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(a) Input (c) PReNet → AttentGAN(b) AttentGAN→PReNet (d) Ours

Figure 1: Joint removal of raindrops and rain streaks. Combining a raindrop removal method AttentGAN [30] and a rain

streak removal method PReNet [35] cannot remove rain thoroughly. Our method achieves promising derained results.

Abstract

Existing rain-removal algorithms often tackle either rain

streak removal or raindrop removal, and thus may fail to

handle real-world rainy scenes. Besides, the lack of real-

world deraining datasets comprising different types of rain

and their corresponding rain-free ground-truth also im-

pedes deraining algorithm development. In this paper, we

aim to address real-world deraining problems from two as-

pects. First, we propose a complementary cascaded net-

work architecture, namely CCN, to remove rain streaks and

raindrops in a unified framework. Specifically, our CCN re-

moves raindrops and rain streaks in a complementary fash-

ion, i.e., raindrop removal followed by rain streak removal

and vice versa, and then fuses the results via an attention

based fusion module. Considering significant shape and

structure differences between rain streaks and raindrops, it

is difficult to manually design a sophisticated network to re-

move them effectively. Thus, we employ neural architecture

search to adaptively find optimal architectures within our

specified deraining search space. Second, we present a new

real-world rain dataset, namely RainDS, to prosper the de-

velopment of deraining algorithms in practical scenarios.

RainDS consists of rain images in different types and their

corresponding rain-free ground-truth, including rain streak

only, raindrop only, and both of them. Extensive experimen-

tal results on both existing benchmarks and RainDS demon-

strate that our method outperforms the state-of-the-art.

*This work was done when Ruijie Quan, Yuanzhi Liang interned at

Baidu Research. Yi Yang is the corresponding author.

1. Introduction

Rainy weather would severely degrade the performance

of outdoor vision systems. Rain streaks in the air severely

impair the visibility of captured scenes. Concurrently, rain-

drops falling on camera lenses or windshields further re-

duce the image quality as images are captured through rain-

drenched glasses. Hence, removing rain from images plays

an important role in outdoor vision applications, such as au-

tonomous driving.

Existing deraining works have achieved promising pro-

gresses and they can be divided into two major categories:

rain streak removal and raindrop removal. Rain streak re-

moval methods [29, 42, 41, 53, 54, 44, 11, 5, 9] remove rain

streaks mainly based on their sparse line-shape nature. Ex-

isting raindrop removal methods [48, 12, 6, 30, 33] remove

raindrops by identifying their various shapes, positions and

sizes. Previous deraining methods usually assume only one

type of rain exhibits in images. However, in real-world

rainy weather, rain streaks and raindrops often co-occur dur-

ing image capture. Therefore, this phenomenon poses a crit-

ical challenge to the existing deraining algorithms.

In this paper, we develop a novel complementary cas-

caded network, dubbed CCN, to remove raindrops and rain

streaks jointly in a unified framework. Our CCN consists

of two branches to remove rain in different orders, i.e.,

raindrop removal followed by rain streak removal and rain

streak removal followed by raindrop removal. In this com-

plementary fashion, our network removes both types of rain

more thoroughly, as illustrated in Fig. 1. Moreover, we

present an attention based fusion to merge the outputs from

the two branches to achieve satisfactory deraining results.

Considering different shapes, sizes and optical effects of
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Figure 2: Top: Examples of real-world image pairs in

RainDS. Bottom: Examples of the synthetic image pairs

in RainDS. (Best view on screen)

rain, it might be difficult to manually design a powerful net-

work that is able to remove different types of rain. There-

fore, we resort to a neural architecture search (NAS) method

to find an optimal architecture for deraining. In particu-

lar, we also design a specific deraining search space that

takes several effective deraining operations into account,

such as cascaded convolutions with large- and small-size

kernels [36] and spatial attention modules [8]. After archi-

tecture search, our network can fully explore global and lo-

cal information of the raindrops and rain streaks and restore

clean images.

