using 3D scanners, retaining abundant in-

formation for further investigation. Therefore, point cloud

analysis is playing an essential role in 3D computer vision.

Research has shown great success in terms of basic clas-

sification of small-scale point clouds (i.e., objects contain-

ing a few thousand points): for example, face ID [16] is

now a widely used bio-identification for mobile devices.

Researchers have recently been investigating a fine-grained

analysis of large and complex point clouds [44, 26, 19, 48]

Figure 1: Examples of semantic segmentation for real point cloud

scenes, where the main differences are highlighted and zoomed-

in. The upper row shows an indoor working environment with

∼0.9 million points: RandLA-Net [19] falsely classifies the wall

around the room corner, while our result is much closer to the

ground-truth. The lower row is an outdoor traffic scene containing

∼32 thousand points, where a small bike on the right is correctly

identified by our network (in blue), while RandLA-Net mislabels

it as vegetation (in green).

because of the tremendous potential in applications such as

autonomous driving, augmented reality, robotics, etc. This

paper focuses on the semantic segmentation task to identify

each point’s semantic label for real point cloud scenes.

Although there are many notable works [41, 35, 55] ad-

dressing the semantic segmentation of 2D images which

have a simpler structure, point clouds are scattered, irregu-

lar, unordered, and unevenly distributed in 3D space, mak-

ing the corresponding task much more challenging, espe-

cially for large scenes made of millions or even billions

of points collected from the real world. To deal with

the 3D data, many papers try to build data-driven models

using deep learning. Specifically, Guo et al. [13] sum-

marizes the Convolutional Neural Network (CNN) mod-

els targeting point clouds into three streams: projection-

based, discretization-based, and point-based methods. As

a projection-based example, Lawin et al. [27] virtually

projects 3D point clouds onto images and applies a con-

ventional FCN [35] to analyze the 2D multi-view repre-

sentations. Similarly, the discretization-based approaches

model point clouds as voxels [20] or lattices [42] for CNN

processing, and finally interpolate the semantic results back
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to the original input. However, the mentioned methods are

not optimal for real applications due to some common is-

sues: firstly, they require several time-consuming pre/post-

processing steps to make predictions; and secondly, the gen-

erated intermediate representations may partially lose the

context of the surroundings.

To avoid the above issues, in this paper, we prefer point-

based networks (details in Sec. 2) that directly process the

points for fine-grained analysis. Moreover, for an accurate

semantic segmentation on real point cloud scenes, we en-

deavor to resolve the major drawbacks of existing works:

Ambiguity in close points. Most current solutions [45,

11, 40] represent a point based on its pre-defined neighbors

via a fixed metric like Euclidean distance. However, outliers

and overlap between neighborhoods during the neighbor-

hood’s construction are difficult to avoid, especially when

the points are closely distributed near the boundaries of dif-

ferent semantic classes. To alleviate possible impacts, we

attempt to augment the local context by involving a dense

region. Moreover, we introduce a robust aggregation pro-

cess to refine the augmented local context and extract useful

neighboring information for the point’s representation.

Redundant features. We notice an increasing number of

works [19, 50, 39] combine similar features multiple times

to enhance the perception of the model. In fact, this pro-

cess causes redundancy and increases the complexity for

the model to process large-scale point clouds. To avoid the

above problems, we propose to characterize the input in-

formation as geometric and semantic clues and then fully

utilize them through a bilateral structure. More compactly,

our design can explicitly represent complex point clouds.

Inadequate global representations. Although some ap-

proaches [38, 34, 29] apply an encoder-decoder [3] struc-

ture to learn the sampled point cloud; the output feature map

is inadequate for a fine-grained semantic segmentation anal-

ysis since the global perception of the original data would

be damaged during the sampling process. In our method, we

intend to rebuild such perception by integrating information

from different resolutions. Moreover, we adaptively fuse

multi-resolutional features for each point to obtain a com-

prehensive representation, which can be directly applied for

semantic prediction.

To conclude, our contributions are in these aspects:

• We introduce a bilateral block to augment the local

context of the points.

• We adaptively fuse multi-resolutional features to ac-

quire comprehensive knowledge about point clouds.

• We present a novel semantic segmentation network

using our proposed structures to deal with real point

cloud scenes.

• We evaluate our network on three large-scale bench-

marks of real point cloud scenes. The experimental

results demonstrate that our approach achieves com-

petitive performances against state-of-the-art methods.

