
VoxelContext-Net: An Octree based Framework for Point Cloud Compression

Zizheng Que

Beihang University

quezizheng@buaa.edu.cn

Guo Lu*

Beijing Institute of Technology

guo.lu@bit.edu.cn

Dong Xu

University of Sydney

dong.xu@sydney.edu.au

Abstract

In this paper, we propose a two-stage deep learning

framework called VoxelContext-Net for both static and dy-

namic point cloud compression. Taking advantages of both

octree based methods and voxel based schemes, our ap-

proach employs the voxel context to compress the octree

structured data. Specifically, we first extract the local voxel

representation that encodes the spatial neighbouring con-

text information for each node in the constructed octree.

Then, in the entropy coding stage, we propose a voxel con-

text based deep entropy model to compress the symbols of

non-leaf nodes in a lossless way. Furthermore, for dynamic

point cloud compression, we additionally introduce the lo-

cal voxel representations from the temporal neighbouring

point clouds to exploit temporal dependency. More impor-

tantly, to alleviate the distortion from the octree construc-

tion procedure, we propose a voxel context based 3D co-

ordinate refinement method to produce more accurate re-

constructed point cloud at the decoder side, which is appli-

cable to both static and dynamic point cloud compression.

The comprehensive experiments on both static and dynamic

point cloud benchmark datasets(e.g., ScanNet and Semantic

KITTI) clearly demonstrate the effectiveness of our newly

proposed method VoxelContext-Net for 3D point cloud ge-

ometry compression.

1. Introduction

Due to the rapid population of 3D sensors such as Li-

DAR, there is an increasing research interest to compress

tremendous amount of 3D point cloud data for a broad range

of applications (e.g., autonomous driving). When compared

with image and video compression [35, 32, 4, 37, 31, 19],

it is a more challenging task to compress a set of orderless

3D points from point clouds.

Recently, several deep learning methods were devel-

oped for point cloud compression. For example, Wang

et al. [36] transformed the point cloud data to the voxel

representation in order to capture the spatial dependency,

*Guo Lu is the corresponding author.

...
Distribution

...

Voxel Context...

... ...
Tree-node
Context

Tree-node
Context

Distribution Entropy
Model

(a) (b)

Entropy
Model

ancestor
nodes neighbouring

nodes

Figure 1. Comparison between two context generation approaches

for learning the entropy model based on the octree structured data.

(a) Tree-node context used in [15]. (b) Local voxel context em-

ployed in our approach.

and then they employed the existing image compression

method [2] for point cloud compression. Other recent

works [39] and [16] directly compressed the raw point

cloud data by using the existing backbone networks (e.g.,

PointNet/PointNet++ [25, 26]) for feature encoding. These

voxel-based or point-based methods can take advantage

of the existing image compression or point cloud analysis

techniques. However, the voxel-based methods ignore the

sparsity characteristic of point clouds and thus suffer from

the relatively high computational complexity [36] while the

point based methods are inefficient when processing large

point cloud data [39]. In [15], Huang et al. used the oc-

tree to organize the point cloud data and proposed an en-

tropy model to exploit the dependency between multiple

parent nodes and each child node (see Figure 1(a)). Al-

though their approach inherits the benefits for efficiently

processing octree structured point cloud data, the strong de-

pendency among the neighboring octree nodes at the same

depth level is unfortunately ignored in their octree-based

entropy model [15]. Furthermore, the distortions are also

introduced after converting the raw point cloud to the oc-

tree structured data, which further degrades the compres-

sion performance. Besides, their approach is only designed

for static point cloud compression, which may limit the per-

formance for dynamic point cloud compression.

To address these issues, we propose a new learning based

point cloud compression method VoxelContext-Net by ex-

ploiting the voxel context in the octree based framework.

Our approach takes advantage of the efficient data organi-

zation ability from the octree based methods and the spatial

modeling capability from the voxel based methods, which

6042

can be applied to both static and dynamic point cloud ge-

ometry compression. Specifically, the input point cloud is

first organized by using the octree structure, where the sym-

bol of each non-leaf node represents the occupancy status

of its eight children. In the entropy coding stage, we pro-

pose a new learning based entropy model to compress these

symbols in a lossless way. To effectively produce context

information for the entropy model, we exploit the local bi-

nary voxel representation for each node, where the entries

of our voxel representation indicate the existence of neigh-

bouring nodes at the same depth level (see Figure 1(b)).

