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Abstract

In real application scenarios, the performance of deep

networks may be degraded when the dataset contains noisy

labels. Existing methods for learning with noisy labels are

limited by two aspects. Firstly, methods based on the noise

probability modeling can only be applied to class-level

noisy labels. Secondly, others based on the memorization

effect outperform in synthetic noise but get weak promotion

in real-world noisy datasets. To solve these problems, this

paper proposes a novel label-noise robust method named

Discrepant Adversarial Training (DAT). The DAT method

has ability of enforcing prominent feature extraction by

matching feature distribution between clean and noisy data.

Therefore, under the noise-free feature representation, the

deep network can simply output the correct result. To better

capture the divergence between the noisy and clean distri-

bution, a new metric is designed to change the distribution

divergence into computable. By minimizing the proposed

metric with a min-max training of discrepancy on classi-

fiers and generators, DAT can match noisy data to clean

data in the feature space. To the best of our knowledge,

DAT is the first to address the noisy label problem from the

perspective of the feature distribution. Experiments on syn-

thetic and real-world noisy datasets demonstrate that DAT

can consistently outperform other state-of-the-art methods.

Codes are available at https://github.com/Tyqnn0323/DAT.

1. Introduction

Benefitting from the support of large-scale annota-

tion datasets like ImageNet, deep networks have achieved

eyeball-popping performance on various vision problems

*The first two authors contributed equally.
†corresponding author.

such as image classification, object detection and seman-

tic segmentation, etc. However, annotating data is an ex-

pensive and time-consuming task, especially in manual ex-

ecution. Collecting labels from crowdsourcing or crawling

websites is a substitutable scheme to make annotation faster

and cheaper. Inevitably, noisy labels will be introduced

in the process of these low-quality-annotations. As more

complicated network structures are designed for obtaining

stronger fitting ability, the deep network has higher capac-

ity to overfit noisy labels. It raises an urgent demand on

investigating robust learning methods against noisy labels.

Existing methods focus on modeling noise probability

or obtaining clean labels by the memorization effect. Noise

modeling methods require a precondition, named the con-

ditional independent assumption (i.e., noisy labels are only

related to ground-true labels, but not to the data samples)

[1, 2, 3, 4]. This conditional independent assumption leads

such methods to only apply to class-level noisy labels. The

memorization effect means that deep networks learn clean

samples in a simple pattern first and then gradually learn

other noisy samples [5]. Based on this fact, such methods

filter noisy samples or correct noisy labels with outputs of

network [6, 7, 8, 9]. Nevertheless, Jiang et al. found that the

memorization effect will lose efficacy on real-world noisy

dataset, for the reason that the real-world noisy distribution

is close to the original distribution [10]. Research efforts in

training with real-world noisy data based on the memoriza-

tion effect achieve only marginally effective.

This paper provides a distinctive perspective that noisy

labels are processed in the feature distribution instead of la-

bel distribution. To achieve this promising methodology,

a novel method, named the Discrepant Adversarial Training

(DAT), is proposed in this paper. DAT stands out from exist-

ing approaches in two aspects. Firstly, DAT avoids the con-

ditional independent assumption and focuses on the feature

distribution rather than the label distribution. As a result,
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it can deal with both class-level and instance-level noisy

labels. To our knowledge, no prior work has addressed

the label-noise in the feature space. Secondly, even if the

noisy distribution is close to the original distribution, DAT

can still capture the difference in feature space by calcu-

lating distribution divergence. DAT achieves the state-of-

the-art accuracy on both synthetic noisy datasets with class-

level noisy labels and real-world noisy datasets including

instance-level noisy labels.

Contributions of this paper can be summarized as fol-

lows:

• This paper theoretically proved that matching the fea-

ture distribution from noisy to clean data can deal with

the label-noise problem. To apply the theory of match-

ing the feature distributions, the proposed DAT method

performs an adversarial training on discrepancy be-

tween the classifier and the generator with the aid of

auxiliary clean dataset. By the adversarial training,

DAT can enforce prominent feature extraction of gen-

erator, so that a classifier even with basic structure can

effortlessly output the correct result with such a high-

quality generator.