2. Related Work

Point-Based Approaches: As mentioned before, point-

based approaches are designed to process unstructured 3D

point cloud data directly rather than using its intermedi-

ate variants. Particularly, PointNet [37] applied the multi-

layer-perceptron (MLP) and symmetric function (e.g., max-

pooling) to learn and aggregate point cloud features, respec-

tively. Subsequently, point-wise MLPs were used to ex-

tract local features based on neighbor searching methods:

e.g., ball-query in PointNet++ [38], or k-nearest neighbors

(knn) in DGCNN [45]. Moreover, MLPs were extended

to perform point-convolutions: for instance, KPConv [44]

leveraged kernel-points to convolve local point sets, while

DPC [11] defined dilated point groups to increase the recep-

tive fields of the points. Recurrent Neural Network (RNN)

and Graph Convolutional Network (GCN) have also been

adopted to replace regular CNNs in point-based approaches:

for example, Liu et al. [33] transformed point clouds into

sequences and processed the scaled areas using an LSTM

structure, and Landrieu et al. [26] exploited super-point

graphs to acquire semantic knowledge.

Point Clouds Feature Representations: Different from

the individual point features in PointNet [37], the fol-

lowing methods focus on learning feature representations

from local areas. Usually, the point neighbors are de-

fined based on spatial metrics, e.g., 3D Euclidean distances

in [38, 34, 50, 19] or embedding similarities in [45, 39, 40].

By operating CNN-based modules over the neighborhoods,

the local features of point clouds can be collected.

However, existing methods have limited capability to

capture local details since they have not utilized the given

information fully. Some works [37, 38, 45] only input the

embedded features for each layer and lack the geometric re-

strictions in deep layers. Although current methods [34, 39]

employ local descriptors to strengthen the spatial relations,

however, the additional computational cost is involved. The

latest approaches [50, 19] combine the original 3D coordi-

nates in all scales of the network, but the effect is subtle.

Differently, we exploit the point features from two proper-

ties: the geometric and semantic contexts. By augmenting

them in a bilateral fashion, we can synthesize an augmented

local context to represent the point.

Semantic Segmentation Networks: 2D semantic segmen-

tation has been well studied in deep learning research. The

basic FCN [35] applied a fully convolutional architecture to

learn the features of each pixel. Further, UNet [41] designed

the symmetric downsampling and upsampling structure for
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Figure 2: The details of our semantic segmentation network and the Bilateral Context Block (the annotations are consistent with the items

in Sec. 3.1). Firstly, the Feature Extractor (Sec. 4.1) captures the preliminary semantic context F from the input data. Then, the Bilateral

Context Module (i.e., a series of the Bilateral Context Blocks) augments the local context of multiple point cloud resolutions. Generally, the

Bilateral Context Block requires both semantic and geometric context as bilateral inputs. In particular, the first block inputs the preliminary

F and the original 3D coordinates P; while each of the others inputs its previous one’s downsampled output and coordinates P , as the

semantic and geometric context respectively. Afterward, our Adaptive Fusion Module (Sec. 3.2) upsamples the Bilateral Context Blocks’

outputs, then adaptively fuses them as an output feature map. Finally, we predict semantic labels for all points via fully-connected layers.

image segmentation, while SegNet [3] proposed the convo-

lutional encoder-decoder structure. More recently, Chen et

al. [7] used a bi-directional gate to leverage multi-modality

features, i.e., color and depth, for RGB-D images.

In terms of 3D point clouds, most approaches are similar

to the 2D image frameworks. For small-scale point clouds,

the fully convolutional modules in [37, 45, 39] are able to

manage the complexity of the data. In contrast, for large-

scale data, some networks [38, 34, 19, 50] apply the convo-

lutional encoder-decoders as SegNet [3] does, to generate

the point-wise representations. However, the performance

may be less satisfactory: as lower resolutions are explored,

it becomes more difficult to interpret the local context of the

unstructured 3D points. Although methods [11, 19, 40] at-

tempt to tackle this problem by increasing the point’s recep-

tive field for a more detailed interpretation, it is expensive to

find the optimal settings. Recent RandLA-Net [19] achieves

high efficiency using naive random sampling, while the net-

work’s accuracy and stability are sacrificed. Unlike the ex-

isting methods, we propose a bilateral augmentation struc-

ture to effectively process multi-resolution point clouds, and

utilize an adaptive fusion method to represent the compre-

hensive point-wise features efficiently.

3. Methodology

A point cloud containing N points can be described

mainly from two aspects: 1) the inherent coordinates in 3D

space P ∈ R
N×3 which are explicitly obtained by 3D scan-

ners indicating the geometric context of the points; and 2)

the acquired features F ∈ R
N×d in d-dimensional feature

space which can be implicitly encoded by CNN-based oper-

ations implying latent clues about semantic context. From

this point of view, P and F are regarded as two properties

of the point cloud features.