In order to train CCN and enable it to generalize well on

real images, we manage to collect a real-world rain dataset,

dubbed RainDS, including images of rain streaks, raindrops

and both of them as well as their corresponding clean im-

ages1. Moreover, to enrich the diversity of our dataset, we

include some synthetic data generated in autonomous driv-

ing scenes. Examples of RainDS are illustrated in Fig. 2.

The training set of RainDS includes both real and synthetic

data. In this way, we can not only train our network on real

data to reduce the domain gap between real and synthetic

data but also evaluate it on real data quantitatively. Experi-

mental results on RainDS demonstrate that our method out-

performs the state-of-the-art in real-world scenarios, thus

making our method more favorable.

Overall, our contributions are summarized as follows:

• We propose a new complementary cascaded deraining

network, named CCN, to simultaneously remove both

raindrops and rain streaks in a complementary manner,

thus removing rain more thoroughly.

• We design a specific deraining search space that takes

different rain characteristics into account, and then

search an optimal architecture within this space for our

generic deraining task.

1All the images are captured by a Cannon EOS D60 camera in real life.

• To the best of our knowledge, our introduced dataset

RainDS is the first real-world deraining dataset includ-

ing different types of rain captured in various lighting

conditions and scenes. RainDS significantly facilitates

bridging the domain gap between real and synthetic

data and improving the model generalization ability.

• Our method achieves state-of-the-art performance on

both existing datasets (only rain streak or raindrop) and

our proposed benchmark.

2. Related Work

In the past few years, rain image restoration techniques

achieved substantial progresses. As we focus on single im-

age based rain removal, including rain streaks and rain-

drops, the most related literature will be reviewed.

2.1. Rain removal

Rain streak removal. Single image based rain streak re-

moval methods can be categorized into two groups: prior-

based and deep learning-based approaches.

Prior-based methods: Kang et al. [20] clustered rain and

non-rain dictionaries based on the histogram of oriented

gradients (HOGs) features of rain streaks as priors and then

reconstructed clean images. Luo et al. [29] proposed a dic-

tionary learning based approach to separate the background

layer from the rain one. Then Li et al. [25] introduced

Gaussian mixture model based patch priors to model differ-

ent orientations and scales of rain streaks and then remove

them from rain images. Later, Zhu et al. [55] fully exploited

three priors, i.e., a centralized sparse representation, a dom-

inant rain streak direction and patch similarity, to extract

rain streaks for removal. As rain streaks exhibit obvious

line patterns, Chang et al. [1] developed a low-rank image

decomposition framework for rain streaks removal. Deng et

al. [3] removed rain streaks by taking the intrinsic structural

and directional knowledge of rain streaks into account.

Deep learning-based methods: Recently, deep learning

based methods [41, 42, 40, 35, 21, 45, 38, 7, 2] have demon-

strated their superiority in removing rain streaks. Yang et

al. [43] decomposed a rain layer into a series of sub-layers

representing rain streaks of different directions, and then re-

moved rain streaks by a recurrent network. Fu et al. [10] de-

composed a rain image into a low-frequency structure layer

and a high-frequency detail layer and then removed rain

streaks from the detail layer by a convolutional neural net-

work. More recently, Yasarla et al. [46] proposed a Gaus-

sian process based semi-supervised learning framework to

remove rain using unlabeled real-world images. Jiang et

al. [19] proposed a multi-scale collaborative representation

to remove rain streaks. Deng et al. [4] introduced two par-

allel sub-networks that synergize to derain and recover lost

details caused by deraining. Wang et al. [39] proposed a
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model-driven deep neural network and utilized the proxi-

mal gradient descent to optimize the deraining network.

