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Abstract

Mainstream lane marker detection methods are imple-

mented by predicting the overall structure and deriving

parametric curves through post-processing. Complex lane

line shapes require high-dimensional output of CNNs to

model global structures, which further increases the de-

mand for model capacity and training data. In contrast,

the locality of a lane marker has finite geometric variations

and spatial coverage. We propose a novel lane marker de-

tection solution, FOLOLane, that focuses on modeling lo-

cal patterns and achieving prediction of global structures

in a bottom-up manner. Specifically, the CNN models low-

complexity local patterns with two separate heads, the first

one predicts the existence of key points, and the second re-

fines the location of key points in the local range and cor-

relates key points of the same lane line. The locality of

the task is consistent with the limited FOV of the feature in

CNN, which in turn leads to more stable training and better

generalization. In addition, an efficiency-oriented decod-

ing algorithm was proposed as well as a greedy one, which

achieving 36% runtime gains at the cost of negligible per-

formance degradation. Both of the two decoders integrated

local information into the global geometry of lane markers.

In the absence of a complex network architecture design, the

proposed method greatly outperforms all existing methods

on public datasets while achieving the best state-of-the-art

results and real-time processing simultaneously.

1. Introduction

In autonomous driving system (ADS), lane detection

plays an important role. On the one hand, the location of

host and other traffic participants in the lane forms the ba-

sis of autonomous driving decisions. On the other hand,

the geometry of a lane marker can be viewed as an impor-

tant landmark of the environment and aligned with a high-

resolution or vector map for high-precision positioning. At

the same time, lane detection has been widely used in Ad-

∗Z. Qu is the corresponding author.

vanced Driver Assistance Systems (ADAS) and is the basis

for some common features such as Lane Keep Assist (LKA)

and Adaptive Cruise Control (ACC).

Recent advances in lane detection can be attributed to

the development of convolutional neural networks (CNN).

Most existing methods adopt well-studied frameworks such

as semantic segmentation and object detection to parse lane

markers and transform the network output into parametric

curves through post-processing. However, the mostly used

frameworks can not be seamlessly generalized to curved-

shaped lane lines because lane detection task requires pre-

cise representation of local positions and global shapes si-

multaneously, showing their own limitations.

The semantic segmentation-based approach predicts bi-

nary masks of lane marker regions, inserts clustering mod-

els into training and inference, groups masked pixels into

individual instances, and finally uses curve fitting to para-

metric results. However, the clustering procedure compli-

cates the training and inference pipeline. In addition, pixel-

level inputs to curve fitting are often redundant and noisy, all

of which bring negative impact to the accuracy of the final

results. Fig.1(a) shows several cases where the prediction

errors may increase. Object detection approaches are orig-

inally designed for compact target and produce bounding

box as output, which is insensitive to pixel-level error when

faced with large-scale object. As for lane markers, they

typically span half or more of the image, and pixel-level lo-

calization errors significantly impair detection performance,

which can be attributed to the limited field of view (FOV)

of features learned through CNN being insufficient to model

content that is too far apart. Fig.1(b) illustrates the effect of

FOV in complex scenario. Moreover, most of these solu-

tions model global geometry directly, and the network must

produce high-dimensional outputs to describe the curves.

Theoretically, however, uncompact outputs increase the de-

mand for data and model capacity, ultimately masking the

generalization ability of the resulting model.

Although the global structure of lane markers has some

complexity, we note that local lane markers are extremely

simple and that global lane markers can be approximated

by a combination of local line segments. Moreover, spa-
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(a) Segmentation based method and intermediate results.

(b) Object detection based method.

Figure 1. Pipeline of existing methods and illustration of common

error prediction. (a). the enlarged window in the middle of the

pipeline shows the incorrect clustering of the segmentation mask,

and the other two orange windows in the curve fitting output show

the position deviation of the prediction curve due to redundant and

noisy pixels, note the solid line is ground truth, dotted line is pre-

diction. (b). shows the influence of FOV in detection based meth-

ods, the brightness of the right image reflects the practical FOV of

anchor.

tial locality is more suitable for modeling with CNN. Fol-

lowing this intuition, a novel lane marker detection method,

FOLOLane, is proposed that focuses on modeling local ge-

ometry and integrating them into the global results in a

bottom-up manner. Specifically, the geometry of the lane

marker is predicted by estimating adjacent keypoints on the

it. In the bottom stage, a fully convolutional network is used

to capture keypoints in the local scope through two sepa-

rate heads. The first one gives the probability that keypoints

appear in pixel space, and the second one gives the offset

between keypoints and the most spatially correlated local

lane marker, which is used to refine the positions of key-

points generated by the first head and construct associations

between keypoints on the same lane markers. Based on the

local information, two decoding algorithms with different

preferences are proposed to predict global geometry of lane

markers. The bottom-up pipeline of the proposed method is

shown in Fig.2.