Furthermore, to reduce temporal redundancy for dynamic

point cloud compression, we additionally include the co-

located voxel representations from the previous and the sub-

sequent point clouds to generate richer context information.

In the reconstruction stage, we further propose a coordinate

refinement method based on the local voxel representations

at the decoder side to produce more accurate 3D coordinate

for each leaf node in both static and dynamic point clouds.

We evaluate the performance of our newly proposed

method on the large-scale 3D static and dynamic point

cloud datasets (e.g., ScanNet [7] and Semantic KITTI [11,

3]). The comprehensive experiments demonstrate that our

method outperforms both hand-crafted point cloud com-

pression methods and the learning-based point cloud com-

pression methods.

The contributions of our work are highlighted as follows:

• By taking the advantage of both voxel based methods

and octree based schemes, we introduce local voxel

context in the deep entropy model for better compres-

sion of octree structured data. Our approach can be

applied to both static and dynamic point cloud com-

pression.

• We develop a voxel context based coordinate refine-

ment module to produce accurate coordinates of leaf

nodes at the decoder side.

• Our simple and effective approach achieves the state-

of-the-art compression performance on several large-

scale datasets for both static and dynamic point cloud

geometry compression.

2. Related Work

2.1. Traditional Point Cloud Compression Methods

In the past several years, a few point cloud compression

methods [27, 12, 29, 17, 28, 8, 9] have been proposed and

most of them are based on the tree representations. For ex-

ample, the MPEG group developed a standard point cloud

compression method [29, 13, 13] G-PCC (geometry based

point cloud compression) for static point clouds, which in-

cludes an octree-structure based method for point cloud

compression. However, they are all based on hand-crafted

techniques and thus cannot be optimized in an end-to-end

fashion by using large-scale data.

In addition, although some learning based image and

video compression approaches [1, 2, 23, 20, 38, 21, 14] have

been proposed, it is still a non-trial task to employ the stan-

dard CNN operations for compressing point clouds consist-

ing of a sparse set of orderless 3D points.

2.2. Deep Learning for Point Cloud Compression

Taking the point cloud data as the input, Yan et al. [39]

built an auto-encoder network by using PointNet, in which

the latent representation is quantized and further com-

pressed by using an entropy coding model. These point

based methods [39, 16] may suffer from the huge memory

usage issue and high computational costs. Wang et al. [36]

extended the existing image compression method [1] for

voxelized point cloud compression. Unfortunately, their ap-

proach ignores the sparsity characteristic of point clouds

and thus the computational complexity is relatively high

when compared with the octree based methods.

Recently, an octree-based method OctSqueeze [15] was

proposed. While the OctSqueeze method [15] avoids the

issues related to high memory usage and slow encod-

ing/decoding speed, their approach still suffer from the fol-

lowing drawbacks. First, they only exploited context infor-

mation from its ancestor nodes (as shown in Figure 1(a)) to

predict the probability model in the entropy model, which

ignores strong prior information between spatial neigh-

bouring nodes at the same depth level. In addition, their

work does not consider the distortion introduced in the oc-

tree construction procedure, and their method is only de-

signed for static point cloud compression. Although there

is a concurrent work [5] for dynamic point cloud compres-

sion, it follows the existing framework from [15] and thus

suffers from similar limitations.

In contrast to these works [39, 16, 36, 15, 5, 34], we pro-

pose to exploit context information between neighbouring

nodes by using local voxel representation in our deep en-

tropy model and our work also refines the 3D coordinate at

the decoder side in order to achieve better reconstruction re-

sults. Besides, we further extend our approach by addition-

ally exploit the local context representation from neighbour

frames for dynamic point cloud compression.

