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Abstract

Multi-Camera Multiple Object Tracking (MC-MOT) is

a significant computer vision problem due to its emerging

applicability in several real-world applications. Despite a

large number of existing works, solving the data association

problem in any MC-MOT pipeline is arguably one of the

most challenging tasks. Developing a robust MC-MOT sys-

tem, however, is still highly challenging due to many practi-

cal issues such as inconsistent lighting conditions, varying

object movement patterns, or the trajectory occlusions of

the objects between the cameras. To address these prob-

lems, this work, therefore, proposes a new Dynamic Graph

Model with Link Prediction (DyGLIP) approach 1 to solve

the data association task. Compared to existing methods,

our new model offers several advantages, including bet-

ter feature representations and the ability to recover from

lost tracks during camera transitions. Moreover, our model

works gracefully regardless of the overlapping ratios be-

tween the cameras. Experimental results show that we out-

perform existing MC-MOT algorithms by a large margin on

several practical datasets. Notably, our model works favor-

ably on online settings but can be extended to an incremen-

tal approach for large-scale datasets.

1. Introduction

Multi-Camera Multiple Object Tracking (MC-MOT)

plays an essential role in computer vision due to its potential

in many real-world applications such as self-driving cars,

crowd behavior analysis, anomaly detection, etc. Although

recent Multi-Camera Multiple Object Tracking (MC-MOT)

1Visit https://github.com/uark-cviu/DyGLIP for the im-

plementation of DyGLIP.

Figure 1. Top: Pedestrians in the MCT dataset [9], Bottom: Cars

in the CityFlow dataset [37].

methods have achieved promising results in several large-

scale datasets, there are still many challenges that need to be

addressed. Among them, data association, a crucial step in

determining the performance of an MC-MOT pipeline, has

attracted a considerable amount of attention lately. While
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the association itself is challenging in single-camera MOT

applications, this task becomes even more difficult in MC-

MOT settings due to possibly inconsistent lightning condi-

tions or occlusion patterns between the cameras. For exam-

ple, feature vectors, given by an off-the-shelf object detec-

tor and Re-Identification (Re-ID) models, associated with

a particular object during its transition from an indoor to

an outdoor environment can be totally different as shown

in Fig. 1. This breaks the connection between the trajec-

tory representation of an object and its previous feature vec-

tors, leading to wrong identity (ID) assignments. Failures

in data association at a particular frame will potentially lead

to long-term detrimental effects for an online tracking sys-

tem. In practice, many circumstances that are much more

complex than simply generate more new IDs which could

significantly deteriorate the tracking accuracy. Therefore,

improving data association plays a crucial role in determin-

ing the performance of an MC-MOT algorithm.

To tackle the problem of data association mentioned

above, our work introduces a totally new perspective to

tackle the association task in MC-MOT. Most previous

works rely on feature vectors obtained from an underlying

object detector and use them to solve the assignment prob-

lem, e.g., using nearest neighbors [33], clustering [29, 50]

or solving an instance of non-negative matrix factorization

[16]. Instead, we propose to consider the problem of data

association as a link prediction on a graph, where the graph

vertices are associated with the tracks. To construct our pre-

dictor, we introduce a new dynamic graph formulation that

can take into account the temporal information of an ob-

ject over a period of time and its relation to other objects.

As shown in the experiments in Section 4.3, this dynamic

graph formulation allows leveraging the feature represen-

tations and moving patterns of each object to improve ID

assignment, leading to better performance compared to the

state-of-the-art (SOTA) methods.

Contributions The main contributions of our work can be

summarized as follows. Firstly, a new MC-MOT frame-

work is presented using the link prediction in conjunction

with a dynamic graph formulation. We demonstrate that

this new model significantly improves the association task

in numerous MC-MOT datasets by a large margin. To the

best of our knowledge, it is the first time link prediction and

dynamic graph are used together in MC-MOT. Secondly,

the proposed dynamic graph will be incorporated with the

attention mechanism, allowing dynamically accumulating

temporal and spatial information to result in a new graph

embedding yielding highly accurate link prediction results.