Compared with existing works [2, 19, 16, 10, 12], the

proposed approach concentrates the capabilities of CNN on

a local scale, which is suitable for CNN’s limited FOV, and

significantly reduces the complexity of the task and the di-

mension of the output. As a result, the compact output leads

to stable and efficient training without additional effort in

network architecture design and data collection. Consider-

ing the continuity of lane markers, the proposed decoder is

able to associate keypoints of the same instance and opti-

mize the geometry of network predictions without affect-

ing performance and efficiency. Furthermore, during net-

work training and instance decoding, we model and predict

keypoints using features with the highest spatial correlation

guided by coarse-to-fine strategies. The proposed bottom-

up solution achieves the best state-of-the-art level, Acc:

96.92% on TuSimple and F1 score: 78.8% on CULane, and

excellent generalization in the two public datasets. Together

with the compatibility with network architectures, our ap-

proach shows a promising application future.

We emphasize that our method is the first to formulate

lane detection into multi-key-points estimation and associ-

ation problem, which is inspired by the bottom-up human

pose estimation framework [15, 1, 3]. The proposed local

scope based method avoids the inaccurate prediction where

far from the anchor, which occurs in detection-based meth-

ods. And the sparsity of key points prevents the noisy and

redundant output occurred in segmentation-based methods,

which decrease the precision and increase the delay of curve

fitting. With extensive experiments, our solution proves the

potential of applying pose estimation approaches on lane

detection, which opens up a new direction to solve this im-

portant application problem. Our solution does not depend

on CNN architecture, is readily compatible to newly devel-

oped architecture and shows scalable potential on accuracy

and efficiency.

Our contributions can be summarized as follows:

• Lane detection is firstly decompose into subtasks of

modelling local geometry, which is achieved by es-

timating keypoints on local curve. Simplified targets

and focus on spatially limited scope helps the network

to provide precise estimation of local curve.

• Two decoding algorithms with different preferences

are designed to integrate local information into global

prediction, which enable the system to achieve high

accuracy in ultra real time.

• Experimental results showed that our approach out-

performs all existing methods by a substantial margin.

Besides, our model shows the best generalization abil-

ity in comparison, which further proves the potential

for productization.

2. Related Work

Lane Marker Detection. Lane marker detection based

on deep learning can be categorized into two groups: detec-

tion based and segmentation based. The former one: [2]

proposed an anchor-based lane marker detection model for

forward-looking cameras. Lane markers were uniformly

sampled along the vertical axis in the image, and dense

regression was performed by predicting the offset between

each sample point and an anchor line, then Non-Maximum

Suppression(NMS) was applied to suppress the overlapping

detection and select the best lane marker with the high-

est score. [19] proposed the use of neural architecture

search(NAS) to find a better backbone and a point blending

based post processing to further improve the performance
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of lane marker detection task. [6] proposed to train a CNN

to predict the existence, position and feature embedding of

lane markers in an image. A lane marker instance was clus-

tered based on the trained feature embedding. [16] for-

mulated lane marker detection as a pixel-wise classification

problem for each row of an image. A specific feature map

was predicted to indicate the position of a lane marker on

each row.

Segmentation based: [8] proposed a multitask frame-

work, which predicted pixel-wise multi-label and clustered

the pixels belonging to same lane instance in bird eye view

image using DBSCAN. It also added an auxiliary task: van-

ish point estimation, to increase the stability of lane marker

detection. [10] proposed an end-to-end joint semantic

segmentation and feature embedding network architecture.

Pixels on the same lane marker were assigned an identical

instance id. [12] also designed an instance segmentation

network for lane marker detection problem. Different from

[10], [12] predicted a probability map for each lane marker

separately and used cubic splines to fit it. In stead of using

pixel-wise classification, [20] introduced a row-wise clas-

sification architecture. For each row, it predicted the most

possible grid of a lane marker in an image and recovered

a lane marker instance through post processing. [9] pro-

posed a CycleGAN based method to enhance lane detection

performance in low light conditions. [4] claimed a more ac-

curate method by using EL-GAN for lane marker detection,

which used a generator to segment the lane markers and a

discriminator to refine the segmentation result. [5] pro-

posed a self-attention distillation method for lane marker

segmentation task by forcing shallow layers to learn rich

context feature from deep layers.