Although P is less informative for semantic analysis, it

can enrich the basic perception of geometry for the network.

On this front, we aim to fully utilize P and F in a reason-

able way, which can support learning a comprehensive fea-

ture map for accurate semantic segmentation.

3.1. Bilateral Context Module

The Bilateral Context Module consists of a number of

Bilateral Context Blocks to investigate the point cloud at

different resolutions, as shown in Fig. 2. In the Bilateral

Context Block, we intend to augment the local context of

each point by involving the offsets that are mutually learned

from the bilateral input information (i.e., pi ∈ R
3 and fi ∈

R
d), and then aggregate the augmented local context for the

point feature representation. Particularly, we propose two

novel units and a loss function to fulfill the intention.

Bilateral Augmentation: For a centroid pi, we find its

neighbors ∀pj ∈ Ni(pi) using knn under the metric of

3D-Euclidean distance, while the corresponding neighbor

features are denoted as fj . To simultaneously capture both

global and local information about the neighborhood, we

combine the absolute position of the centroid and the rela-

tive positions of its neighbors as the local context Gψ . Ac-

cordingly, Gψ(pi) = [pi; pj−pi] represents local geometric

context in 3D space, while Gψ(fi) = [fi; fj − fi] shows

local semantic context in feature space.
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However, Gψ(pi) and Gψ(fi) may be insufficient to rep-

resent the neighborhoods due to two reasons: 1) strict for-

mation under a fixed constraint in 3D space could weaken

the generalization capability of Gψ in high-dimensional fea-

ture space, and 2) the Gψ neighborhoods may have redun-

dancy in the representations of close regions. To solve these

issues and strengthen the generalization capability of the

features, we can augment the local context by adding bilat-

eral offsets, which shift the neighbors and densely affiliate

them to the neighborhood’s centroid.

To be specific, as the primary concern, we augment the

local geometric context Gψ(pi) based on the rich semantic

information of Gψ(fi). Particularly, we apply an MLP (M)

on Gψ(fi), to estimate the 3-DoF (Degrees of Freedom) bi-

lateral offsets for the neighbors ∀pj ∈ Ni(pi). Therefore,

the shifted neighbors are formulated as:

p̃j =M(Gψ(fi)) + pj , p̃j ∈ R
3. (1)

Afterwards, we gather the auxiliary perception of the

shifted neighbors to augment the local geometric context:

G̃ψ(pi) = [pi; pj − pi; p̃j ]; where G̃ψ(pi) ∈ R
k×9 and k is

the number of neighbors.

Subsequently, the d-DoF bilateral offsets for the neigh-

bor features fj can also be collected from G̃ψ(pi) since we

expect the augmented local geometric context to further en-

hance the local semantic context. Similarly, the neighbor

features are shifted as:

f̃j =M(G̃ψ(pi)) + fj , f̃j ∈ R
d; (2)

and the augmented local semantic context is formed as:

G̃ψ(fi) = [fi; fj − fi; f̃j ], where G̃ψ(fi) ∈ R
k×3d.

After further projecting the G̃ψ(pi) and G̃ψ(fi) by MLPs,

we concatenate them as an augmented local context Gi:

Gi = concat
(

M
(

G̃ψ(pi)
)

,M
(

G̃ψ(fi)
)

)

∈ R
k×d′ . (3)

Augmentation Loss: We also introduce some penalties to

regulate the learning process of the bilateral offsets in Eq. 1.

Since we should not only provide 3-DoF augmentation for

the neighbors but also preserve the geometric integrity of a

dense neighborhood, it is preferable to consider the neigh-

bors as a whole instead of taking individual neighbors into

account. Intuitively, we encourage the geometric center of

the shifted neighbors to approach the local centroid in 3D

space by minimizing the ℓ2 distance:

L(pi) =
∥

∥

∥

1

k

∑k

j=1
p̃j − pi

∥

∥

∥

2

. (4)

Mixed Local Aggregation: Point-wise feature representa-

tion is crucial for the semantic segmentation task. Although

non-parametric symmetric functions can efficiently summa-

rize local information for the points, they cannot explicitly

Algorithm 1: Adaptive Fusion Module Pipeline

input: M multi-resolution feature maps

{S1,S2, ...,SM}.
output: Sout for semantic segmentation.