2. Related Work

This section reviews some current methods on MC-MOT

algorithms. There is a large amount of research on single-

camera MOT tackling the matching/association problem

[20, 27, 7, 23] or building an end-to-end framework that uni-

fied with the detector [36, 43, 40, 3, 11, 54, 22, 32, 19, 46,

47]. MC-MOT has recently received increasing attention

intending to determine the global trajectory of all subjects

in a multiple camera system simultaneously. Compared to

single-camera MOT, MC-MOT is more challenging in the

affinity stage. The difficulties may come from the signifi-

cant changes in subject pose between cameras, a vast num-

ber of matching trajectories, or differences in object fea-

tures.

Matching using spatio-temporal constraints: Kumar

et al. [33] use pre-defined spatio-temporal camera connec-

tions, represented by an adjacent moving time matrix, to

search for the targeted person when he/she disappeared in a

field of view. Similarly, Jiang et al. [18] estimate the camera

topology to significantly reduced the number of matching

candidates. Styles et al. [35] propose several baseline meth-

ods that only solve a minor task that is classifying which

camera will a disappeared target recur in. Jiang et al. [18]

apply Gaussian Mixture Model to estimate the camera con-

nectivity, therefore searching in probe tracklets set is less

painful. Chen et al. [10] formulate the assignment task as a

min-cost flow matching problem in a network.

3D matching on an overlapping field of view: You and

Jiang [49] introduce a method that works specifically on

overlapping fields of view by estimating people’s ground

heatmap. Chen et al. [8] reconstruct 3D geometric informa-

tion to overcome 2D matching’s limitations efficiently.

General matching approaches: He et al. generate local

tracklets offline in all single views to construct a similarity

matrix and then estimate global targets and their trajectory

by performing the Matrix Factorization method. Ristani and

Tomasi [29] adopt correlation clustering to solve the ID as-

signment task. Then two post-processing steps, i.e., inter-

polation and elimination, are also executed to fill gaps and

filter indecision tracks. Yoon et al. [48] not only revisit the

Multiple Hypothesis Tracking algorithm, which maintains a

set of track hypotheses all the time but also reduce its expen-

siveness by introducing a gating mechanism for tree prun-

ing. Zhang et al. [50] cluster IDs by using the Re-Ranking

algorithm [52] on the global cost matrix.

3. The Proposed DyGLIP Method

In this section, we first briefly define the MC-MOT prob-

lem in Subsection 3.1. It is then re-formulated as a construc-

tion of a dynamic graph with an ID assignment problem in

Subsection 3.2. A new attention mechanism is presented to

enhance the robustness of the associated features for each

node in the proposed graph in Subsection 3.3. Then ID as-

signment problem is solved via link prediction as in Subsec-

tion 3.4 to connect new nodes with existing nodes. Finally,

we present the model learning in Section 3.5 and some anal-
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Figure 2. The proposed DyGLIP framework. Connected components, grouped by dash boundaries, represent known tracklets of unique

objects in a multi-camera system. The gray node with a question mark is a new subject that has appeared in camera 3 at time step t. Such

a node is successively added to our graph over time, its transformed features are computed by attending to existing nodes in the graph, and

then its connections are predicted using structural and temporal attention feature embedding from graphs up to t−W steps.

ysis on model complexity in Subsection 3.6.

3.1. Problem Formulation

In MC-MOT, it is assumed that the environment is con-

tinuously monitored by C cameras, denoted by the set

C = {c1, . . . , cC}. In contrast to some prior methods [49, 8]

that require certain overlapping ratios between the cameras,

DyGLIP can gracefully handle both overlapping and non-

overlapping scenarios. Similar to prior MC-MOT methods

[16, 26], the task of tracking in each camera is assumed

to be performed by an off-the-shelf single-camera MOT

tracker. We choose DeepSORT [41] in this work, but it can

be simply replaced by any other MOT trackers. At time step

t, we obtain a set of local tracklets L
(t)
c = {l

(t)
j } provided

by each single-camera MOT tracker, where each l
(t)
j is a

feature vector. Sometimes it is referred to as re-id features

in the literature. Note that the set L
(t)
c may contain tracklets

of new objects, and the global IDs of the tracklets are un-

known. Moreover, one object could associate with multiple

local tracklets across camera views. The aim of data asso-

ciation is, therefore, to assign the proper global IDs for the

local tracklets in L
(t)
c .