Raindrop removal. Raindrop removal is also a chal-

lenging task as adherent raindrops have many variations

in terms of shapes, positions, and sizes. Existing ap-

proaches [6, 47, 48, 30, 33] focus on either detecting or re-

moving adherent raindrops. Eigen et al. [6] firstly adopted

a deep neural network for raindrop removal. You et al. [48]

used rich temporal information to remove raindrops from

videos. However, their method cannot be applied in single

image based deraining. Qian et al. [30] proposed a gen-

erative adversarial network with attention modules to re-

move raindrops. Quan et al. [33] introduced a dual atten-

tion mechanism, i.e., a shape-driven attention and a channel

re-calibration, to remove effects of raindrops.

Existing deraining methods address either of rain streaks

or raindrops using specific networks. Those networks might

not be suitable for generic rain removal. In this work, we

propose a unified network to remove rain streaks and rain-

drops simultaneously. Recently, Wang et al. [40] proposed

a real-world rain streak removal dataset. In their dataset,

ground-truth clean images are computed by a video derain-

ing method and image pairs are extracted from local regions

(∼2.9K patches). In contrast, our dataset contains different

combinations of rain and provides entire images.

2.2. Neural architecture search

Neural architecture search aims to design neural network

architectures automatically and allows a searched network

to achieve optimal performance. Recently, gradient-based

NAS methods have been applied in many computer vision

tasks [15, 49, 32, 37, 14]. To the best of our knowledge,

there are two works using NAS for rain removal. Specif-

ically, Qin et al. [31] employed NAS to search an archi-

tecture to remove either rain streaks or raindrops. In other

words, Qin et al.’s method still addresses raindrops and rain

streaks individually. Li et al. [22] employed separate en-

coders to extract features from different bad-weather im-

ages and used a shared decoder to reconstruct clean images.

However, Li et al. did not consider the co-occurrence of rain

streaks and raindrops in an image.

Inspired by these works, we propose a new neural archi-

tecture search method so as to search optimal sub-network

architectures for removal of rain streaks and raindrops, re-

spectively. In particular, we design a new search space that

fully exploits the attributes of rain components, such as vis-

ibility in different scales and local and global similarities.

3. Proposed Method

In order to remove rain streaks and raindrops in one go,

we propose a novel complementary cascaded deraining net-

work. In this section, we first introduce the formulation of

rain streaks and raindrops in Sec. 3.1. Then, we present

our unified deraining framework, i.e., our complementary

cascaded network architecture, in Sec. 3.2. Moreover, we

introduce our designed search space and employ NAS to

find an optimal network architecture for removing different

types of rain simultaneously in Sec. 3.3.

3.1. Formulation of rain streaks and raindrops

Rain streak. A rain streak image Rs is defined as the ad-

dition of a clean background scene B and accumulated rain

streaks S:

Rs = B + S. (1)

Rain streaks S impair scene visibility of the background

scene B. Therefore, we aim to obtain the clean image B

by removing rain streaks S.

Raindrop. A raindrop-drenched image Rd can be dis-

assembled into a clean background B and blurry or ob-

struction effects of the raindrops D in scattered small re-

gions [30, 23]:

Rd = (1−M)⊙B +D, (2)

where M is a binary mask and ⊙ indicates element-wise

multiplication. M(x) = 1 when pixel x belongs to a rain-

drop region, and otherwise M(x) = 0 indicates x belongs

to background regions. Raindrop removal aims to obtain

the rain-free image B by removing raindrops D.

Rain streak and raindrop. In real-world rainy weather

scenarios, rain streaks and raindrops may co-occur during

outdoor image capture. A rain streak and raindrop image

Rds can be modeled as:

Rds = (1−M)⊙ (B + S) + ηD, (3)

where η is the global atmospheric lighting coefficient. Note

that rain streaks may change the lighting conditions that sig-

nificantly affect the transparency of raindrops during image

capture. Because of this, removing rain streaks and rain-

drops cannot be simply cast as the combination of a rain

streak removal and a raindrop removal.

3.2. Unified deraining network

As indicated in Eq. (3), rain streaks and raindrops mutu-

ally affect each other. Therefore, we develop a novel com-

plementary cascaded network architecture, named CCN, to

remove rain streaks and raindrops in a unified framework.