Bottom-Up Human Key Point Detection. [15] pro-

posed a bottom-up method for crowded scenes, which de-

tected keypoints and built a densely connected graph, the

weight of each edge represented the correlation of two key-

points. By optimizing the graph, keypoints belonging to one

person were clustered. [1] predicted a heat map for each

keypoint and part affinity fields (PAFs) which were used to

associate body parts with individuals in the image. Similar

to [3, 10], [11] introduced feature embedding to facili-

tate keypoints clustering of one person while predicting the

heat map of keypoints. [13] further split the problem into

two stages: (1) predicting heat map and short-range offset

for keypoints detection, (2) clustering key points using mid-

range offset for one person.

We find that lane marker detection can be abstracted as

discrete keypoints detection and association problem, which

is very similar to bottom-up human key point detection task.

[14] proposed a method based on this idea. A network was

trained to extract all possible lane marker pixels and out-

put the pixels in the neighboring row, which belongs to the

same lane as the current lane marker pixel. As the problems
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Figure 2. The inference process of FOLOLane. The network pro-

duces 4 logits expressing the geometry of the local curve. The de-

coder module constituted with low-level operators integrates the

local information into curve instances.

discussed above, the inherent segmentation-based method

inhibited the precise representation of a lane marker. In ad-

dition, the pixel-wise joint distribution prediction was re-

dundant.

3. Methodology

As shown in Fig.2, we proposed a bottom-up lane de-

tection method by estimating the existence and the offsets

of the local lane point through the network, followed by a

novel global geometry decoder to generate the final curve

instances.

3.1. Network for local geometry

In the proposed approach, each predicted marker curve

is represented as an ordered keypoints set, where the key

points are of fixed/predefined vertical interval ∆y across

neighboring rows. First of all, the task of curve prediction

is decomposed into local subtasks via a fully convolutional

network with two heads. The heatmap outputted by the first

head expresses the possibility that keypoint appears, which

resolves the existence of local curves. The second head pre-

dicts offsets to key points of the most closed local curve,

which describes the precise geometry of the local curve.

Key point estimation. Motivated by a curve constituted

of points, we adopt a keypoint-estimation-based framework.

The network firstly outputs a heatmap with the same reso-

lution as input, which models the probability that pixel is

a keypoint of the curve. In the training phase, the points

set as annotation of the j − th curve are interpolated to be

continuous in pixel space as lj . Each pixel of the curve lj
is considered as a key point and yields ground-truth value
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for neighbors via unnormalized Gaussian kernel. The stan-

dard deviation σh depends on the scale of input, and if the

ground-truth value of some pixel is assigned by multiple

keypoints, the maximum will be kept.

To deal with the class imbalance problem coming with

the sparsity of key points, we employ penalty-reduced fo-

cal loss for this head as in [7, 22], where only pixels with

ground truth equal to 1 are considered positive and all oth-

ers are negative. The penalty from negative pixels arises

with the distance to positive, which helps to reduce the in-

fluence of ambiguity. We denote the output of i−th pixel at

heatmap as si and the ground-truth value assigned by Gaus-

sian Kernel as gi. Define penalty coefficients ĝi and ŝi as:

ĝi =

{

0 if gi = 1

gi otherwise
, ŝi =

{

si if gi = 1

1− si otherwise
,

(1)

and the loss function for heatmap head is constructed as:

Lossh = −
1

N

N
∑

i

(1− ĝi)
β(1− ŝi)

γ log(ŝi), (2)

where β and γ are tunable hyperparameters, controlling the

penalty reduction for ambiguous and simple samples re-

spectively. N is the number of key points in the current

image.

Compared with segmentation-based methods, the loss

function Eq.2 guides the network to learn positive and nega-

tive samples of keypoint with reduced supervision from the

total pixels, prompting pixels best suited for expressing ge-

ometry to the response. An example of the heatmap can be

found in Fig.2 as the first output of the network, the cen-

ter of lane marker responses highest, and the neighborhood

became colder gradually, which helps prevent the noise and

redundancy from propagating to subsequent procedures as

well.