In practice, given an unassigned tracklet l
(t)
j , most MC-

MOT algorithms rely on the information in l
(t)
j to find its

correlation to the set of known tracklets ∪C
c=1∪

t−1
k=1L

(k)
c ob-

tained from previous time steps. In this work, we show that

solely using information from the feature vectors l
(t)
j could

lead to a wrong data association. Our proposed method, on

the other hand, uses the set of obtained tracklets and em-

beds them into a dynamic graph model. The graph is then

equipped with structural and temporal attention, offering us

a richer tracklet representation.

3.2. Dynamic Graph Formulation

We first introduce our graph formulation (See Fig. 2).

At a particular time step t, we construct a graph G(t) =
(V(t), E(t)), where the vertex set Vt contains all the track-

lets tracked up to time t. Unlike existing works that build

a fixed graph and conduct relevant data association algo-

rithms, we maintain a dynamic graph during our tracking

process, which is a key novelty of our work. More specif-

ically, at each time step t, new vertices are added into

our graph, hence our vertices are growing over time, i.e.,

V(t) = V(t−1) ∪ N (t), where we use N (t) to denote the set

of new vertices, i.e., new tracklets, obtained from the MOT

tracker in each camera. Before the data association step,

the connection between these new vertices to the vertices of

V(t−1) is not determined.

We denote f(v) as the feature vector associate with a

node v ∈ V(t). Given two nodes vi and vj , an edge exists

that links the two vertices if these two tracklets represent the

same object. From our experiments, we choose f(v) to be

the re-id feature of the tracklet associated with node v. In

the following, we will discuss how the attention mechanism

can be utilized to extract the embedding features for each

node dynamically and how the robust connections can be

established using link prediction.

3.3. Dynamic Graph with Self­Attention Module

We now introduce the self-attention module in our pro-

posed dynamic graph and its building blocks, i.e., graph

structural and temporal attention layers. Although using at-

tention for dynamic graph has been considered in the litera-

ture [42, 39, 31], their methods cannot be straightforwardly

applied to our problem. Inspired by these works, we pro-

pose a novel self-attention mechanism (see Fig. 2) for our
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model. The goal of these attention layers is to attend inter-

cameras and intra-cameras information, which allows our

model to capture variations between tracklets, as well as at-

tend the temporal information over multiple time steps.

3.3.1 Graph Structural Attention Layer

Our attention layer takes into account not only the pro-

vided embedding features but also the camera informa-

tion. In other words, the structural attention layer (SAL)

takes the concatenation of node embeddings or features,

i.e., f(v) ∈ R
DF , and its camera positional encoding, i.e.,

cv ∈ R
DC , as the input, ev = {f(v)||cv} ∈ R

DE , where

DE = DF +DC .

Given a set of camera-aware node features from a graph

G(t), e(t) = {et1, · · · , e
t
N}, where N = |V(t)|, our struc-

tural attention layer provides a new set of node features

h(t) = {ht
1, · · · ,h

t
N},hv ∈ R

DH , as the output. The

learning of self-attention features can be stabilized with

multi-head attention, where the input features are trans-

formed by L independent transformation and their trans-

formed features are concatenated as in Eqn. (1).

h
t
vi

=
L

Concat
l=1



σ





∑

vj∈V(t)

α
l
ijconv

l
1×1

(

e
t
vj

)







 (1)

where convl1×1 is a 1D convolutional layer with kernel

size 1 × 1, σ(·) is a non-linear activation function, i.e.,

LeakyRELU, and αl
ij are the attention coefficients for the

l-th attention head as in Eqn. (2).

αl
ij =

exp
(

σ
(

W
T
ij

[

convl1×1(e
t
vi
)‖convl1×1(e

t
vj
)
]))

∑

vk∈V(t) exp
(

σ
(

WT
kj

[

convl1×1(e
t
vk

)‖convl1×1(e
t
vj
)
]))

(2)

where ‖ is the feature vector concatenation operation,

WT
ij ∈ R

DE×DH is the shared weight of the transformation

applied to edge (vi, vj) in the graph at time step t. Those

normalized (by softmax) attention coefficients αl
ij indicate

the impact of node vj’s features to node vi. To incorpo-

rate graph structure, we employ sparse adjacent matrices to

compute αl
ij for nodes j within its neighborhood of node

i while ignoring others. This layer can be stacked to cre-

ate multiple structural attention layers and applied indepen-

dently for each graph G(t) to capture the local structure of

a node at each time step. In the next section, we will in-

troduce how to attend to the graph dynamic’s evolution or

development across multiple time steps by using the tem-

poral attention layer, which takes the node representation

output from the structural attention layers.