3. Methodology

3.1. Overview

The overall architecture of the proposed point cloud

compression method is shown in Fig 2. In this section, we

first take the static point cloud compression as an example

to illustrate our proposed method and then introduce how to

6043

Arithmetic
Decoder

Octree Data

Coordinate
Refinement

Refined
Point Cloud

Reconstructed Octree

Arithmetic
Encoder

Raw
Point Cloud

Octree
Construction

Bitstream
Deep Entropy

Model

Figure 2. The overall architecture of our proposed static point

cloud compression approach. The symbols of the non-leaf nodes

from the octree are losslessly compressed by using the proposed

deep entropy model, while the coordinate refinement module is

used to predict more accurate coordinates at the decoder side.

extend the proposed method for dynamic point cloud com-

pression.

Specifically, in the first stage, we organize the input static

point cloud by using the octree structure, in which our ap-

proach aims to encode these symbols of non-leaf nodes in a

lossless way. To improve the compression performance, we

propose a voxel context based deep entropy model to accu-

rately predict the probability distributions of these symbols.

Furthermore, to compensate the distortion in the octree con-

struction procedure, a local voxel context based coordinate

refinement module is proposed to produce more accurate

reconstructed point cloud at the decoder side.

3.2. Octree Construction

In Figure 3, we provide a toy example to illustrate the

octree construction procedure. Specifically, an octree can

be constructed from any 3D point cloud by first partitioning

the 3D space into 8 cubes with the same size, and then re-

cursively partitioning each non-empty cube in the same way

until the maximum depth level is reached. The 3D coordi-

nate of each node represents the cube center. For each non-

leaf node, a 8-bit symbol is used to represent the occupancy

status of its eight children, with each bit corresponding to

one specific child.

In the octree construction procedure, the quality of the

reconstructed point cloud depends on the maximum depth

level in the octree structure. Therefore, the coordinate of the

current leaf node (i.e., the cube center) is not always con-

sistent with the original 3D coordinate of the correspond-

ing point in the raw point cloud. For example, the co-

ordinate of one input point ri is (0.6, 0.7, 0.7), while the

coordinate for the corresponding leaf node ni is quantized

to (0.625, 0.625, 0.625), thus inevitable distortion is intro-

duced in the octree construction procedure. In this work, we

will compress the symbols of octree nodes losslessly and re-

cover the accurate decoded coordinates at the decoder side.

3.3. Local Voxel Context in Octree

In the octree structure, the parent node will generate

8 children nodes, which is equivalent to bisecting the 3D

space along x-axis, y-axis and z-axis. Thus, the partition

(a) (c) (d)

occupancy symbol
(10100001)

(b)
Figure 3. A toy example for constructing the octree and extracting

the local voxel context representation. (a) Raw input point cloud.

(b) The corresponding octree. (c) The voxel representation for the

input point cloud at the depth level of 2. (d) The detailed binary

voxel representation.

of the original space at the kth depth level in the octree

is equivalent to dividing the corresponding 3D space 2k

times along x-axis, y-axis and z-axis, respectively. Then

we produce a binary voxel representation with the shape of

2k ∗ 2k ∗ 2k based on the existence of points in each cube.

Here we assume the corresponding local voxel representa-

tions centered at the node ni is Vi ∈ RM×M×M , where

M represents the size of the local voxel representation. Vi

will be used in our approach as strong prior information to

improve the compression performance.

In Figure 3(c), the purple region represents the local

voxel context for the current node ni and the detailed binary

values for the local voxel representation are depicted in Fig-

ure 3(d). In Figure 3(a), we also provide the 3D coordinate

range of the corresponding local region in the 3D space(see

the purple dash line). It is noted that the local voxel context

Vi of the current node ni represents the distribution infor-

mation of neighbouring nodes at the same depth level. In

contrast, the previous method [15] only exploit the infor-

mation from its ancestor nodes without considering strong

spatial neighbouring prior information(see Figure 1(a)).

3.4. Our Deep Entropy Model

3.4.1 Formulation

Let s = [s1, ..., si, ...] denote a sequence of 8-bit occu-

pancy symbols from all non-leaf octree nodes where si rep-

resents the symbol for node ni in the octree. For example,

when si = [0, 0, 0, 1, 0, 0, 0, 1], it means node ni has two

children and the corresponding indexes of the two children

are 4 and 8, respectively.