• A novel metric h△H-divergence is proposed for cal-

culating the distribution divergence. Compared with

other metrics [11], the proposed metric has a tighter

generalized upper bound for the problem of handling

noisy labels.

• DAT can be regarded as a regularization method to pre-

vent overfitting noisy labels, and the effect is still sig-

nificant without clean data. In other words, this paper

extends DAT to the absence of auxiliary clean data by

a trick. The trick prevents overfitting noisy features

by matching the macroscopic feature distribution from

sampled subset of untrained instances.

2. Related work

2.1. Learning on noisy data

Most methods improve the robustness of deep neural net-

works by modeling the noise probability with a noise tran-

sition matrix. The real noise transition matrix is usually

unknown, many methods are proposed to estimate it from

the noisy dataset or an additional clean subset [1, 2, 4, 12].

Sukhbaatar et al. first employs the noise transition matrix by

adding a linear layer [1]. Patrini et al. extends Sukhbaatar’s

work by applying the noise transition matrix to loss correc-

tion [2]. However, methods based on the noise transition

can only deal with class-level noise due to the conditional

independent assumption.

Another type of label-noise robust method attempts to

filter or correct noisy data based on the memorization effect

[5]. A typical approach is co-teaching that maintains two

identical networks to filter noisy data by selecting a subset

of small-loss samples from parallel network [6]. But filter-

ing could lead to insufficient training, several methods are

presented to solve this problem by correcting noisy labels

through early network outputs rather than filtering noisy

samples [8, 9, 7]. Nonetheless, Jiang et al. observed that

the memorization effect does not apply to real world noisy

dataset [10]. Based on this fact, the above methods only ob-

tain outstanding results on synthetic noisy datasets, while

they are difficult to achieve excellent results on real-world

noisy datasets.

2.2. Feature distribution matching

Existing methods of matching the feature distribution is

mainly used for unsupervised domain adaptation. Based

on the theory proposed by [11], which defines two met-

ric of distribution divergence (H-divergence and H△H-

divergence) to bound the target error , many methods seek

an explicit feature space representation function that can

match the source and target distributions [13, 14, 15, 16,

17]. Yaroslav et al. presents a domain-adversarial training

method, which employs an additional domain classifier to

compute the H-divergence and obtain a generic generator

by minimizing the H-divergence [14]. Saito et al. intro-

duces a more effective training method that calculates the

H△H-divergence by maximizing the discrepancy between

two label classifiers [13]. As for the problem of handling

noisy labels, the above two metrics are not applicable due

to the different purpose.

Although the DAT method is motivated by the domain-

adaptation methods, the only similarity is that two label

classifiers are used to calculates the distribution divergence.

There are fundamental differences between them. (1) DAT

method uses the proposed h△H-divergence to calculate

distribution divergence, while domain-adaptation methods

use H△H-divergence or H-divergence. (2) The domain-

adaptation method deals with two domains with different

data distributions, while DAT deals with two domains with

different label distributions. (3) The training process of

DAT is completely different from all the domain-adaptation

methods.

3. The DAT method

3.1. Preliminaries

For simplicity, a binary classification problem is con-

sidered (the same analysis type is suitable for multi-

class). The clean training set is expressed as Dc =
{(x1, y1) , . . . , (xn, yn)} ∈ (X × Y)

n
, where xn ∈ X de-

notes the image data and yn ∈ Y ⊆ {0, 1} is the class label.

If the training set Dc contains noisy labels, it can be re-

expressed as Dρ = {(x1, ỹ1) , . . . , (xn, ỹn)} ∈ (X × Ỹ)
n

.
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Let Z ⊂ R
d be the feature space, DZ

c and DZ
ρ represent the

feature distribution of clean set and noisy set respectively.