3.3.2 Graph Temporal Attention Layer

A temporal attention layer (TAL) is designed to capture the

temporal evolution scheme in terms of links between nodes

in a set of dynamic graphs. This layer takes a set of output

representations or features from structural attention layers at

different time steps and timestamps as inputs and provides

the time-aware features for each node at each time step t. In

particular, for each node v ∈ V(t), we combine timestamp

position encoding (pv ∈ R
DH ) with the output from the

SAL to obtain an order-aware sequence of input features for

TAL as, xv =
[

h1
v + p1

v,h
2
v + p2

v, · · · ,h
W
v + pW

v

]

, where

W is temporal window size, i.e., W = 3 in our experiments,

for each node v ∈ V . We stacked multiple time step to-

gether as matrices X ∈ R
W×DH . The l-th output of the

multi-head TAL are defined using scaled dot-product atten-

tion as in Eq. (3)

z
(l)
e = attn

(l)(Q,K,V) = softmax

(

QKT

√
DZ

+M

)

V (3)

where l = 1, · · · , L, with L is the number of heads, Q =
XWQ, K = XWK , and V = XWV are the “queries”,

“key” and “values” transformed features by linear projec-

tion matrices WQ ∈ R
DH×DZ , WK ∈ R

DH×DZ and

WV ∈ R
DH×DZ , respectively, as defined in [38], DZ is

the output feature dimension and M ∈ R
W×W is the mask

matrix where each element M ∈ {−∞, 0}. We employ

such masked attention to allow backward attention where

each time step attends over all previous time steps. Thus, to

set a zero attention weight, we assign Mij = −∞, where

i > j, otherwise Mij = 0. Similarly, we can create multi-

ple stacked temporal attention layers by stacking temporal

attention layers together. Then the multi-head output of the

final layer will be concatenated and passed to a feed-foward

neural network to capture non-linear interactions between

the transformed features to provide the final set of node em-

beddings {e′(1), e′(2), · · · , e′(W )} as in [42].

3.4. Link Prediction

This section describes how we compute the probability

of having a connection/link between two nodes and how we

learn a link classifier jointly with the attention module to ob-

tain the transformed features. In this way, we can guarantee

that the self-attention module and the classifier provide the

best link prediction accuracy. Given transformed features

of a pair of nodes (e′
(t)
vi

and e′
(t)
vj

), we compute the features

or measurement that represent the similarity between those

two nodes, and then it will be used as input for the classifier.

The classifier provides a probability score s ∈ [0, 1]. The

higher the score is, the more likely the two nodes are linked.

We try with two different measurements and classifiers in

Section 4.3, i.e., cosine distance by computing dot product

of two feature vectors with Sigmoid as classifier and the

Hadamard operator ( e′
(t)
vi

⊙ e′
(t)
vj

) with a fully connected

layer and a softmax layer as classifier.
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3.5. Model Learning

To train the proposed DyGLIP framework, our objective

function is to learn representations capturing both structural

and temporal information from dynamic graphs as well as

to predict possible links between two arbitrary nodes in the

graph using the learned representations. We first use a bi-

nary cross-entropy loss function to enforce nodes within a

connected component to have similar feature embeddings.

Then a classifier loss function to ensure classify two nodes

based on measurement features as having a link or not.

L(vi) =
T
∑

t







∑

vj∈N
(t)
b

(vi)

− log
(

σ
(

< e′vi , e
′
vj

>
))

−wg

∑

vk∈N
(t)
g (vi)

log
(

1− σ
(

< e′vi , e
′
vk

>
))

+
∑

vj∈N
(t)
a (vi)

Lc(vi, vj)







(4)

where < · > is the inner production between two vec-

tors, σ is Sigmoid activation function, N
(t)
b (vi) is the set

of fixed-length random walk neighbor nodes of vi at time

step t, N
(t)
g (vi) is a negative samples of vi for time step

t, N
(t)
a (vi) = N

(t)
b (vi) ∪ N

(t)
g (vi) and wg , negative sam-

pling ratio, is an adjustable hyper-parameter to balance the

positive and negative samples. Lc is the loss for classifier.