According to the information theory [30], when com-

6044

C
on

v(
12

8,
 3

)

FC
 2

56
So

ftm
ax Probability

DistributionR
el

u

C
on

ca
te

na
te

FC
 2

56
R

el
u

FC
 2

56
R

el
u

FC
 1

92

R
el

u
C

on
v(

12
8,

 3
)

R
el

u
C

on
v(

64
, 3

)
R

el
u

C
on

v(
32

, 3
)

C
on

v(
25

6,
 3

)

FC
 3 Predicted

OffsetR
el

u
FC

 6
4

R
el

u

FC
 1

28
R

el
u

FC
 1

28

R
el

u
C

on
v(

12
8,

 3
)

R
el

u
C

on
v(

64
, 3

)
R

el
u

C
on

v(
32

, 3
)

(a)

(b)

iV

iV

Figure 4. Network architecture of (a) our proposed deep entropy

model and (b) our coordinate refinement module. ‘Conv(128,3)’

represents the 3D convolution operation when the number of chan-

nels is 128 and the kernel size is 3× 3× 3.

pressing the occupancy information, the lower bound of bi-

trates is the Shannon entropy. However, the actual distribu-

tion P is unknown in the practical applications. Therefore,

we use the deep neural network to estimate the probabil-

ity distribution which can be employed to approximate the

actual distribution P . Based on the learned deep entropy

model, we can compress these occupancy symbols from the

octree in a lossless manner. Specifically, the objective of

our learning based entropy model is to minimize the cross-

entropy loss Es∼P [−logQs(s)], where Qs(s) is the esti-

mated probability of s.

It is noted that the children’s probability distribution

qs(si) at the current node ni may rely on the previously

decoded nodes as well as the neighbouring nodes at the cur-

rent depth level, so it is very difficult to model this complex

relationship. In this work, we assume the occupancy sym-

bol si for the current node ni only depends on the node’s

local voxel context Vi and the node feature ci that includes

the node’s 3D coordinate and the depth level of the node.

Since Vi represents local context information at the same

depth level, it is reasonable to infer the node ni’s children

distribution (i.e., si) based on Vi. Then we can simplify

the complex dependence relationship for each original oc-

cupancy symbol s and further factorize Qs(s) into the fol-

lowing way,

Qs(s) =
∏

i

qs(si|Vi, ci) (1)

where qs(si|Vi, ci) is the predicted probability of si when

the local voxel context Vi and the node feature ci are given

at node ni. Here, we use the same probability distribution

model for each node.

3.4.2 Network Architecture

In this work, we use deep neural networks to parameterize

the entropy model in Eq. (1). The whole network archi-

tecture is shown in Figure 4. Specifically, for the current

node ni, we first extract its local voxel context Vi based on

the method described in Section 3.3. Then Vi is fed to a

multi-layer convolutional neural networks (CNN) and the

corresponding output is fi. In this procedure, we adopt the

popular and off-shelf CNN structure to effectively exploit

context information in the 3D space, which has not been

exploited by the existing octree based point cloud compres-

sion methods. Then we concatenate the context feature fi

and the node feature ci. After that, a multi-layers perception

(MLPs) is adopted to generate a 256-dimensional hidden

feature, which fuses both local voxel contextual informa-

tion and node information. Finally, a softmax layer is used

to produce the probabilities qs(si|Vi, ci) of the 8-bit occu-

pancy symbol for each given node ni. Our approach takes

advantage of both octree based methods and voxel based

methods and achieves better point cloud compression per-

formance.

3.5. Our Coordinate Refinement Method

To reduce the distortion in the octree construction pro-

cedure, we propose a local voxel context based coordinate

refinement method to produce more accurate reconstructed

point cloud at the decoder side. A key intuition behind our

coordinate refinement method is that we can better predict

the coordinate of the current node by exploiting local con-

text information of its neighbouring voxels.

Given the decoded octree, for each leaf node ni, the goal

of our coordinate refinement method is to predict the refined

output coordinate (xr
i , y

r
i , z

r
i) in the following way,

(xr
i , y

r
i , z

r
i) = (xd

i , y
d
i , z

d
i) +R(Vi) (2)

where Vi is the local voxel context for the leaf node ni and

R(·) is a learnable function for coordinate refinement. The

decoded coordinate (xd
i , y

d
i , z

d
i) represents the coordinate of

node ni after octree decoding.