Local geometry construction. For precise geome-

try, the second head of the network regresses a vector

[∆x↑(p),∆x→(p),∆x↓(p)]
T , describing the local geome-

try of the closest curve to pixel p. The elements indicate

the horizontal offsets to 3 neighboring key points with fixed

vertical interval ∆y, which have been colorized for visual-

ization in Fig.2. Given the vector, we can simply recover

the local curve related to pixel p:

l̂(p) =

⎡

⎣

p̂↑(p)
p̂→(p)
p̂↓(p)

⎤

⎦ = p+

⎡

⎣

∆x↑(p) −∆y

∆x→(p) 0
∆x↓(p) ∆y

⎤

⎦ , (3)

where p̂↑(p), p̂→(p) and p̂↓(p) denote the actual location

with fixed vertical interval ∆y to pixel p, respectively.

In the training phase, all pixels within a fixed distance

from key points of the curve l, Nσg(l), are taken to compute

loss for ∆x↑,∆x↓.

Loss↑ (l) =
1

|Nσg
(l)|

Σp∈Nσg
(l)||p̂↑(p)− ϕ(l, fy(p)−∆y)||1,

Loss↓(l) =
1

|Nσg
(l)|

Σp∈Nσg
(l)||p̂↓(p)− ϕ(l, fy(p) + ∆y)||1,

(4)

where fy(·) denotes the function retrieving vertical coordi-

nate of the pixel, ϕ(l, y) is function retrieving horizontal

coordinate of curve l on specific row y.

For ∆x→, a coarse-to-fine strategy is employed:

Loss→(l) =
1

2|Nσg
(l)|

Σp∈Nσg
(l)(

||p̂→((p̂↑(p)))− ϕ(l, fy(p)−∆y)||1+

||p̂→((p̂↓(p)))− ϕ(l, fy(p) + ∆y)||1),

(5)

where the training pixels come from the decoded prediction

of ∆x↑ and ∆x↓ in Eq.4, which is used to compensate for

the error in predicting ∆x↑ and ∆x↓ and keeps in line with

the coarse-to-fine behavior in the decoding stage. L1 loss is

employed for all the regression terms.

Network architecture. To justify the effectiveness of

focusing on local geometry, we adopt light-weight archi-

tecture ERFNet [17] and BiSeNet [21], which were orig-

inally designed for semantic segmentation on mobile de-

vices. During the feature extraction, the encoder abstracts

image into downsampled feature map, then the decoder

broadcasts the high-level semantics to the same resolution

as input. All 4 logits are yielded by the last block of the

decoder for saving memory. Most experiments in this pa-

per are performed basing on ERFNet. Since the method is

designed for working in real traffic scenarios, which is re-

quired to handle the case of a merged or split marker and

any number of instances, there is no extra branch special-

ized for predefined lane markers as in [12, 5]. The final

cost function is formulated as

Loss = Lossh + λ(Loss↑ + Loss↓ + Loss→), (6)

3.2. Decoder for global geometry

In the above section, CNN produces pixel-wise heatmap

and offset for keypoints in local scope. These local infor-

mation are subsequently integrated into prediction of global

curve. Specifically, the heatmap is used to determine emer-

gence and termination of curve. The offsets is used to asso-

ciate keypoints on same curve instance and refine geometry

further. To this end, we propose two novel and simple al-

gorithms for decoding the output of CNN under different

demand scenarios, which responds to preferences for accu-

racy and efficiency respectively.

Greedy decoder works through iteratively extending the

neighbors of keypoint in a greedy search-like manner. For

each input image,
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Figure 4. Illustration of efficient decoding process. Different from greedy decoder, which searches keypoints in an iterative manner, the
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keypoints.

Step1 Find the row containing greatest number of local

maximum response on heatmap. This row and the

points are taken as starting line and current keypoints.

Step2 Refine the position of current keypoints. For

point p, refinement can be formulated as p̂ = p +
[∆x→(p), 0]T .

Step3 Explore the vertical neighbors of current points, the

coordinates of which can be computed as p↑ = p̂ +
[∆x↑(p),−∆y]T and p↓ = p̂+ [∆x↓(p),∆y]T .

Step4 Examine the heatmap value of p↑ and p↓. If the

value reaches threshold θh, the corresponding neigh-

boring points is used to update current keypoint, and

Step2˜4 are repeated. Otherwise the search is termi-

nated, all the points searched from one single point are

taken as one global curve.