A generator is a representation function g : X → Z that can

map instance from X to Z . A classifier can be represented

as h : Z → Y , which constructs classification hyperplane

on feature space. For a fixed generator g, ideal functions

from features to clean labels can be defined as:

f̂c (Z) = Ex∼DZ
c
[fc(x)|g (x) = z], (1)

where fc(x) is the latent label function from instances to

clean labels, and the expectation E is used because there

may be difference x is mapped to the same z. Based on the

defined latent function f̂c (z), the classifier error rate ǫc (h)
on clean set can be defined as:

ǫc (h) = Ez∼DZ
c
|f̂c (z)− h(z)|. (2)

Parallel notations f̂ρ (z) and ǫρ (h) are used for the la-

tent label function from instances to noisy labels and error

rate on noisy set. The optimization goal can be expressed

as minimizing the clean error rate ǫc (h) without informa-

tion about the labels of clean training set Dc. Minimizing

the clean risk ǫc (h) means letting classifier h fit ideal func-

tion f̂c. If the generator g is insufficient, the f̂c will be so

complex that h is difficult to fit. Therefore, in the case of

classifier h simple enough, it is necessary to obtain a gener-

ator g that extracts clean features.

3.2. Generalization Bound for Learning with Noise

To prove that matching the distribution can handle label-

noise, this subsection bounds the clean error rate ǫc (h) by

summing the noisy error rate ǫρ (h) and the divergence be-

tween the clean and the noisy feature distributions. By mini-

mizing the divergence on the generator g, the clean features

from noisy instances can be extracted. In this case, suffi-

ciently simple classifier h will not overfit noisy labels, and

minimizing the noisy risk ǫρ (h) is equivalent to minimiz-

ing the clean risk ǫc (h). To obtain the divergence between

the clean and the noisy feature distributions, a novel metric

named h△H-divergence is proposed:

Definition 1. Given two feature distribution DZ
ρ and DZ

c

extracted by a fixed g, and a hypothesis class H which is

a set of binary classifiers. Through a given classifier h,

h△H-divergence between DZ
ρ and DZ

c is:

dh△H(DZ
ρ , D

Z
c ) = 2 sup

h̀∈H

{
Pr

z∼DZ
c

[
h (z) 6= h̀ (z)

]
−

Pr
z∼DZ

ρ

[
h (z) 6= h̀ (z)

]}
.

(3)

Pr
[
h (z) 6= h̀ (z)

]
is the probability that two classi-

fiers output different results. h△H-divergence is similar

to H△H-divergence in form, but significantly different in

content. H△H-divergence takes absolute upper bound on

the difference between two expectations, whereas h△H-

divergence takes the difference directly rather than the ab-

solute value. In addition, both two classifiers h and h̀ in

H△H-divergence are arbitrary classifiers taken in the hy-

pothetical class H, while h△H-divergence fixes one of the

classifiers. When searching for a generalized upper bound

for the clean risk ǫc (h), the above two changes make h△H-

divergence obtain a tighter upper bound of the clean risk

ǫc (h) than H△H-divergence 1. Therefore, lower risk on

clean sets can be achieved by h△H-divergence.

Through the proposed h△H-divergence, a theorem can

be presented to bound the clean error rate ǫc (h):

Theorem 1. Let g be a fixed representation function from

X to Z , H be the hypothesis class of Vapink-Chervonenkis

dimension d. If random noisy samples of size m is gener-

ated by applying g from Dρ-i.i.d., then with probability at

least 1− δ, the generalized bound of the clean risk ǫc (h)
2:

ǫc (h) ≤ ǫmρ (h) +
1

2
d
h△H

(
DZ

ρ , D
Z
c

)
+ λ, (4)

where

λ = ǫc (h
∗) + ǫρ (h

∗) +

√
4

m
(d log

2em

d
+ log

4

δ
), (5)

h∗ = argminh∈H ǫc (h) , (6)

ǫmρ (h) =
1

m

m∑

i=1

|f̂ρ (z)− h(z)|. (7)

The generalized bound of the clean risk ǫc (h) revealing

that when the distribution divergence dh△H(DZ
ρ , D

Z
c ) and

the empirical noisy risk ǫmρ (h) are low, the clean risk ǫc (h)
will be low. Minimizing the empirical noisy risk ǫmρ (h) is

very simple: typically training the generator g and the clas-

sifier h on the noisy set. An effective strategy for minimiz-

ing the distribution divergence is to find a representation

function that makes the feature distribution of noisy data

consistent with clean data, i.e., minimizing the distribution

divergence dh△H(DZ
ρ , D

Z
c ) on the generator g. According

to Theorem 1, the classifier’s error on the clean set will be

significantly reduced with such a generator.