1 for Sm ∈ {S1,S2, ...,SM} do

2 upsample: S̃m ← Sm;

3 summarize: φm ← S̃m;

4 end for

5 obtain: ∀S̃m ∈ {S̃1, S̃2, ..., S̃M}, S̃m ∈ R
N×c;

and ∀φm ∈ {φ1, φ2, ..., φM}, φm ∈ R
N .

6 regress: {Φ1,Φ2, ...,ΦM} ← {φ1, φ2, ..., φM},

where Φm ∈ R
N .

7 return:

Sout =
∑M

m=1
Φm × S̃m.

show the local distinctness, especially for close points shar-

ing similar local context. To handle this problem, we pro-

pose a mixed local aggregation method to gather a precise

neighborhood representation.

Given the augmented local context Gi, on the one hand,

we directly collect the maximum (prominent) feature from

the k neighbors for an overview of the neighborhood. On

the other hand, we closely investigate the representations of

the neighbors, refining and obtaining more details by learn-

ing the high-dimensional barycenter (i.e., weighted mean

point) over the neighborhood. In the end, we combine the

two types of information, the local max and mean features,

to precisely represent the point as:

si = concat
(

max
k

(Gi),mean
k,Θi

(Gi)
)

, si ∈ R
2d′ ; (5)

where Θi is a set of learnable weights for k neighbors. The

implementation details are in Sec. 4.2.

3.2. Adaptive Fusion Module

To efficiently analyze a real 3D scene consisting of

a large number of points, we can gradually explore the

point cloud in decreasing resolutions. Although it can be

easily realized by applying the cascaded Bilateral Con-

text Blocks for downsampled point cloud subsets, the cor-

responding output features become implicit and abstract.

Therefore, it is essential to restore a feature map provid-

ing the original number of points and comprehensively in-

terpret each point’s encoded information. Specifically, we

choose to fuse fine-grained representations from the multi-

resolution feature maps adaptively.

Assume that M lower resolutions of the point cloud

are processed by the Bilateral Context Module (i.e., a cas-

caded set of the Bilateral Context Blocks as shown in

Fig. 2), we extract a set of multi-resolution feature maps
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as {S1,S2, ...,SM} including {N1, N2, ..., NM} points, re-

spectively.1 As claimed in Alg. 1, for each extracted feature

map ∀Sm ∈ {S1,S2, ...,SM}, we conduct progressive up-

sampling until a full-sized representation for all N points is

generated. Following a similar process, we reconstruct the

full-sized feature maps {S̃1, S̃2, ..., S̃M}.
Although we manage to interpret the whole point cloud,

in terms of each point, the upsampled feature representa-

tions that originate from multiple resolutions may result in

different scales of information. To integrate the information

and refine the useful context for semantic segmentation, we

fuse the full-sized feature maps adaptively at point-level.

To be concrete, we additionally summarize the point-

level information φm ∈ R
N during the upsampling pro-

cess of each full-sized feature map’s generation, in order

to capture basic point-level understanding from different

scales. Next, by analyzing those point-level perceptions

{φ1, φ2, ..., φM} on the whole, we regress the fusion pa-

rameters {Φ1,Φ2, ..,ΦM} corresponding to the full-sized

feature maps {S̃1, S̃2, ..., S̃M}, respectively. In the end, a

comprehensive feature map Sout for semantic segmenta-

tion is adaptively fused throughout multi-resolution features

w.r.t. each point. Theoretically, it follows:

Sout =

M
∑

m=1

Φm × S̃m, Φm ∈ R
N . (6)

More details about the Adaptive Fusion Module implemen-

tation are presented in Sec. 4.3.

4. Implementation Details

Based on the key structures in Sec. 3, we form an ef-

fective network for the semantic segmentation of real point

clouds scenes. As illustrated in Fig. 2, our network has three

modules: the Feature Extractor, the Bilateral Context Mod-

ule, and the Adaptive Fusion Module. We introduce the

details of each module in the following sections.

4.1. Feature Extractor

Besides spatial 3D coordinates, some datasets may in-

clude other clues, e.g., RGB colors, light intensity, etc. To

create an overall impression of the whole scene, initially, we

apply the Feature Extractor to acquire preliminary semantic

knowledge from all of the provided information. Given the

advantages of an MLP that it can represent the features flex-

ibly in a high-dimensional embedding space, empirically,

we apply a single-layer MLP (i.e., a 1-by-1 convolutional

layer followed by batch normalization [21] and an activa-

tion function like ReLU) to obtain high-level compact fea-

tures. Fig. 2 shows the acquired features F from the Fea-

1N > N1 > N2 > ... > NM , N is the original size of a point

cloud.

ture Extractor which are forwarded to the Bilateral Context

Module, along with the 3D coordinates P .