To sum up, the decoding algorithm gradually extends the

global curve by exploring neighbors of keypoint, and refine

the geometry of curve in a coarse-to-fine manner. This al-

gorithm can produce precise geometry of curve, but its low

efficiency limits the useability in practical application. The

process have been shown in color in Fig.4.

Efficient decoder is proposed in order to solve the in-

efficiency problem of greedy decoders, which utilizes the

parallelism of computing devices. For each image,

Step1 Extract rows at equal interval ∆y on heatmap. On

each row, take the points with local maximum response

as current keypoints.

Step2 For each keypoint p, compute three related points as

p→ = p + [∆x→(p), 0]T , p↑ = p + [∆x↑(p),−∆y]T

and p↓ = p+ [∆x↓(p),∆y]T .

Step3 Construct association among current keypoints lo-

cated in neighboring rows. For a point p in i-th row,

two points in (i − ∆y)-th row and (i + ∆y)-th row

will be associated with it, which are closest to the po-

sition of p↑ and p↓ respectively.

Step4 Starting with the row with maximum number of cur-

rent keypoints. According to the association relation-

ship created in Step3, for each current keypoint, all the

keypoints associated with it in above/below rows are

iteratively taken out as a single group. Each keypoint

group is considered as a global curve, and p→ of points

are used to refine geometry of curve further.

The efficient decoding algorithm leverages the parallel com-

puting power of device, to create association among key-

points and refine their position, from step1 to step3. Step4

involves only index operations, thus the time overhead is

very low. The process have been shown in color in Fig.3.

4. Experiments

In this section, firstly we describe the implementation

details and evaluation datasets. Followed by the results of

comparison with the state-of-the-art, including quantitative

and qualitative results. Finally, the discussion of ablation

study and generalization are detailed.
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Dataset # Frame Train Validation Test Resolution Road type # Lane

TuSimple 6408 3268 358 2782 1280×720 highway <=5

CULane 133235 88880 9675 34680 1640×590 urban, rural and highway <=4

Table 1. Basic information of two lane marker detection datasets.

Category ProportionSCNN[12]ENet-SAD[5]ERFNet-E2E[20]SIM-CycleGANUFNet[16]PINet(4H)[6]FOLOLane

+ERFNet[9] (ours)

Normal 27.7% 90.6 90.1 91.0 91.8 90.7 90.3 92.7

Crowded 23.4% 69.7 68.8 73.1 71.8 70.2 72.3 77.8

Night 20.3% 66.1 66.0 67.9 69.4 66.7 67.7 74.5

No line 11.7% 43.4 41.6 46.6 46.1 44.4 49.8 52.1

Shadow 2.7% 66.9 65.9 74.1 76.2 69.3 68.4 79.3

Arrow 2.6% 84.1 84.0 85.8 87.8 85.7 83.7 89.0

Dazzle light 1.4% 58.5 60.2 64.5 66.4 59.5 66.3 75.2

Curve 1.2% 64.4 65.7 71.9 67.1 69.5 65.6 69.4

Crossroad 9.0% 1990 1998 2022 2346 2037 1427 1569

Total - 71.6 70.8 74.0 73.9 74.4 72.3 78.8

Table 2. Performance of different methods on CULane testing set, with IoU threshold=0.5. For crossroad, only FP are shown.

Method Accuracy(%) FP FN

SCNN[12] 96.53 0.0617 0.0180

LaneNet(+H-Net)[10] 96.40 0.0780 0.0244

EL-GAN[4] 96.39 0.0412 0.0336

PointLaneNet[2] 96.34 0.0467 0.0518

FastDraw[14] 95.2 0.0760 0.0450

ENet-SAD[5] 96.64 0.0602 0.0205

ERFNet-E2E[20] 96.02 0.0321 0.0428

PINet(4H)[6] 96.75 0.0310 0.0250

FOLOLane(ours) 96.92 0.0447 0.0228

Table 3. Performance of different methods on TuSimple testing

set.