3.3. Discrepant Adversarial Training (DAT)

The architecture of DAT is shown in Fig. 1, which in-

cludes two classifiers sharing one generator. An extra clas-

sifier h̀ is added to calculate the h△H-divergence. In addi-

tion to the particular architecture, two types of losses (clas-

sification loss Lcce and discrepancy loss Ldis) are involved.

1the detailed derivation can be found in the supplementary file.
2proof can be found in the supplementary file.
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Figure 1. The architecture of DAT. One generator and two classifiers are used in DAT. In the forward pass, both noisy and clean data are

used to calculate the classification loss Lcce(to distinguish, Lc̃ce is the loss on noisy data) but only clean data for the discrepancy loss Ldis.

During backpropagation, the losses required to calculate the gradient are different for each component. For classifier h, the classification

losses for clean and noisy data are used. For classifier h̀, the classification loss for only noisy data is used, and the negative discrepancy

loss is used to obtain the h△H-divergence between the noisy and clean data. For generator g, in addition to all classification losses, a

positive discrepancy loss is used to minimize the h△H-divergence.

As with most previous work, the categorical cross-entropy

(CCE) function is used as the classification loss:

Lcce = −
1

N

N∑

n=1

k∑

i=1

(yin log h
i
n + yin log h̀

i
n), (8)

where N denotes the batch size and k denotes the number

of classes, yin is the ith element of label yn, hi
n and h̀i

n are

the ith element of the nth classifiers’ output. Although the

cross-entropy loss function is sensitive to noisy labels due to

its gradient property [18, 19], it is still the most commonly

used loss function which offers the most efficient learning

ability.

For discrepancy loss Ldis, measurement such as L1 dis-

tance and Jensen-Shannon divergence (JSD) are tested. In

the experiments, the L1 distance is not stable enough, while

the JSD causes the generated feature distributions to be un-

differentiated. Therefore, the entropy values of the respec-

tive outputs are added to the JSD in discrepancy loss Ldis,

making the generator output a more differentiated distribu-

tion of features. The JSD after adding entropy is:

Lent = −

k∑

i=1

(hi
n log h

i
n + h̀i

n log h̀
i
n)

Ldis =
1

N

N∑

n=1

[JSD(hn|h̀n) + Lent].

(9)

With all components ready, this is followed by an analy-

sis of how the DAT relate to the theory. According to The-

orem 1, our goal is to minimize the empirical noisy risk

ǫmρ (h) and the distribution divergence dh△H(DZ
ρ , D

Z
c ). As

aforementioned, training with the classification loss Lc̃ce on

the noisy set can directly minimize the empirical noisy risk

ǫmρ (h). In contrast, minimizing the distribution divergence

dh△H(DZ
ρ , D

Z
c ) is much more sophisticated. A simple way

to calculate the distribution divergence dh△H(DZ
ρ , D

Z
c ) is

making the extra classifier h̀ output different predictions

from classifier h on the clean set while output same pre-

dictions on the noisy set. The obtained divergence is then

minimized on the generator g. The detailed training process

of DAT can be divided into four parts:

Part A The aim of this part is to minimize the empiri-

cal noisy risk ǫmρ (h). The noisy classification loss Lc̃ce is

minimized on both generator g and classifier h. Except to

minimize the empirical noisy risk, the generator’s feature

extraction capability is coarsely trained in this part. Part A

corresponds to the generator g’s and classifier h’s gradients

back propagated by the Lc̃ce in Fig. 1.