Figure 3 illustrates our framework.

3.2.1 Deraining blocks

Rain streak and raindrop removal require different network

architectures as they have different physical characteristics.

For instance, rain streaks are line-shaped while raindrop
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Figure 3: Overview of our complementary cascaded based deraining network, named CCN. CCN consists of rain streak

removal (RSR), raindrop removal (RDR) and attention based feature fusion (AFF) blocks. Their architectures are searched

by a neural architecture search method [27]. After block structures are found, CCN is trained in an end-to-end fashion.

shapes are elliptical. Hence, we propose a rain streak re-

moval block (RSR) and a raindrop removal block (RDR) for

removing rain collaboratively. However, it might be diffi-

cult to manually design a powerful yet compact block archi-

tecture for the above two blocks since a block with too many

layers will make the entire network overweight, which can-

not be deployed in practice, and a shallow block may not

fully remove rain. Moreover, it is hard to know whether a

network architecture is effective for rain streak removal or

raindrop removal before training. We thus use NAS to find

optimal architectures for RSR and RDR blocks. The block

architecture search method will be introduced in Sec. 3.3.

3.2.2 Two-branch cascaded network

We further design a two-branch network equipped with the

cascaded deraining blocks to remove rain in different or-

ders. As shown in Fig. 3, the top branch removes rain

streaks first and then raindrops while the bottom branch

tackles raindrop removal first and then rain streak removal.

Specifically, the RSR block in the top branch receives the

input rain image (including rain streaks or both rain streaks

and raindrops), while the input of the RSR block in the bot-

tom branch is a raindrop-free image processed by its pre-

ceding RDR block. Similarly, RDR blocks learn to remove

the raindrop layers from both the origin input image in the

bottom branch and a rain streak-free image produced by the

RSR block in the top branch. In such a complementary fash-

ion, our network will be aware of the effects of both types

of rain and then remove rain more thoroughly.

3.2.3 Attention feature fusion

Since the complementary information has been learned by

RSR and RDR blocks from two branches, we further pro-

pose an attention based feature fusion (AFF) module to ob-

tain a better representation of the rain layer. The basic struc-

ture of the proposed AFF is shown in the right side of Fig. 3.

AFF takes four penultimate layer features of the four rain

removal blocks as inputs, and then concatenates them into a

feature. We apply three cascaded layers (i.e., conv-bn-relu)

to the concatenated feature and then exploit an SE-ResNet

module [16] as a channel-wise attention to enhance rain lay-

ers. At last, we apply a convolutional layer to acquire the

final learned rain layer.

3.3. Optimal network block search

Preliminary. We employ a gradient-based architecture

search strategy [27] in our block search process and search

for the topology structure of neural cells in our blocks. A

neural cell is regarded as a directed acyclic graph (DAG)

with N nodes. The i-th node in the n-th neural cell (1) re-

ceives two tensors (1In
i and 2In

i ) as inputs, where 1In
i and

2In
i represent the output tensors from the previous two neu-

ral cells, i.e., (n− 1)-th cell and (n− 2)-th cell, or previous

two nodes i.e., (i − 1)-th node and (i − 2)-th node, in the

current cell, (2) applies two operations (1On
i and 2On

i ) on

those two tensors respectively, and (3) sums those two ten-

sors. Therefore, an output tensor In
i of the i-th node in the

n-th neural cell is formulated as:

In
i = 1On

i (
1In

i ) +
2On

i (
2In

i ). (4)

The applied operations 1On
i and 2On

i are selected from a

specific deraining search space Orain. Following [27], we

relax the categorical choices of a particular operation by a

softmax over all possible operations:

1On
i (

1In
i ) =

∑

M∈Ic

i

∑

o∈O

exp(α
(M,i)
o )

∑
o′∈O

exp(α
(M,i)
o′ )

o(M), (5)
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where α=α
(M,i)
o indicates the topology structure for our

neural cell (architecture parameters). The parameters of

all operations (weight parameters) in our proposed search

space are denoted as ω. During searching, we alternately

train network architecture parameters α and weight parame-

ters ω, and we also adopt an early stop search strategy which

has been proved effective in [50].