4.2. Bilateral Context Module Implementation

As mentioned before, the Bilateral Context Module ex-

plores the different resolutions of point cloud data. For the

sake of stability, we use CUDA-based Farthest Point Sam-

pling (FPS) to sample the data based on its 3D distribution.

Particularly, the Bilateral Context Module deploys cascaded

Bilateral Context Blocks to gradually process the lower res-

olutions of the point cloud: e.g., N→N
4
→N

16
→N

64
→ N

256
.

Meanwhile, the dimensions of the outputs are increasing

as: 32→128→256→512→1024. In this regard, the be-

havior of the Bilateral Context Module processing the 3D

point clouds is similar to the classical CNNs for 2D images,

which extend the channel number while shrinking the image

size for a concise description.

Inside each Bilateral Context Block, an efficient k-

nearest neighbor using the nanoflann [5] library speeds up

neighbor searching in the bilateral augmentation unit. Em-

pirically, we set k=12 for all experiments in this work. For

the mixed local aggregation unit, the local max feature is

collected by operating a max-pooling function along the

neighbors. Following a similar operation in [19], we si-

multaneously refine and re-weight the neighbors through a

single-layer MLP and a softmax function, then aggregate

the barycenter of local embeddings as the local mean fea-

ture. Finally, the local max and mean features are concate-

nated as the output of the mixed local aggregation unit.

4.3. Adaptive Fusion Module Implementation

As explained in Sec. 3.2, our Adaptive Fusion Mod-

ule aims to upsample the multi-resolution outputs of the Bi-

lateral Context Module, and then adaptively fuse them as a

comprehensive feature map for the whole point cloud scene.

To be more specific with the upsampling process, at first, a

single-layer MLP integrates the channel-wise information

of the output feature maps. Then, we point-wisely interpo-

late a higher-resolution feature map using nearest neighbor

interpolation [23], since it is more efficient for large-scale

data than Feature Propagation [38] that requires huge com-

putational cost for neighbors and weights. Moreover, we

symmetrically attach the features from the same resolution

in order to increase diversity and distinctness for nearby

points. Finally, a higher-resolution feature map is synthe-

sized via another single-layer MLP.

The upsampling process is continuously performed to

get full-sized feature maps {S̃1, S̃2, ..., S̃M} from the multi-

resolution outputs of the Bilateral Context Module. During

this process, we also use a fully-connected layer to summa-

rize the point-level information φm once a full-sized fea-

ture map S̃m is reconstructed. To analyze the summarized

information, we concatenate {φ1, φ2, ..., φM}, and point-
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wisely normalize them using softmax. As a result, the fu-

sion parameters {Φ1,Φ2, ...,ΦM} are adaptively regressed

w.r.t. each point. After calculating a weighted sum of the

upsampled feature maps (Eq. 6), we eventually combine a

feature map containing all points for whole scene semantic

segmentation. Besides, a structure chart of this module is

provided in the supplementary material.

4.4. Loss Function

Using the fused output of the Adaptive Fusion Module,

the FC layers predict the confidence scores for all candi-

date semantic classes. Generally, cross-entropy loss LCE is

computed for back-propagation. Further, we include point-

level augmentation losses L(pi) that are formulated follow-

ing Eq. 4. In terms of a Bilateral Context Block processing

Nm points, the total augmentation loss regarding Nm points

would be Lm =
∑Nm

i=1
L(pi). Hence, for our network con-

taining M Bilateral Context Blocks, the overall loss is:

Lall = LCE +

M
∑

m=1

ωm · Lm, (7)

where ωm is a hyper-parameter of weight for each Bilateral

Context Block.

5. Experiments

5.1. Experimental Settings

Datasets: In this work, we are targeting the semantic seg-

mentation of real point cloud scenes. To validate our ap-

proach, we conduct experiments on three 3D benchmarks,

which present different scenes in the real world.

• S3DIS: Stanford Large-Scale 3D Indoor Spaces

(S3DIS) [2] dataset is collected from indoor working

environments. In general, there are six sub-areas in

the dataset, each containing ∼50 different rooms. The

number of points in most rooms varies from 0.5 million

to 2.5 million, depending on the room’s size. All points

are provided with both 3D coordinates and color infor-

mation and labeled as one of 13 semantic categories.

We adopt a 6-fold strategy [37] for evaluation.