Part B The aim of this part is to minimize the clean risk

ǫc (h). If an auxiliary clean data set exists, the clean clas-

sification loss Lcce is minimized on both generator g and

classifier h. This step is optional but can be a significant en-

hancement, an auxiliary clean set is used to directly reduce

ǫc (h). Part B corresponds to the generator g’s and classifier

h’s gradients back propagated by the Lcce backprop in Fig.

1.

Part C The aim of this part is to calculate the distribution

divergence dh△H(DZ
ρ , D

Z
c ). As previously mentioned, cal-

culating dh△H(DZ
ρ , D

Z
c ) requires minimizing the outputs’

discrepancy on the noisy set and maximizing the outputs’

discrepancy on the clean set. The discrepancy on the noisy

set is minimized by minimizing the noisy classification Lc̃ce
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on the extra classifier h̀. Since the noisy classification Lc̃ce

on classifier h is minimized in Part A, training two classi-

fiers with the same goal is equivalent to making their output

consistent. The discrepancy on the clean set is maximized

by maximizing the discrepancy loss Ldis on the extra clas-

sifier h̀. Part C corresponds to the classifier h̀’s gradients

back propagated by the Lc̃ce and −Ldis in Fig. 1.

Part D The aim of this part is to minimize the distri-

bution divergence dh△H(DZ
ρ , D

Z
c ). According to the Def-

inition 1, the probability Prz∼DZ
ρ

[
h (z) 6= h̀ (z)

]
is essen-

tially zero after minimizing the noisy classification Lc̃ce on

both classifier h̀ and h, h△H-divergence can be directly re-

placed by 2Prz∼DZ
c

[
h (z) 6= h̀ (z)

]
(the outputs’ discrep-

ancy on the clean set). This discrepancy is minimized on

the generator g in this part. The implementation process is

the minimization of the discrepancy loss Ldis on g. Part D

corresponds to the generator g’s gradients back propagated

by the +Ldis in Fig. 1.

Part C and Part D can be viewed as an adversarial train-

ing step: maximizing the discrepancy on the classifiers

but minimizing the discrepancy on the generator, thus the

proposed training process is called Discrepant Adversarial

Training (DAT). These four training parts are not performed

separately but repeated alternately in each iteration. Two

hyperparameters α and β are used to control the adversarial

training. The algorithmic description of DAT is shown in

Algorithm 1. After training, only the generator g and the

classifier h are used in the predicting phase for testing.

3.4. Without clean dataset

The DAT method can curb overfitting noisy labels with

the aid of extra clean dataset, while it also has strong noise

robustness without clean datasets. This subsection proposes

a trick that enables DAT to be applied in scenarios where

extra clean datasets are not available. The proposed trick

samples a subset from untrained noisy dataset instead of

clean dataset. In the absence of clean labels, the training

process omits Part B that is not necessary in overall DAT.

The algorithm for detailed training steps is described in the

supplementary files.

The core idea of DAT is to close the divergence between

the noise feature distribution and the clean feature distribu-

tion by minimizing the h△H-divergence. It is worth noting

that clean labels are not required in the implemention of

minimizing the h△H-divergence. Moreover, the marginal

distribution about the input of the noisy data is identical to

the clean data, i.e., PrDρ
(x) = PrDc

(x). Based on this

fact, the extra clean data can be replaced by a subset of

untrained noisy data. The main purpose of DAT without

clean dataset is to prevent the generator from extracting ir-

relevant features from noisy instances. The key observation

is that the deep network extracts additional useless detailed

Algorithm 1 DAT-Algorithm

Input: training sets Dρ and Dc, α and β, learning rate η,

epoch T , iteration N .

Pre-treatment: divide the applied network into two parts:

the network with the last few fully connected layers re-

moved as generator g, the remaining fully connected net-

work layers as classifier h and h̀.