Deraining search space. The search space consists of all

possible candidate network architectures. A standard search

space in NASNet [31] includes multiple standard convolu-

tional layers and different pooling layers. However, those

standard operations especially the pooling layers are not

suitable for the rain removal task because the output and

input should have the same resolution and image spatial de-

tails are very important. Hence, we design a specific de-

raining search space Orain consisting of the following op-

erations: (1) cascaded convolution 5 ◦ 3, (2) cascaded con-

volution 7 ◦ 5, (3) cascaded convolution 11 ◦ 7, (4) cas-

caded dilated convolution 7 ◦ 5, (5) cascaded dilated con-

volution 11 ◦ 5, (6) spatial attention module, (7) zero oper-

ation, and (8) identity mapping. As seen in Fig. 4, cascaded

convolution k1 ◦ k2 indicates a pair of convolutional layers

with large-size (k1) and small-size (k2) kernels. The cas-

caded convolutions have been proved effective in the noise

removal task [36, 28]. Additionally, a spatial attention mod-

ule [8] is used to capture the spatial contextual information,

thus facilitating rain feature learning.

Search algorithm. The macro structure of our rain removal

block is illustrated in Fig. 3. Apart from several convolu-

tional layers as the image encoder and decoder, neural cells

are stacked in the middle of our rain removal block. We

search for the topology structure of a neural cell for differ-

ent types of rain, and then stack it into a rain removal block.

In the optimization process, we apply two losses:

L = −Lssim + Lℓ1, (6)

where Lssim and Lℓ1 indicate pxiel-wise SSIM objective

and ℓ1 loss between an reconstructed image and its ground-

truth counterpart, respectively.

3.4. Training details

As shown in Fig. 3, given an input rain image R, our

rain streak removal block RSR=S(·) and our raindrop re-

moval block RDR=D(·) remove rain in a sequential fash-

ion. In the top branch, we firstly obtain feature maps of

rain streaks r1=Su(R), and then extract raindrop layers r2=

Du(Su(R)) from the rain streak-free features processed by

the preceding RSR block. Similarly, in the bottom branch,

we firstly achieve a raindrop-free features r3=Dl(R) and

then estimate the rain streak layers r4=Sl(Dl(R)). The sub-

scripts u, l of S and D indicate the top and bottom branches,

respectively In training our unified network, the negative

Table 1: Summary of existing deraining datasets.

Dataset Images Real/Syn Rain Category

Rain12 [25] 12 syn rain streak

Rain200H [43] 2,000 syn rain streak

Rain800 [52] 800 syn rain streak

Rain1200 [51] 12,000 syn rain streak

RainDrop [30] 2,238 syn raindrop

RainDS
Real-world 1,000 real rain streak & raindrop,

rain streak & raindropSynthetic 4,800 syn

SSIM loss is applied to each block:

tLssim = −Lssim(rt, B
t), (7)

where Bt represents the corresponding rain streak-free,

raindrop-free, or rain-free image.

The topology structures of the two rain removal blocks

are searched by a NAS method on rain streak data

and raindrop data, respectively. Specifically, the same

kind of rain blocks (RSR or RDR) in different branches

have the same architecture but do not share parame-

ters. Their parameters are optimized according to dif-

ferent input data, resulting in the complementary learn-

ing fashion. Finally, we fuse the results from differ-

ent rain blocks of the two branches to further improve

deraining results. Denote Spre(R) and Dpre(R) as the

features from the penultimate layers of the RSR and

RDR blocks in our network. Thus, our AFF module

takes {Spre
u (R),Dpre

u (Su(R)),Dpre
l (R),Spre

l (Dl(R))} as

inputs and outputs the final rain layer r5 including both rain

streak and raindrop layers. We use the same loss in Eq. (6)

to supervise the final output r5, denoted as Lout. The final

objective to train our network is expressed as:

Ltrain =

4∑

t=1

tLssim + Lout. (8)

4. RainDS Dataset

In order to train the proposed CCN network and enable

it to generalize well in real scenes, we manage to collect

a real-world rain dataset, named RainDS, including numer-

ous image pairs in various lighting conditions and different

scenes. Each pair contains four images: a rain streak image,

a raindrop image, and an image including both types of rain,

as well as their rain-free counterparts. To further enrich the

diversity of our dataset, we also incorporate a synthetic sub-

set generated in autonomous driving scenes. An overview

of our RainDS dataset can be found in Table 1.

4.1. Synthetic Data

As image deraining is highly demanded in autonomous

driving, we generate synthetic rainy data based on the first-

person view driving scenes collected from two public au-

tonomous driving datasets, i.e., PIE [34] and KITTI [13].
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As shown in Table 1, our synthetic dataset consists of 1.2k

image pairs, a total of 4.8k images. In our synthetic data,

there are rich driving scenes including urban roads, streets,

and highways. To simulate the real-world scenarios as much

as possible, we carefully control the densities, main direc-

tions, brightness, and lengths of rain streaks to be various.

Also, raindrops exhibit large variances in terms of their

shapes, densities, sizes and locations.

4.2. Realworld Data

Although efforts have been made to simulate rain streaks

and raindrops in our synthetic data, there still exists a do-

main gap between the synthetic and the real data. For exam-

ple, raindrops in synthetic data are always transparent but

actually their transparency and brightness will change along

with different lighting conditions and background scenes.

Hence, we construct a subset of real-world data that con-

tains 250 image pairs, 1,000 captured images in total. We

use a DSLR camera to capture rain images. To be specific,

we insert a piece of glass with adherent waterdrops in front

of the camera to mimic the raindrop cases. We spray water

using sprinklers to generate rain streaks, which is a widely-

used technique to mimic rainy scenes in Hollywood film

industry. We also carefully control exposure time and the

ISO parameter to capture different lengths of rain streaks

in different illumination conditions. By removing the glass

with raindrops and stop spraying water, we obtain the clean

background images. Our real-world rain images are cap-

tured in various scenes, including parking lots, parks and

urban areas. Moreover, we collect the data at different time,

i.e., morning, noon, and afternoon, to obtain different light-

ing conditions in real scenarios. Therefore, such complex

scenes and backgrounds make our real-world data subset

more challenging and desirable.

5. Experiments

In this section, we evaluate our CCN deraining network

on both existing rain streak datasets and raindrop datasets.

Moreover, we also compare our CCN with the state-of-the-

art methods on the proposed RainDS.

5.1. Dataset and evaluation metrics

Rain streak dataset. Rain200H and Rain200L, collected

by Yang et al. [43], are two widely used datasets with

“heavy” and “light” rain streaks. In each dataset, there are

1.8k synthetic image pairs used for training and 200 image

pairs for testing.

Raindrop dataset. Qian et al. [30] collected a raindrop

dataset which consists of 1.1k corrupted and clean image

pairs. 861 of them are used for training while the rest are

for evaluation.

Evaluation metrics. Following previous deraining meth-

ods, the quantitative results are evaluated based on two com-

Table 2: Quantitative comparisons with the state-of-the-art

on rain streak datasets.

Methods

Dataset Rain200L Rain200H

PSNR SSIM PSNR SSIM

GMM [25] 27.16 0.90 13.04 0.47

DSC [29] 25.68 0.88 13.17 0.43

DDN [10] 33.01 0.97 24.64 0.85

RESCAN [24] 37.07 0.99 26.60 0.90

DAF-Net [17] 32.07 0.96 24.65 0.86

SPA-Net [40] 31.59 0.97 23.04 0.85

PReNet [35] 36.76 0.98 28.08 0.89

DRD-Net [4] 37.15 0.99 28.16 0.92

Ours 37.94 0.99 29.12 0.92

monly used metrics: PSNR and SSIM.