• Semantic3D: The points in Semantic3D [14] are

scanned in natural scenes depicting various rural and

urban views. Overall, this dataset contains more than

four billion points manually marked in eight seman-

tic classes. In particular, the dataset has two test sets

for online evaluation: the full test set (i.e., semantic-

8) has 15 scenes with over 2 billion points, while its

subset (i.e., reduced-8) has four selected scenes with

∼0.1 billion sampled points. In this work, we use both

3D positions and colors of points for training and then

infer the dense scenes of entire semantic-8 test set.

Table 1: Semantic segmentation (6-fold cross-validation) results

(%) on the S3DIS dataset [2]. (mAcc: average class accuracy,

OA: overall accuracy, mIoU: mean Intersection-over-Union. “-”

indicates unknown result.)

year Method mAcc OA mIoU

2017
PointNet [37] 66.2 78.6 47.6

PointNet++ [38] 67.1 81.0 54.5

2018

A-SCN [49] - 81.6 52.7

PointCNN [30] 75.6 88.1 65.4

SPG [26] 73.0 85.5 62.1

2019

DGCNN [45] - 84.1 56.1

KP-Conv [44] 79.1 - 70.6

ShellNet [53] - 87.1 66.8

PointWeb [54] 76.2 87.3 66.7

SSP+SPG [25] 78.3 87.9 68.4

2020

Seg-GCN [28] 77.1 87.8 68.5

PointASNL [50] 79.0 88.8 68.7

RandLA-Net [19] 82.0 88.0 70.0

MPNet [17] - 86.8 61.3

InsSem-SP [32] 74.3 88.5 64.1

Ours 83.1 88.9 72.2

• SemanticKITTI: SemanticKITTI [4] was introduced

based on the well-known KITTI Vision [12] bench-

mark illustrating complex outdoor traffic scenarios.

There are 22 stereo sequences, which are densely

recorded as scans (∼0.1 million points in each scan)

and precisely annotated in 19 semantic classes. Partic-

ularly, 11 of the 22 sequences are provided with labels,

while the results of the other ten sequences (over 20k

scans) are for online evaluation. As in [4], we take se-

quence 08 as the validation set, while the remaining

ten labeled sequences (∼19k scans) are for training.

Training Settings: We train for 100 epochs on a single

GeForce RTX 2080Ti GPU with a batch size between 4 to 6,

depending on the amount of input points (about 40× 210 to

64× 210) for different datasets. In addition, the Adam [24]

optimizer is employed to minimize the overall loss in Eq. 7;

the learning rate starts from 0.01 and decays with a rate of

0.5 after every 10 epochs. We implement the project2 in

Python and Tensorflow [1] platforms using Linux.

Evaluation Metrics: To evaluate our semantic segmenta-

tion performance, we largely use the mean Intersection-

over-Union (mIoU), the average value of IoUs for all se-

mantic classes upon the whole dataset. Further, we also

provide the overall accuracy (OA) regarding all points and

the average class accuracy (mAcc) of all semantic classes.

As for S3DIS [2], we compute the mIoU based on all pre-

dicted sub-areas following the 6-fold strategy. Similarly, for

both Semantic3D [14] and SemanticKITTI [4], we provide

the online submission testing results of general mIoU and

2The codes and test results are available at https://github.

com/ShiQiu0419/BAAF-Net.
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Table 2: Semantic segmentation (semantic-8) results (%) on the Semantic3D dataset [14].

Method OA mIoU
man-made natural high low

buildings
hard scanning

cars
terrain terrain vegetation vegetation scape artefacts

TMLC-MS [15] 85.0 49.4 91.1 69.5 32.8 21.6 87.6 25.9 11.3 55.3

EdgeConv-PN [9] 89.4 61.0 91.2 69.8 51.4 58.5 90.6 33.0 24.9 68.6

PointNet++ [38] 85.7 63.1 81.9 78.1 64.3 51.7 75.9 36.4 43.7 72.6

SnapNet [6] 91.0 67.4 89.6 79.5 74.8 56.1 90.9 36.5 34.3 77.2

PointConv [47] 91.8 69.2 92.2 79.2 73.1 62.7 92.0 28.7 43.1 82.3

PointGCR [36] 92.1 69.5 93.8 80.0 64.4 66.4 93.2 39.2 34.3 85.3

PointConv-CE [31] 92.3 71.0 92.4 79.6 72.7 62.0 93.7 40.6 44.6 82.5

RandLA-Net [19] 94.2 71.8 96.0 88.6 65.3 62.0 95.9 49.8 27.8 89.3

SPG [26] 92.9 76.2 91.5 75.6 78.3 71.7 94.4 56.8 52.9 88.4

Ours 94.9 75.4 97.9 95.0 70.6 63.1 94.2 41.6 50.2 90.3

Table 3: Semantic segmentation (single-scan) results (%) on the SemanticKITTI dataset [4].
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PointNet [37] 14.6 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7