3.6. Algorithmic Complexity

This section briefly discusses the computational com-

plexity of our approach. We assume the network structure is

fixed; hence the dimensions of the embedding feature vec-

tors and layers are constant numbers. Therefore, the com-

plexity of one network pass is constant, i.e., O(1). Let us

consider the graph G(t) = (V(t), E(t)) at the t-th time step.

It can be observed that the overall complexity of our model

depends on the structural and temporal attention modules.

Graph Structural Attention Module. From Eqn. (1), the

time complexity to compute ht
vi

depends on the number

of attention coefficients αt
ij . Due to the fixed structure as-

sumption, the computation of αt
ij in Eqn. (2) is O(1). Thus,

the overall time complexity of the Eqn. (2) is O(|V|+ |E|).

Graph Temporal Attention Module The time complexity

of this module is equivalent to the time complexity of Eqn.

(3). We ignore the mask M in Eqn. (3), the time complex-

ity of Eqn. (3) is dependent on the matrix multiplication

between Q,K and V, i.e., softmax(QKT

√
DZ

)V. Mathemat-

ically, the time complexity of operation softmax(QKT

√
DZ

)V

is O(WD2
Z +W 2DZ) (W is the window time size). How-

ever, DZ is a constant number; hence, the time complex-

ity will be equivalent to O(W 2). Consequently, the time

complexity of our network is grown with respect to the size

Figure 3. The performance of DyGLIP in terms of Hz w.r.t. num-

ber of nodes/tracks.

Datasets #frames #box #ID #Camera

HDA 75,207 64,028 85 13

SAIVT-Softbio 41,979 64,472 152 8

PRW 11,816 34,304 932 6

MARS 20,715 509,914 625 6

Total 150K 672K 1.8K 33

Table 1. Statistics of the joint training set.

of graph G(t) and the squared window time size W 2, i.e.,

O(|V|+ |E|+W 2). As W can be chosen to be fixed during

the operation, our network’s overall complexity grows with

the number of tracks. Our theory aligns with the empirical

results shown in Fig. 3, where the number of nodes can be

processed per second (Hz) slightly drops when the number

of nodes in the graph increases from 2K to 6K.

4. Experimental Results

In this section, we conduct the experiments to demon-

strate the benefits of attention modules, link regression and

feature extraction for each nodes in terms of link predic-

tion accuracy, i.e., Accuracy Under Curve (AUC) [14] and

ID assignment accuracy, i.e., 1. CLEAR MOT metrics [4]

including MOTA, MOTP, ID Switch (IDS); 2. ID scores

[28] including F1 (IDF1), Precision (IDP), Recall (IDR);

and 3. Multi-camera Tracking Accuracy (MCTA) [9].

We also compare with other state-of-the-art approaches for

both overlapping and non-overlapping FOVs on human and

car multi-camera tracking datasets.

4.1. Datasets

Experiments conduct on small-scale datasets may pro-

vide biased results and may not valid when applying to

large-scale datasets. In addition, Duke-MTMC [28], a

large-scale datasets, was commonly used in MC-MOT re-

search community is no longer publicly available. Thus,

we introduce a large-scale dataset2 by putting together eight

publicly available datasets on Multi-camera settings, four

for training and four for testing. Those datasets includ-

ing HDA Person [24], SAIVT-Softbio [5], PRW [51],

MARS [34], PETS09 [12], CAMPUS [44], EPFL [13]

2This dataset will be publicly available.
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and MCT [9]. Training subsets of HDA Person, SAIVT-

Softbio, PRW, and MARS datasets are gathered to form the

joint training set. Since our proposed DyGLIP does not re-

quire full video frames for training, we can use large-scale

ReID datasets, e.g., MARS, and build dynamic graph and

node’s features based on the provided information for each

bounding box, i.e., the ID of the pedestrian, camera, tracklet

ID and frame number. We can also train on datasets without

continuous frames, e.g., PRW, it still shows the evolution of

dynamic graph as tracked subjects change over time. Af-

ter combining the above datasets, we obtain a training set

contains a total of 150K frames, with a total of 1.8K unique

ID (see Table 1 for more details). A small subset of this

joint training set is used as a validation set for our ablation

studies in Subsection 4.3. We use four public benchmark

datasets, including PETS09, CAMPUS, EPFL, and MCT,

for performance evaluations. We also train and test on car

datasets, i.e., CityFlow [37] from AI City Challenge 2020

[25].