As shown in Figure 4(b), the network architecture of

the proposed coordinate refinement method is similar to the

deep entropy model. Specifically, for a decoded octree, we

firstly transform the whole octree into a global binary voxel

representation, from which we can readily produce the lo-

cal voxel context for each leaf node. Given the binary voxel

context Vi for node ni, we firstly extract context informa-

tion in the 3D space by using multi-layer CNNs, and then

predict the offset by using a set of fully connected layers.

We then calculate the decoded coordinate of the leaf node

ni and the final reconstructed coordinate of ni is the sum of

its decoded coordinate and the predicted offset (see Eq. (2)).

3.6. Training Strategy

In the proposed method, we separately train our local

voxel context based deep entropy model and our coordi-

nate refinement module. For the deep entropy model, based

on the predicted distribution qs(si|Vi, ci) at each non-leaf

node, we use the following loss function:

Lentropy = −
∑

i

logqs(si|Vi, ci) (3)

6045

......
...

...... ...
... ...

Pt+1PtPt-1

Layer k

Layer k+1

Decoded
Decoding
Undecoded


 ikV ,1

ikV ,

ikV ,


ikV ,

...

Figure 5. Illustration of the local context representation for dy-

namic point clouds. Four voxel representations from the decoded

layers(see the blue boxes) are used as local voxel context to esti-

mate the probability distribution of each node in the current de-

coding layer(see the yellow box).

where qs(si|Vi, ci) is defined after Eq. (1).

For the coordinate refinement module, we aim to gener-

ate the precise coordinate of each point. Towards this goal,

a MSE based loss is used as the distortion in the training

procedure:

Lmse =
∑

i

‖(xr
i , y

r
i , z

r
i)− (xg

i , y
g
i , z

g
i)‖

2

2
(4)

where (xg
i , y

g
i , z

g
i) is the ground-truth coordinate of node ni

before octree construction.

3.7. Dynamic Point Cloud Compression

The proposed point cloud compression framework is

very general and can be readily extended for dynamic point

cloud compression. Considering that each dynamic point

cloud consists of a sequence of redundant point clouds that

are captured at different time, it is necessary to exploit tem-

poral information.

Specifically, given the point cloud Pt at time step t and

its neighbouring point clouds Pt−1 and Pt+1 at time step

t − 1 and t + 1, we first align these point clouds to the

same coordinate system based on their pose information of

the sensor. It should be mentioned that we decode all point

clouds from a sequence in a depth by depth fashion. Thus,

when we decode the node ni at the kth depth level for the

current point cloud Pt, the voxel representation at the kth

depth level from other two point clouds Pt−1 and Pt+1 is

available. Meanwhile, the voxel representation at the (k +
1)th depth level from the point cloud Pt−1 is also available.

Here, as shown in Fig. 5, we assume the local voxel

representation for node ni at the kth depth level in Pt is

Vk,i and the corresponding co-located local voxel represen-

tations at the kth depth level in Pt−1 and Pt+1 are V
−

k,i and

V
+

k,i, respectively. Furthermore, the voxel representation at

the (k + 1)th depth level in the previous point cloud is de-

noted as V
−

k+1,i. To exploit temporal information in the en-

tropy model, we adopt a simple fusion strategy and use the

similar network architecture as shown in Figure 4 to extract

the features from each local voxel representation. Then we

concatenate the features extracted from four different voxel

representations (i.e., Vk,i, V
−

k,i, V
+

k,i and V
−

k+1,i) and feed

the aggregated feature to the Softmax layer to produce the

final probability distribution. In our implementation, we set

the size of Vk,i, V
−

k,i and V
+

k,i as 9× 9× 9, and set the size

of V
−

k+1,i as 10×10×10. Finally, the coordinates from the

reconstructed octree are refined by using the voxel context

based method discussed in Section 3.5. It is noted that we

only use the voxel representation Vk,i as context informa-

tion for coordinate refinement as it is sufficient to use this

voxel representation to achieve promising results.

4. Experiments

4.1. Datasets

ScanNet: ScanNet [7] is a large-scale dataset with a few

dense point cloud sequences from the indoor scenario. It

consists of 1,513 scans. In our experiment, 50,000 points

are sampled from each scan.