4.1. Implementation Details

We first resized the width of an image to 976 and kept

the aspect ratio on both datasets. The ∆y was set as 10

pixels for a trade-off between precision and efficiency. The

weight λ for loss function in Eq.[6] was set as 0.02. For

optimization, we used Adam optimizer and poly learning

rate schedule with an initial learning rate of 0.001. Each

mini-batch contained 16 images per GPU and we trained

the model using 8 V-100 GPUs for 40 epochs on CULane

and 200 epochs on TuSimple, respectively. To reduce over-

fitting, we used a 0.3 probability of dropout and weight de-

cay with 0.0001. Furthermore, we also applied data aug-

mentation, including random scaling, cropping, horizontal

flipping, random rotation, and color jittering, which have

been proved to be effective. In the testing phase, we set the

threshold of lane existence confidence as 0.5.

As illustrated in Table 1, the basic information of TuSim-

ple and CULane datasets are detailed. And for evaluation

criteria, we follow the official metric used in [18] and [12].

4.2. Results

In this section, we show the results on two lane detec-

tion datasets. In all experiments, ERFNet[17] is used as our

baseline network if not specially mentioned.

Quantitative results. To verify the effectiveness of our

proposed method, we compared it with state-of-the-art al-

gorithms based on either segmentation or object detection,

including SCNN[12], LaneNet(+H-Net)[10], EL-GAN[4],

PointLaneNet[2], FastDraw[14], ENet-SAD[5], ERFNet-

E2E[20], SIM-CycleGAN+ERFNet[9], UFNet[16] and

PINet[6].

As illustrated in Table 2, the proposed method achieves a

new SOTA result on the CULane testing set with a 78.8 F1

measure. Compared with the best model as far as we know,

PINet(4H), our method outperforms almost all of the sce-

narios, whose F1 measure improves 4.4%. Because of local

occlusions and fogged traffic lines, PINet shows degraded

performance in some categories, such as Crowded, Arrow

and Curve. Although our method and PINet are both based

on key points estimation, in the aforementioned categories,

our method outperforms PINet with 5.5%, 5.3%, and 3.8%

F1 measure improvements respectively, which indicates our

local geometry modeling model and bottom-up pipeline

have better lane marker representation capabilities. Besides,

an interesting point is that SIM-CycleGAN+ERFNet, which

aims at dealing with low light conditions using CycleGAN,

is not comparable to our lane marker detection model in

the night and dazzle light scenarios, which implies that our

approach is of better generalization ability even than GAN
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Figure 5. Visualized results of SCNN, SIM-CycleGAN+ERFNet, UFNet, PINet and FOLOLane on CULane testing set.

augmented data.

The results of different methods on the TuSimple test-

ing set are shown in Table 3. Due to the limited scale

(train/test:3.3k/2.8k) and homogeneous scenario (highway),

most methods achieved near-saturated accuracy (more than

96%). Despite this, our method still outperforms the 2nd by

0.17%, close to the difference between 2nd and 4th.

Qualitative results. We also show qualitative

results of the proposed method and SCNN, SIM-

CycleGAN+ERFNet, UFNet, PINet on the CULane test-

ing set. As shown in Fig.5, our method focusing on local

geometry and bottom-up strategy helps to distinguish the

occlusion of crowded roads and the missing lane marker

clues. Through keypoint estimation, the proposed method

could yield a smoother and more accurate curve than the

others do. Even though in night and dazzle light scenar-

ios, the predicted results are still satisfactory. In conclusion,

the proposed method leads to visible improvements in lane

marker detection among recently developed segmentation-

based and regression-based approaches.

4.3. Ablation Study

To investigate the effects of the locally based designs, an

ablation study is carried out on the CULane dataset. The

experiments are all conducted with the same settings as de-

scribed in Sec. 4.1 if not specially mentioned.

Key point estimation. Different from segmentation-

based solutions, our key point estimation method focuses on

the center of the lane marker, which achieves a impressive

result. Table 4 shows that the proposed method improves

Heatmap Coarse-to-fine Decoder Architecture F1 Rt.

Se. Ke. @ test @ train Gre. Eff. ERF BiSe

� � � 74.2 -

� � � 76.6 -

� � � � 77.5 -

� � � � � 78.8 25ms

� � � � � 78.3 16ms

� � � � � 77.5 9ms

Table 4. Ablation studies on CULane testing set. Se.: Semantic

segmentation. Ke.: Keypoint estimation based heatmap. @test:

use ∆x→ to refine the geometry of the curve in testing. @train:

use coarse-to-fine strategy to sample training data for ∆x→ in

training. Gre.: Greedy decoding. Eff.: Efficient decoding. Rt.:

runtime.

the F1 measure from 74.2 to 76.6, which indicates that the

suppression of ambiguous and noisy pixels helps achieve

accurate geometry and fewer false positives, improving the

performance of a system in turn.