4.2. Experimental Setup

We conduct MC-MOT experiments by learning dynamic

graph representation with two time steps {G(t−2),G(t−1)}
to predict/assign ID for new nodes in G(t) at time step t.

Thus, training data are split into mini-batch of a chunk size

of 3 and employed a mini-batch gradient descent with the

Adam optimizer to learn all the parameters of the attention

module and the classifier. The attention module is imple-

mented in Tensorflow [1]. We use two SALs with four

heads, each computing 128 features (layer sizes of 512)

and two TALs with 16 heads, each computing eight fea-

tures (output sizes of 128), given the input raw (unattended)

feature dimension of 512. The model is trained with a max-

imum of 100 epochs with a batch size of 512 chunks. Note

that we apply some padding to combine those chunks (with

a different number of nodes) into a batch for training. We

choose the best performing model on the validation set for

evaluation on four benchmark datasets.

4.3. Ablation Studies

This section presents several deeper studies to analyze

our proposed model and justify our competitive perfor-

mance presented in the following sections. More specifi-

cally, this section aims to demonstrate the following appeal-

ing properties of the proposed method: (1) Better feature

representations, even in severe changes in lighting condi-

tions between the cameras; and (2) Recovery of correct rep-

resentations for objects that lost tracks during camera tran-

sitions. In addition, we also conduct several other studies

to evaluate the role of link regression and the influence of

initial node embedding feature choices.

Better Representations It is well-known in most track-

ing applications that the data association task’s accuracy is

Features ID F1 (%) ↑ IDP (%) ↑ IDR (%) ↑ IDS ↓
DyGLIP 56.2 59.5 56.2 44

− att 39 50.1 36.5 135

Table 2. MOT metrics comparison between DyGLIP (with atten-

tion modules) and − att (without attention modules).

Method Val AUC Test AUC

Link Regression with Attention 97.79 % 97.48 %

Link Regression w/o Attention 84.23 % 87.36 %

Table 3. Accuracy Under the Curve (AUC) comparison between

using and without using attention modules.

Metrics Classifier Val AUC Test AUC

Cosine distance Sigmoid 81.9 % 68.1 %

Hadamard product SM 97.79 % 97.48 %

Table 4. Area Under Curve (AUC) between various feature metrics

and link classifiers, i.e., Sigmoid and Softmax (SM).

Features Val AUC Test AUC

ReID [53] 97.79 % 97.48 %

Detector [15] 73.95 % 66.75 %

Table 5. Area Under Curve (AUC) comparison between various

initial features for each node in the proposed graph, i.e., ReID

features or features from human detector.

dependent mainly on the quality of the underlying feature

representations. In other words, one expects that features

representing the same object (from different cameras) dur-

ing its trajectory must form a cluster in the feature space.

While other methods use the features produced by MOT

trackers, we will show in this section that our dynamic

graph with the structural and temporal attention mechanism

offers better representations for each node in the graph. We

use a subset of frames from the same video for training and

validating our method and use the ones in another video

for testing. Note that our testing frames cover multiple ob-

jects, where each object has multiple transitions over dif-

ferent cameras. The features produced by our method for

all the nodes are plotted (using t-SNE embedding [17]) in

Fig. 4 (c), while the original node features obtained from

MOT trackers are also plotted in Fig. 4 (b). In this figure,

features produced by DyGLIP form better clusters than the

original features. Furthermore, to quantitatively justify the

role of attention, Tables 2 and 3 show the results with and

without attention, where the attention mechanism signifi-

cantly improves the performance. Fig. 5 illustrates how

feature embedding of a subject/node change-over-time. Es-

pecially when the subject moves from one camera to an-

other camera, the original features (OF) change with a large

margin while the transformed features (AF) are quite stable.