Semantic KITTI: Semantic KITTI [11, 3] is another large-

scale dataset with several dense point cloud sequences cap-

tured from the self-driving scenario, which contains 23,311

scans with about 5 billion points. In our experiment, it is

used for both static and dynamic point cloud compression.

For the ScanNet dataset, we use the official train-

ing/testing split, which includes 1,201 point clouds for

training and 312 point clouds for testing. For evaluating

the static point cloud compression methods on the Semantic

KITTI dataset, we follow the default setting, where 11 point

cloud sequences are used for training and the other 11 se-

quences are used for testing. For dynamic point cloud com-

pression, considering that the ground-truth pose informa-

tion is not available in the official testing sequences, in this

work, we only use 11 training sequences for training and

performance evaluation, in which 8 sequences are used for

training while 3 sequences are used for performance evalu-

ation.

4.2. Experimental Details

Baseline Methods. In our experiments, the two

most representative hand-crafted point cloud compres-

sion methods, MPEG’s standard point cloud compression

method(‘G-PCC’) [29, 13] and Google’s KD-tree based

method(‘Draco’) [12] are used as the baseline algorithms.

In addition, we also compare our method with the recent

learning based static point cloud compression method Oct-

Squeeze [15]. Since the source code of OctSqueeze is not

publicly available, we re-implemented it by ourselves.

Training and Testing Strategy. In our training procedure

for static point cloud compression, the maximum depth lev-

els on ScanNet and SemanticKITTI are empirically set as 9

and 12, respectively. And the entropy model is optimized by

using all nodes from the complete 9-level/12-level octree.

In the testing stage, we truncate the octree at different lev-

els to evaluate our deep entropy models at different bitrates.

6046

� � � 	

���

��

��

��

��

��

��

��
��

 �
��

��
��

 ��
��

�
��

��
���� � ������ ���������������

��"����� �" ���
�� ��!��#�
�����

����

� � � 	

���

��

��

��

��

��

	�

��
��

 �
��

��
��

��
��

�
�

��
��

���� � ����������������������

��"����� �" ���
�� ��!��#�
�����

����

� � � 	

���

�����

�����

�����

�����

�����

�����

�

�
�����������
����������������
�������� �
�����

����

� � � � �
�!!

�	

	�

		

�

	

��

�	

�
��
$�$
 �
�

��
$��

��
�
��
��

� ��$�$ �� ��$������ �������

� &��
 �$�&$���$
��$�"%��'�
���

�#��

� � � � �

""

	�

		

�

	

��

�	

��

�!
�
%�%
!�
��
�

��
��

�
�
��

�

�!� %�%!���� �������! ������

�!'���! %�'%���%
��%�#&��(�
�����
�$��!

� � � � �
���

�����

�����

�����

�����

�����

�����

����	

����

�

�
���������
��"����� �" ���
�� ��!��#�
�����

����

Figure 6. Results of different static point cloud compression methods on two benchmark datasets ScanNet & Semantic KITTI.

� � � � 	

��

	

��

�	

��

�	

��

��
��
"�"
��
��

��
"��

��
�
��

�

����"�"������"����������
��

��$�����"�$"���"��%������
��$�����"�$"���"�!"�"���
��"� #��&�
�����

� � � � 	

��

��

�	

��

�	

��

�	

��
��
"�"
��
��
��

��
��

�
�
��

�

����"�"�����������������
��

��$�����"�$"���"��%������
��$�����"�$"���"�!"�"���
��"� #��&�
�����

� � � 	

�

���

���

���

��	

��

�

�
���������
��%�����#�%#���#��&������
��%�����#�%#���#�"#�#���
��#�!$��'�
�����

Figure 7. Results of different methods for dynamic point cloud compression on the Semantic KITTI dataset.

It is noted that we train a coordinate refinement model at

each depth level to reduce the distortion in the octree con-

struction procedure. For dynamic point cloud compression,

we adopt the same training procedure.

We perform the experiments on the machine with one

NVIDIA 2080TI GPU. Our whole network is implemented

based on PyTorch and it takes 3 days and 5 days to train the

model, for the static and dynamic point cloud compression

tasks, respectively. In the training procedure, we use the

Adam [18] optimizer and the learning rate is set as 1e−4 for

both entropy model and the coordinate refinement model.