Coarse-to-fine geometry refinement. During both net-

work training and instance decoding, we adopt a coarse-to-

fine geometry refinement for a more accurate position of

key points. In the training phase, the training pixels come

from the decoded prediction of ∆x↑ and ∆x↓. In the infer-

ence phase, The predicted ∆x→ is employed to refine the

position of initial key points and newly explored neighbor-

ing key points. The results of different configurations are

shown in Table 4. Only using coarse-to-fine in inference

improves the F1-measure 0.9%. When coarse-to-fine is ex-

tended to training, the performance outperforms that of uni-
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Figure 6. Visualization results of generalizing SCNN, SIM-CycleGAN+ERFNet, UFNet, PINet and FOLOLane on TuSimple testing set.

form sampling in Nσg
(l) significantly by 1.3%. The result

shows that the direct prediction leads to suboptimal posi-

tion estimation and our coarse-to-fine strategy could guide

the spatially most related representation to capture the ge-

ometry of the curve and achieve a more accurate prediction.

Efficiency-oriented implementation. As mentioned in

Sec. 3.2, efficient decoding is aimed at real-time process-

ing. The main difference from a greedy decoder is that the

iteration of decoding neighboring key points is replaced by

parallel processing. The parallel decoding significantly im-

proves the efficiency, which achieves 16 ms (64%) runtime

gains than greedy decoder at the cost of 0.8% performance

degradation. The reason can be attributed to the lack of lo-

cal optimal estimation in each iteration of greedy decoding.

To maximize efficiency for application, we further re-

place the basic network from ERFNet to BiSeNet, which

is a real-time semantic segmentation network originally de-

signed for mobile devices. Since the output of BiSeNet is

8 times downsampled from the input size, real-time perfor-

mance is achieved by reaching more than 100 fps and 77.5

F1 measure simultaneously, which is still the best state-

of-the-art results excluding the accuracy-oriented version

of our approach. On the other side, the experiment also

proves the compatibility of the proposed system, which can

be readily adapted for more powerful and efficient network

architectures up to date.

4.4. Generalization

To further verify the generalization of our proposed

method, we employ the checkpoint trained from the CU-

Lane training set to inference on the TuSimple testing set.

To our knowledge, this is the first attempt to investigate the

generalization between these two widely used datasets. Ta-

ble 5 shows that the proposed method achieves obvious su-

periority with an accuracy of 84.36%, which surpasses other

methods by a significant margin of nearly 20%. The SCNN

and PINet(4H) approaches suffer most from the general-

ization ability, which decreases 90% and 60% respectively.

The generalized visualization results on the TuSimple test-

ing set are shown in Fig.6. This result indicates that the

simplified task and the compact output of the network re-

duce the demand for model capacity and training data, the

resulting stableness and efficiency in training finally lead to

advantageous generalization to other domains, which shows

promising potential for application.

Method Accuracy(%) FP FN

SCNN[12] 0.29 0.0068 1.0

SIM-CycleGAN+ERFNet[9] 62.58 0.98860.9909

UFNet[16] 65.53 0.56800.6546

PINet(4H)[6] 36.31 0.48860.8988

FOLOLane(ours) 84.36 0.39640.3841

Table 5. Evaluation of generalization ability of different methods

from CULane training set to TuSimple testing set.

5. Conclusion and Future Work

In this paper, we propose a local-based bottom-up solu-

tion for lane detection. Experimental results show the key-

point estimation and the coarse-to-fine refinement strategy

circumvent the influence from ambiguous and noisy pixels,

effectively improves the accuracy of curve geometry. More

importantly, the principle of focusing on local geometry and

the bottom-up pipeline have been proved to be particularly

resultful, which significantly simplifies the task by reduc-

ing the dimension of the output of CNN and is believed to

be the principal cause of the excellent performance and gen-

eralization capacity.

The proposed method also shows superiority in adap-

tation to the rapid evolution of neural networks for per-

formance and efficiency. We have plan to incorporate

more powerful architectures into FOLOLane framework,

e.g. the ones with self-attention mechanism, to improve

the performance further. We also want to use FOLOLane

on MindSpore1, which is a new deep learning computing

framework. These problems are left for future work.

1https://www.mindspore.cn/
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