We measure the average between the cluster centroid and all

the corresponding node features up to the time step t.

Recover from Fragmented Tracks in single-camera.

We demonstrate the ability to recover from assignment error

in the previous steps using cluster of nodes, i.e., a set of

nodes that form a connected component in the graph. Fig. 6

illustrates our proposed DyGLIP can recover single-camera
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Figure 4. Node embedding in t-SNE space (a) Features from detector [15]. (b) Original features from ReID model [53]. (c) Transformed

features with attention. Same color indicating same subject and same symbol indicating same camera. Each node corresponding to a time

step in the video sequences. (Best viewed in color)

Figure 5. Feature variation across cameras. OF and AF denotes for

original features and attentional features, respectively.

Sequence Method MOTA (%) ↑ MOTP (%) ↑
S2L1 KSP [2] 80 57

B&P [30] 72 53

HCT [44] 89 73

TRACTA [16] 87.5 79.2

DyGLIP 93.5 94.7

Table 6. Evaluation results on PETS09 dataset.
Sequence Method MOTA (%) ↑ MOTP (%) ↑

Passageway KSP [2] 40 57

HCT [44] 44 71

TRACTA [16] 52.1 77.5

DyGLIP 70.4 97.2

Basketball KSP [2] 56 54

HCT [44] 60 68

TRACTA [16] 64.3 72.5

DyGLIP 66.3 89.5

Table 7. Evaluation results on EPFL dataset.

MOT mistake on-the-fly.

Roles of Link Regression. We study the effects of dif-

ferent metrics and classifiers to predict the probability of

having an edge connecting two nodes given their embed-

ding features indicating they are in the same ID in Table

4. Our objective function optimizes the inner product that

helps the model achieve much better AUC with Hadamard

product metric and softmax classifier.

Influence of Initial Node Embedding Features. We

study the effects of original embedding features for each

tracker/node used as inputs to the attention module in the

proposed DyGLIP in Table 5. We compare between using

ReID features with the pre-trained model in [53] and fea-

tures from detector, i.e., Mask-RCNN human detector [15]

on human MC-MOT. Note that all other experiments for

Seq Method MOTA ↑ MOTP ↑ MT ↑ ML ↓

G
ar

d
en

1 HCT [44] 49% 71.9% 31.3% 6.3%

STP [45] 57% 75% – –

TRACTA [16] 58.5% 74.3% 30.6% 1.6%

DyGLIP 71.2% 91.6% 31.3% 0.0%

G
ar

d
en

2 HCT [44] 25.8% 71.6% 33.3% 11.1%

STP [45] 30% 75% – –

TRACTA [16] 35.5% 75.3% 16.9% 11.3%

DyGLIP 87.0% 98.4% 66.67% 0.0%
A

u
d

it
o

ri
u

m HCT [44] 20.6% 69.2% 33.3% 11.1%

STP [45] 24% 72% – –

TRACTA [16] 33.7% 73.1% 37.3% 20.9%

DyGLIP 96.7% 99.5% 95.24% 0.0%

P
ar

k
in

g
lo

t HCT [44] 24.1% 66.2% 6.7% 26.6%

STP [45] 28% 68% – –

TRACTA [16] 39.4% 74.9% 15.5% 10.3%

DyGLIP 72.8% 98.6% 26.67% 0.0%

Table 8. Evaluation results on CAMPUS dataset.

human MC-MOT (except vehicle MC-MOT), we use these

ReID features as inputs to our attention module.

4.4. Comparison with State­of­the­arts MC­MOT

To evaluate the proposed method, we first compare with

other state-of-the-arts using three datasets PETS09 [12],

CAMPUS [44], and EPFL [13] that contain videos with

overlapping FOVs. Then, we also compare with other meth-

ods that do not require overlapping FOVs among different

cameras on MCT [9] dataset. Finally, we perform evalua-

tion on the validation set of CityFlow dataset [37] to com-

pare with the winner of the 4th AI City Challenge 2020 [25].

Although our method focuses on the online association task,

our results are comparable with offline approaches. Be-

sides, our DyGLIP method works well on both overlapping

and non-overlapping fields of view by treating two types

equally and solving the assignment task in a general way.