PointNet++ [38] 20.1 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9

SquSegV2 [46] 39.7 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 36.3

TangentConv [43] 40.9 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5

PointASNL [50] 46.8 87.4 74.3 24.3 1.8 83.1 87.9 39.0 0.0 25.1 29.2 84.1 52.2 70.6 34.2 57.6 0.0 43.9 57.8 36.9

RandLA-Net [19] 53.9 90.7 73.7 60.3 20.4 86.9 94.2 40.1 26.0 25.8 38.9 81.4 61.3 66.8 49.2 48.2 7.2 56.3 49.2 47.7

PolarNet [52] 54.3 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5 84.0 65.5 67.8 43.2 40.2 5.6 67.8 51.8 57.5

MinkNet42 [8] 54.3 91.1 69.7 63.8 29.3 92.7 94.3 26.1 23.1 26.2 36.7 83.7 68.4 64.7 43.1 36.4 7.9 57.1 57.3 60.1

FusionNet [51] 61.3 91.8 77.1 68.8 30.8 92.5 95.3 41.8 47.5 37.7 34.5 84.5 69.8 68.5 59.5 56.8 11.9 69.4 60.4 66.5

Ours 59.9 90.9 74.4 62.2 23.6 89.8 95.4 48.7 31.8 35.5 46.7 82.7 63.4 67.9 49.5 55.7 53.0 60.8 53.7 52.0

Table 4: Ablation studies about the Bilateral Context Block testing

on Area 5, S3DIS dataset. (p̃i → f̃i: learn 3-DoF offsets p̃i first

and d-DoF offsets f̃i afterwards as per Sec. 3.1; f̃i → p̃i: learn f̃i,

and then p̃i; L(·): calculate augmentation loss as per Eq. 4; mixed:

mixed local aggregation following Eq. 5; max: local max feature

maxk(Gi) only; mean: local mean feature mean
k,Θi

(Gi) only.)

Model
bilateral augmentation local

mIoU
offsets loss aggregation

B0 none none max 61.8

B1 f̃i → p̃i L(fi) mixed 64.2

B2 p̃i → f̃i L(pi) + L(fi) mixed 64.3

B3 p̃i → f̃i none mixed 64.2

B4 p̃i → f̃i L(pi) max 64.6

B5 p̃i → f̃i L(pi) mean 64.8

B6 p̃i → f̃i L(pi) mixed 65.4

OA, as well as the IoU for each semantic category.

5.2. Semantic Segmentation Results

S3DIS: Tab. 1 quantitatively presents the performance of

our network on the S3DIS dataset compared with other

state-of-the-art methods. Notably, although recent meth-

ods achieve good results regarding overall accuracy, this

metric is unable to indicate the semantic segmentation abil-

ity due to class imbalance among different categories. In

general, we significantly outperform the competitors re-

garding the metrics of average class accuracy (83.1%) and

mIoU (72.2%). Moreover, we visualize the Adaptive Fusion

Module’s upsampled features maps and adaptive weights

Table 5: Ablation studies about the Adaptive Fusion Module test-

ing on Area 5, S3DIS dataset. ({S̃m}: a set of upsampled feature

maps, S̃1,..,S̃M , as mentioned in Alg. 1; concat,
∑

and
∏

: the

concatenation, element-wise sum and element-wise multiplication

for the set {S̃m}; {Ψm}: scalars for the set {S̃m}; {Φm}: point-

level fusion parameters as explained in Sec. 3.2 and 4.3.)

Model
upsampled fusion

Sout mIoU
feature map parameters

A0 S̃M none S̃M 64.1

A1 {S̃m} none
∑

S̃m 64.7

A2 {S̃m} none
∏

S̃m 64.2

A3 {S̃m} none concat({S̃m}) 65.1

A4 {S̃m} {Ψm}
∑

Ψm × S̃m 65.1

A5 {S̃m} {Φm}
∑

Φm × S̃m 65.4

in Fig. 3 (better in a zoom-in and colored view) based on

S3DIS, in order to intuitively analyze the module’s behav-

ior while fusing the multi-resolution feature maps.

Semantic3D: We also perform well on the natural views

of the Semantic3D dataset. As Tab. 2 indicates, we sur-

pass other methods in three out of the eight classes; and

our method is accurate on three categories, i.e., human-

made and natural terrains, cars, whose IoUs are all higher

than 90%. Considering the results of both overall accu-

racy (94.9%) and mIoU (75.4%) upon two billion testing

points, our method accurately classifies the semantic labels

of points in real scenes, especially for large-scale data.