1: for t = 1, 2, 3, . . . , T do

2: Shuffle training set Dρ and Dc

3: for n = 1, 2, 3, . . . , N do

4: Fetch mini-batch ρ̄ from Dρ

5: Fetch mini-batch c̄ from Dc

6: Calculate Lc̃ce on ρ̄, Lcce and Ldis on c̄
7: Update θ

h,h̀,g
= θ

h,h̀,g
−∇θ

h,h̀,g
Lc̃ce

8: Update θh,g = θh,g −∇θh,g
Lcce

9: Update θ
h̀
= θ

h̀
+ α∇θ

h̀
Ldis

10: Update θg = θg − β∇θgLdis

Output: θ
h,h̀,g

features of the individual noisy data in the process of over-

fitting the noisy labels. In this case, DAT uses the distri-

bution of untrained data features to represent the extracted

macroscopic common features and prevents the generator

from extracting the noisy detailed features by minimizing

h△H-divergence.

4. Experiments

4.1. Datasets

Synthetic Noisy Dataset All existing synthetic noisy la-

bels are random labels generated by random algorithms.

Since these algorithms do not recognize the input, but gen-

erate random labels based on the original labels with a cer-

tain probability, the synthetic label noise is all class-level

noise. With a given noise rate ρ, synthetic label noise (class-

level noise) can be divided into two forms: (1) Symmetrical

noise: labels are flipped to other classes with the probabil-

ity ρ, and the probability ρ spread uniformly among all the

other classes. (2) Asymmetrcial noise: labels from a class

are flipped to anther specific class with the probability ρ.

Two datasets, including MNIST [20] and CIFAR-10

[21], are corrupted as synthetic noisy dataset as with most

works [2, 18, 3, 22, 8]. MINIST contains 70k of 28x28

grayscale image from 10 classes, while CIFAR-10 contains

60k of 10 objects resized to 32x32 color images. The la-

bels in the training sets are corrupted to simulate the noisy

datasets. Both types of synthetic noise are used to corrupt

the training sets.

Real-world Dataset Clothing1M [23] is a large-scale

real-world noisy dataset and contains more than one mil-

lion images of clothes from online shopping websites. The

6825



Table 1. Hyperparameters of DAT.

Param. MNIST CIFAR-10 Clothing1M Noisy-MISC

α 0.1 ∼ 0.2 0.005 ∼ 0.1 0.2 0.15 ∼ 0.3

β 30 ∼ 40 30 ∼ 60 60 30 ∼ 60

labels of it are 14 classes which are generated from the text

introduced by sellers. Since the crawled labels have not

been reviewed, these labels are not credible and the noise

level is unknown. Clothing1M provides additional valida-

tion and test sets with 14k and 10k clean data respectively.

The noisy images in Clothing1M have a high degree of sim-

ilarity to the true positive images, which means that most of

the noisy labels are instance-level.

The noisy Mini-ImageNet and Stanford Cars (Noisy-

MISC) is a benchmark dataset built by adding noisy data

to Mini-ImageNet and Stanford Cars [10]. It has about

800k labels on 212,588 web images, where 12,629 web im-

ages are mislabeled in Stanford Cars and 54,400 in Mini-

ImageNet. The noise levels in the Noisy-MISC is control-

lable. Similar to symmetric noise, the noise is uniformly

distributed across the categories in the Noisy-MISC dataset.

4.2. Implementation details

Baselines for comparison DAT is compared with the

following approaches: (1) F-correction [3], which applies

the noise transition matrix to loss correction; (2) Co-

teaching [6], which trains two parallel networks for filter-

ing noisy samples; (3) Probabilistic End-to-end Noise Cor-

rection (PENCIL) [9], which is a current state-of-the-art

method using early outputs to correct noisy labels with soft

label mechanism; (4) Xiao et al. [23], which trains net-

work with an extra clean set; (5) Categorical Cross-Entropy

(CCE), which is a standard training strategy that only uses

categorical cross-entropy loss.

Training Settings For the corrupted MNIST and

CIFAR-10, the network structure described in [6] is used.