5.2. Implementation details

Search Configuration. We split the training set D into a

search training set Dtrain (70%) and a search validation set

Dval (30%). The architecture parameters are optimized on

Dval while the network parameters are optimized on Dtrain.

The macro structure of each deraining block is shown in

Fig. 3. Each block contains N stacked neural cells, and we

set N=2 in our experiments due to GPU memory limita-

tions. The channel is set to 64. During searching, we use

Adam to optimize α and ω with the initial learning rate of

0.002 and 0.001, respectively, and we adopt a cosine sched-

uler for 100 epochs. The batch size is 16 and the weight

decay is 0.0005. RSR blocks are searched using Rain200H

while RDR blocks are found using the raindrop dataset.

Train Configuration. After searching powerful archi-

tectures for RSR and RDR blocks respectively, we incor-

porate them into our unified network CCN. We train our

CCN for 100 epochs using Adam as the optimizer with a

momentum of 0.9 and a weight decay of 0.0005. The ini-

tial learning rate is set to 0.001 and we also adopt the co-

sine scheduler for training. For both searching and training,

we apply a patch-based training strategy [35, 26] and ran-

domly crop patches of 128×128 pixels from each image.

Data augmentation [33] is used by flipping images horizon-

tally. The supervision for the RSR/RDR block in our CCN

is the version of removing rain streaks/raindrops from its

input. Therefore, our CCN is able to tackle different rainy

situations.

5.3. Comparison with the StateoftheArts

For fair comparisons with state-of-the-art methods, we

use the same training and testing sets of existing datasets.

Comparison with rain streak removal algorithms.

We conduct extensive experiments on several rain streak

datasets to evaluate the deraining performance of our CCN.

We compare with eight state-of-the-art rain streak removal
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Figure 4: Illustration of one searched cell for RSR (a) and RDR (b) as well as our specified deraining search space (c).

Table 3: Quantitative comparisons with the state-of-the-art on our RainDS. All the networks are re-trained on RainDS.

Methods

RainDS
Real-world Synthetic

RS RD RDS RS RD RDS

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

SPA-Net [40] 0.7016 22.17 0.6628 20.43 0.6318 19.93 0.9129 31.74 0.9251 28.97 0.8737 26.64

PReNet [35] 0.7691 24.56 0.7171 22.33 0.6657 21.20 0.9528 33.92 0.9647 31.99 0.9195 29.62

DRD-Net [4] 0.7203 23.83 0.6569 21.14 0.6043 20.10 0.8970 30.70 0.9160 29.34 0.6987 22.91

CCN 0.8207 26.83 0.7576 24.81 0.7049 23.09 0.9697 35.12 0.9749 33.29 0.9501 32.16

Table 4: Quantitative comparisons with the state-of-the-art

on raindrop datasets.

Method PSNR SSIM

Eigen’s [6] 23.74 0.79

Pix2pix [18] 28.15 0.85

AttentGAN [30] 30.55 0.90

Quan’s [33] 30.86 0.93

Ours 31.34 0.95

methods. The quantitative results are shown in Table 2. We

can see that our CCN outperforms all the other methods, es-

pecially on PSNR, e.g., CCN surpasses the state-of-the-art

method DRD-Net [4] by 0.79dB on Rain200L, and 0.96dB

on Rain200H.

Comparison with raindrop removal algorithms. In

Table 4, we compare CCN with several existing raindrop re-

moval methods quantitatively. CCN outperforms the state-

of-the-art method Quan’s by 0.48dB on PSNR. More quan-

titative and qualitative results on more rain streak datasets

are provided in the supplementary material.

5.4. Comparison results on RainDS

We conduct extensive experiments on RainDS dataset

to evaluate the performance of the proposed CCN and the

state-of-the-art, i.e., PReNet [35], DRD-Net [4] and Attent-

GAN [30]. For fair comparisons, all the methods used the

same training set, including rain streak, raindrop as well

as rain streak and raindrop images. Although such real

rain/rain-free image pairs are difficult to acquire, those data

are important to reduce the domain gap. The evaluation re-

Table 5: Ablation study of our network.