Overlapping FOVs dataset on Human Tracking We

compare with other MC-MOT methods, including K-

Shortest Path (KSP) [2], Hierarchical Composition of

Tracklet (HCT) [44], Brand-and-Price (B&P) [30] and

Spatio-Temporal Parsing (STP) [45] that require overlap-

ping FOVs among different camera views. We also compare

with TRACTA [16] on overlapping FOVs videos. Tables 6,
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Figure 6. Our proposed method (up) corrects a negative matched case caused by a short-memorized MOT system (down). Determined ID

is highlighted by the red bounding box.

Subset Method MCTA (%) ↑ MOTA (%) ↑ MOTP (%) ↑ Precision (%) ↑ Recall (%) ↑ IDS ↓
Dataset1 EGM [9] 41.2 59.4 68.0 79.7 59.2 1888

RAC [6] 59.5 92.6 64.6 69.2 60.6 154

ICLM [21] 61.2 87.3 68.1 77.2 60.9 112

TRACTA [16] 70.8 94.9 85.2 92.7 92.6 71

DyGLIP 76.2 86.7 97.0 93.4 86.8 37

Dataset2 EGM [9] 47.9 67.2 70.6 79.8 63.3 1985

RAC [6] 62.6 86.8 73.7 69.5 78.4 171

ICLM [21] 67.7 88.3 76.6 83.3 70.9 123

TRACTA [16] 83.7 93.4 85.9 95.5 95.4 60

DyGLIP 91.9 95.7 96.8 97.7 95.9 101

Dataset3 EGM [9] 18.6 27.0 64.7 82.1 53.5 525

RAC [6] 5.6 9.2 55.3 47.5 66.2 666

ICLM [21] 37.2 53.2 69.1 66.0 72.6 228

TRACTA [16] 53.8 58.5 75.4 75.2 91.3 144

DyGLIP 89.4 92.7 96.5 98.2 93.7 122

Dataset4 EGM [9] 28.4 35.8 71.1 83.6 61.9 3111

RAC [6] 34.0 53.9 63.0 52.2 79.4 329

ICLM [21] 54.3 62.5 86.8 87.6 86.0 189

TRACTA [16] 71.5 79.6 90.0 86.3 96.0 70

DyGLIP 84.7 92.5 96.6 91.3 92.9 100

Table 9. Evaluation results on MCT dataset.

Subset Method MOTA (%) ↑ ID F1 (%) ↑
S02 ELECTRICITY [26] 53.7 53.8

DyGLIP 90.9 64.9

S05 ELECTRICITY [26] 74.1 36.4

DyGLIP 84.6 39.90

Table 10. Results on CityFlow [37] validation set

7 and 8 show the results on PETS09, CAMPUS, and EPFL

datasets, respectively. DyGLIP outperforms all the other

methods with up to 63 % on certain metrics.

Non-overlapping FOVs dataset on Human Tracking

This experiment compares DyGLIP with other MC-MOT

methods, including EGM [9], RAC [6], ICLM [21] and

TRACTA [16]. These methods do not require overlapping

FOVs between different camera views. DyGLIP signifi-

cantly outperforms all the methods with a large margin (up

to 35%) in most metrics on MCT dataset as in Table 9.

Non-overlapping FOVs dataset on Car/Vehicles

Tracking Table 10 shows the results on the AI City chal-

lenge validation set. We use the same ReID features as in

ELECTRICITY [26]. Indeed, DyGLIP obtains much bet-

ter results, higher on MOTA and ID F1 in S02 (37.2 %

and 11.1%, respectively), in S05 (10.5 % and 3.5%, respec-

tively), thanks to the dynamic graph formulation and the

attention module.

5. Conclusion
This paper has re-formulated the MC-MOT problem

with a dynamic graph model and treated the global track-

let ID association between multi-camera as link assignment

in the proposed graph. The robustness of the proposed

dynamic graph is further improved with attention modules

that capture structural and temporal variations across multi-

camera and multiple time steps. The experiments show

significant performance improvements in both human and

vehicle tracking datasets in multi-camera with overlapping

and non-overlapping FOVs settings.
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