The Adam optimizer (momentum=0.9) is applied with an

initial learning rate of 0.001, and a total of 200 epochs are

run with a batch size of 128. For Clothing1M, the ResNet-

50 [24] is used. As the same training setting in [25], the

SGD optimizer (momentum=0.9) is applied with a weight

decay of 0.001 and a learning rate of 1.0 × 10−6, and a

total of 10 epochs are run with a batch size of 256. For

Noisy-MISC, Inception-ResNet-v2 [26] is used. RMSProp

optimizer (learning rate=0.045, epsilon=1.0) is applied with

a dropout rate of 0.8, and a total of 5 epochs are run with a

batch size of 32. For fair comparison, all the methods use

the same network structure and parameter setup as above.

The hyperparameters of DAT are shown in Table 1. For

controllable noisy datasets, α and β should increase as the

noise rate increases. And β is relatively sensitive and needs

to be determined by the overfitting or underfitting states of

Table 2. Test accuracy on Clothing1M.

Method Accuracy (best/last)

CCE 70.2%/65.4%
F-correction 70.5%/67.2%
Co-teaching 71.3%/70.8%

PENCIL 71.8%/71.2%
DAT 74.5%/73.0%

Tong Xiao et al. * [23] 76.8%/73.5%
DAT * 78.7%/78.0%

the validation set.

4.3. Classification results

To compare DAT with other methods on synthetic

noisy datasets, experiments are conducted on the corrupted

MNIST and CIFAR-10. All the experiments are performed

without auxiliary clean training sets, and the test accuracy

of last epoch on the above two datasets is presented in Fig.

2. The line in Fig. 2 is the average result of 5 trials. Fig.

2 (a) and (c) are results conducted in symmetric noise en-

vironment, and Fig. 2 (b) and (d) are results conducted in

asymmetric noise environment. It can be seen from Fig. 2

that the accuracy of DAT decreases rarely as the noise rate

increases. F-correction is less effective because it does not

explicitly handle the noisy labels and overfits noisy labels in

the last epoch. Compared with DAT, the most competitive

is PENCIL. However, PENCIL totally fails in the extremely

noisy case. In the failed experiment of PENCIL, the model

has misrecognized some of the true labels as the noisy la-

bels, which leads to the mistake of modifying true labels

into wrong ones. DAT almost outperforms all other meth-

ods in each experiment.

To preliminary verify the effectiveness of DAT in real-

world noise cases, experiments are conducted on Cloth-

ing1M. The test accuracy of each comparison method is

shown in Table 2, where * marks the method trained us-

ing extra clean set. In the first five rows of Table 2, all

methods are trained without extra clean set, and the last two

rows are trained with 47,570 additional clean labels. It can

be seen that F-correction barely improves over CCE. This

phenomenon matches its theory: conditional independent

assumption only deals with class-level noise. As a distri-

bution matching method, DAT obviously outperforms other

methods with or without auxiliary clean training sets.

Finally, Noisy-MISC is used to fully illustrate the effec-

tiveness of DAT for real noise processing. In this exper-

iment, the performance of each method at different noise

levels can be observed. Table 3 shows the results with three

noise levels (10%, 30% and 50%), and all methods do not

use an additional clean training set. As shown in 3, DAT

consistently outperforms other methods. Although methods

based on memorization effect consider the instance-level
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Figure 2. Test accuracy (last epoch) on MNIST and CIFAR-10.

Table 3. Test accuracy on Noisy-MISC. The results are displayed as best/last.

Dataset Nise Rate CCE F-correction Co-teaching PENCIL DAT

Mini-ImageNet

10% 70.2%/62.4% 70.2%/64.8% 71.6%/69.1% 72.8%/70.5% 73.2%/72.7%
30% 65.7%/56.5% 66.7%/60.9% 68.7%/65.1% 69.3%/67.1% 71.2%/70.1%
50% 61.5%/50.7% 63.2%/54.4% 63.7%/60.4% 65.2%/64.0% 66.3%/66.0%

Stanford Cars

10% 88.0%/87.8% 88.2%/87.2% 87.1%/86.9% 88.7%/87.3% 92.4%/91.9%
30% 80.2%/78.9% 80.8%/78.6% 83.2%/81.2% 83.0%/82.4% 90.5%/89.8%
50% 74.3%/70.6% 74.8%/71.3% 76.2%/75.6% 76.9%/76.0% 84.4%/84.3%

noise, they ignore the case that the noise distribution is close

to the original distribution. This is particularly evident in

the noisy Stanford Cars dataset, where the best result is sim-

ilar to the last result, implying the smaller distributional dif-

ferences. In this dataset, the improvement in DAT is more

significant due to its ability to capture the small divergence

in feature space.