SemanticKITTI: Although SemanticKITTI is challeng-

ing due to the complex scenarios in traffic environments,
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Figure 3: Behavior analysis of the Adaptive Fusion Module (Sec. 3.2) based on an office scene in S3DIS dataset. By fusing the upsampled

feature maps in a simple but adaptive way, we aggregate the advantages from different scales, and generate Sout for semantic segmentation.

Table 6: Complexity analysis of different semantic segmentation

networks on SemanticKITTI. (“-” indicates the unknown result.)

Method
Parameters Max Capacity Inference Speed

mIoU
(millions) (million points) (scans/second)

PointNet [37] 0.8 0.49 21.2 14.6

PointNet++ [38] 0.97 0.98 0.4 20.1

SPG [26] 0.25 - 0.1 17.4

RandLA-Net [19] 1.24 1.03 22 53.9

Ours 1.23 0.9 4.8 59.9

our network can effectively identify the semantic labels of

points. As shown in Tab. 3, we exceed other advanced ap-

proaches in 4 of all 19 classes. Particularly, we perform well

regarding the small objects in dense scans such as car, truck,

other-vehicle, motorcyclist, etc. The outstanding results can

be credited to our point-level adaptive fusion method, which

thoroughly integrates the different scales. Overall, our net-

work boosts a lot (5.6% mIoU) compared to the latest point

and grid-based methods [50, 19, 52], while is slightly be-

hind the state-of-the-art work [51] using sparse tensor-based

framework [8]. As our main ideas of bilateral augmentation

and adaptive fusion are fairly adaptable, more experiments

with different frameworks will be studied in the future.

5.3. Ablation Studies

Bilateral Context Block: In Tab. 4, we study the Bilat-

eral Context Block’s structure by investigating the compo-

nents individually. B0 is the baseline model which only

max-pools the concatenation of the basic local geometric

Gψ(pi) and semantic context Gψ(fi); while rest models use

different components based on the same structure of bilat-

eral augmentation. From model B1&B2, we observe that

the semantic augmentation loss L(fi) has no effect since

augmenting the semantic features in embedding space is im-

plicit. In contrast, the bilateral offsets p̃i with the geometric

augmentation loss L(pi) improves a bit (model B4&B5).

Taking the advantages from both local max and mean fea-

tures, we conclude that the best form of the Bilateral Con-

text Block is using mixed local aggregation (B6).

Adaptive Fusion Module: In Tab. 5, by comparing models

A1, A2&A3 with the baseline A0 that only upsamples the

final output of the Bilateral Context Module, we notice that

utilizing the upsampled features maps that originate from

multiple resolutions can benefit the performance. However,

the fusion method decides whether the effects are significant

or not: regular summation (A1) or multiplication (A2) is

not desirable, while concatenation (A3) contributes more to

the final prediction. For a general fusion (A4) w.r.t. each

feature map, we regress a set of scalars {Ψm} based on the

squeezed information [18] of the feature maps. Instead, a

more flexible fusion operating adaptively at point-level (A5)

achieves better results since semantic segmentation relies

more on point-wise feature representations.

Network Complexity: Network complexity is essential to

the practical application of point clouds. In Tab. 6, we

use similar metrics as [19] to study the inference using the

trained models. The complexity and capacity (i.e., the num-

ber of parameters, and the maximum number of points for

prediction) of our model are comparable to [38, 19]. Al-

though [19] is efficient for one-time inference, they require

multiple evaluations to minimize the impact of random sam-

pling, while we obtain more effective and stable semantic

segmentation results in different real scenes such as the ex-

amples shown in Fig. 1. More visualizations and experi-

mental results are presented in the supplementary material.

6. Conclusions

This paper focuses on fundamental analysis and seman-

tic segmentation for real point clouds scenes. Specifically,

we propose a network leveraging the ideas of augmenting

the local context bilaterally and fusing multi-resolution fea-

tures for each point adaptively. Particularly, we achieve

outstanding performance on three benchmarks, including

S3DIS, Semantic3D, and SemanticKITTI. Further, we ana-

lyze the modules’ properties by conducting related ablation

studies, and intuitively visualize the network’s effects. In

the future, we expect to optimize the efficiency for real-time

applications, exploit the key ideas in different frameworks,

and promote the primary structures for more 3D tasks such

as object detection, instance segmentation, etc.
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