RainDS-Syn
RS RD RDS

PSNR/SSIM PSNR/SSIM PSNR/SSIM

CCN-RAND 30.72/0.92 29.43/0.90 28.17/0.86

CCN-1 34.67/0.96 33.56/0.97 32.47/0.95

CCN-2 35.12/0.97 33.89/0.97 32.27/0.95

CCN-3 33.85/0.95 33.14/0.96 31.79/0.94

CCN-4 35.04/0.97 34.05/0.98 32.53/0.96

CCN-RSR 33.42/0.95 31.78/0.94 30.07/0.92

CCN-RDR 32.34/0.94 31.42/0.94 29.39/0.92

sults on real-world data and synthetic data are reported in

Table 3. As indicated by Table 3, our CCN outperforms

the state-of-the-art in all scenarios. Visual comparisons are

shown in Fig. 5.

5.5. Ablation study

In this section, we investigate the impact of each design

in our proposed CCN.

(1) Neural architecture search algorithm. To evalu-

ate the influence of the neural architecture search algorithm,

we compare the performance of our found rain block archi-

tectures with randomly generated ones. We randomly se-

lect two operations (zero operation is excluded) for each

node in the neural cells to construct both the RSR and

RDR block. Then, the CCN with these two blocks, de-

noted as CCN-RAND, is evaluated on our RainDS dataset.

As shown in Table 5, CCN-RAND obtains worse results

than the searched networks. This indicates that both our

search algorithm and the specific search space are effec-

tive. Furthermore, we run our searching algorithm for four
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Figure 5: Comparisons with the state-of-the-art methods. DRD-Net [4] and PReNet [35] are retrained on RainDS.

times with different initialization seeds following existing

NAS approaches. Our CCN equipped with the searched

four groups of RSR and RDR blocks are denoted as CCN-1,

CCN-2, CCN-3 and CCN-4 respectively. Their evaluation

results can be found in the Table 5. Although there are sub-

tle differences among the results of the four CCNs, they all

outperform other competing methods. CCN-2 obtains the

highest accuracy among all 4 runs, and we use this model

as our CCN.

(2) RSR and RDR blocks. In order to explore whether

RSR or RDR has more influences to the performance, we

construct two new models, To dissect the impacts of RSR

and RDR, we construct two models,i.e., CCN-RSR and

CCN-RDR, whose inner blocks are all RSR or RDR re-

spectively. Table 5 shows CCN-RSR performs better than

CCN-RDR, and this may be because RDR fails to perceive

thin and line-shaped rain streaks while the rain streak block

RSR can. Therefore, it is necessary to cascade them into

a unified network and remove different types of rain in a

complementary fashion.

(3)The effect of different input data. Since the param-

eters of our RSR or RDR blocks are optimized according

to different input data, our proposed CCN is able to tackle

various rainy situations. Benefiting from our complemen-

tary learning, our CCN still works well when inputs only

contain rain streaks or raindrops, as indicated by Table 3.

This is because RDR and RSR blocks learn to compensate

for each other and are aware of different types of rain during

training. Thus, our CCN consistently outperforms state-of-

the-art.

6. Conclusion

In this paper, we proposed a novel complementary cas-
caded network architecture, namely CCN, to remove rain
streaks and raindrops in a unified framework. Taking advan-
tage of neural architecture search and our specifically de-
signed deraining search space, we achieved an effective de-
raining network to remove various types of rain. We present
a new real-world rain dataset RainDS to bridge the do-
main gap between real and synthetic rain. RainDS provide
an ideal testbed for evaluating real-world deraining perfor-
mance of our CCN method. Extensive experiments on our
RainDS demonstrate the effectiveness and superiority of our
unified deraining network. We believe our dataset would
significantly advance the research of rain removal tasks in
the future.
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