4.4. Generator representations

To better reveal the behavior of DAT, a visualization

scheme similar to [27] is used. This visualization scheme

consists of the following steps: (1) Pick three categories,

(2) Seek an orthogonal basis of the plane that crosses these

three categories’ templates, (3) Map the generator activa-

tions of the picked three categories’ instance on this plane.

The top 3 classes of noisy Stanford Cars are picked in this

experiment, and the same training setting of Noisy-MISC in

section 4.2 is chosen. Three noise levels (0%,30% and 60%)

are used in this tri-categories classification experiment. For

example, 60% symmetric noise means that the correct cat-

egory accounts for only 40% of the data, and the other two

error categories each account for 30% of the data. Both

methods do not use extra training sets.

Fig. 3 shows the visualizing representations of genera-

tors trained with CCE or DAT. The first two columns rep-

resent the training set and validation set results with CCE.

The first column indicates that the projections of training

set are spread into the ‘correct’ category cluster regardless

of the noise level. CCE fits all the labels the labels in the

training set including the noisy labels, which means that

the generator extracted unnecessary features of these noisy

data and mapped them to the wrong clusters. In the second

column, the feature distribution extracted by CCE overlap

with each other in the validation set, verifying the conjec-
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Figure 3. Visualization of the generator’s activations of CCE and DAT. The dots in figure indicate the instance mapped in feature space,

and colors indicate different classes. In order to demonstrate the different situations in the training set and the validation set, 600 training

set instances (columns 1 and 3) and 600 validation set instances (columns 2 and 4) are visualized separately for each set of experiments.

Each row shows the results of different noise levels (0%, 30% and 60%).

ture that generator extracts the unnecessary features. The

last two columns represent the training set and validation

set results with DAT, where the hyperparameters α is set to

0.3 and β is 30. In the noise-free environment, the distribu-

tion extracted by DAT is consistent with CCE. At 30% noise

level, the generator extracts almost the same feature clusters

as the noiseless training. Even at an extremely noisy envi-

ronment with 60% noise level, the network still not over-

fits the noise with the help of DAT. As can be seen from

the third column, DAT does not project the instances into

the ”correct” category cluster, but still clearly separates the

projections into three clusters. This means that DAT does

not extract the unnecessary features when the label does not

match the instance features. In the last column, the feature

distribution extracted by DAT is clean enough in each noise

level, indicating that generator of DAT extracts more repre-

sentative features. Besides, it can be observed from Fig. 3

that the category clusters of DAT lie in lines. Theoretically,

when the discrepancy is minimized on the DAT generator,

the feature distribution is distributed on the mid-pendant of

the classifier boundary junction, making instances equally

far from each classifier boundaries.

5. Conclusion

A novel method named DAT is proposed to handle noisy

labels in the feature space in this paper. The process is forc-

ing the generator to extract clean features through an adver-

sarial training so as not to overfit the noisy labels. DAT does

not need the conditional independent assumption and can

deal with both class-level and instance-level noisy labels.

Based on the metric h△H-divergence, DAT can capture

small divergence even the noisy distribution is close to the

original distribution in feature space. Consequently, DAT

outperforms other method in real-world datasets. Exper-

iments have demonstrated that the proposed DAT method

has the ability of achieving the state-of-the-art result un-

der synthetic noise and real-world noise scenarios. This re-

search puts forward a novel point that the label-noise prob-

lem can be sovled in the feature distribution, and DAT pro-

vides a preliminary solution.
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