Evaluation Metrics In our experiments, we use the Cham-

fer distance(CD) [10, 16], point-to-point PSNR and point-

to-plane PSNR [33, 22], where p is set as 1 to measure the

quality of the reconstructed point cloud. We simply use bits

per point(Bpp) as the compression ratio metric. To com-

pare different compression algorithms, we also include the

BDBR [6] in our approach, which represents the average

bitrate saving when the reconstructed quality (e.g., PSNR)

of these methods are the same.

4.3. Experiment Results

Results for Static Point Cloud Compression. The quan-

titative experimental results are provided in Table 1 and

we use BDBR to evaluate the compression performance

of different codecs, where G-PCC [29, 13] is used as the

anchor algorithm. It is observed that our approach (i.e.,

VoxelContext-Net) saves 43.66% bitrate on the ScanNet

dataset when compared with G-PCC, while the correspond-

ing bitrate saving for OctSqueeze is only 15.00%. Similar

results are also observed on the Semantic KITTI dataset,

where our approach achieves 31.15% bitrate saving, while

OctSqueeze only saves 2.13% bitrates. These experimental

results clearly demonstrate our approach outperforms the

state-of-the-art learning based compression algorithm and

the traditional codecs like G-PCC.

For static point cloud compression, the corresponding

rate-distortion curves are provided in Figure 6. Our ap-

proach achieves better compression performance, espe-

cially at high bitrates. For example, our approach has more

6047

Ground Truth (SemanticKITTI) Ours: PSNR:55.51 Bpp:0.36 OctSqueeze: PSNR:54.35 Bpp:0.52 G-PCC: PSNR:48.46 Bpp:0.45

Ground Truth (SemanticKITTI) OctSqueeze: PSNR:54.54 Bpp:0.58 G-PCC: PSNR:49.53 Bpp:0.51Ours: PSNR:55.51 Bpp:0.35

error colormap
Figure 8. Visualization of our VoxelContext-Net and other baseline methods for static point cloud compression on Semantic KITTI.

� � � 	

��

��

��

��

��

��
��
���
��
��

��
���

�

�
��

�

�����������������
���������
��

�� ������� ��
��
�� ������� ��
������������
��������!�

Figure 9. Ablation study on the Scannet dataset.

than 2dB improvement over OctSqueeze on the ScanNet

dataset when the bpp is 4.

In Figure 8, we take the Semantic Kitti dataset as an ex-

ample to provide the qualitative results. We observe that

the errors between the ground-truth point clouds and our re-

constructed point clouds are also smaller when compared

with the baseline methods OctSqueeze and G-PCC. For ex-

ample, the bpp of our approach is 0.36 and the correspond-

ing PSNR is 55.51dB, while OctSqueeze achieves a lower

PSNR(54.35dB) when using more bits(0.52bpp).

Results for Dynamic Point Cloud Compression. For

dynamic point cloud compression, we provide the quan-

titative results in Table 2 and Figure 7. It is ob-

served that our dynamic point cloud compression method

(i.e., Ours(dynamic)) outperforms the baseline methods G-

PCC and OctSqueeze by a large margin. For example,

Ours(dynamic) saves 38.10% bitrates when compared with

the anchor algorithm G-PCC while the corresponding sav-

ing is only 5.01% for the OctSqueeze method. Furthermore,

when compared with Ours(static), Ours(dynamic) saves ad-

ditional 11.11% bitrates (-26.99% vs. -38.10%) on Seman-

tic KITTI. Considering that the only difference between

Ours(static) and Ours(dynamic) is the additional temporal

voxel context in the entropy model (see Section 3.7 and Fig-

ure 5), the results demonstrate it is effective to exploit the

temporal information for dynamic point cloud compression.

Since our approach requires the pose information of the

sensor when performing point cloud alignment, we also

provide the results on the KITTI dataset when our approach

uses the estimated pose information [40], instead of the

ground truth pose information. The experimental result

in Table 2 demonstrates that our approach with the esti-

mated pose information (i.e., Ours*(dynamic)), also saves

41.77% bitrate and still outperforms the existing baseline

methods. It is noted that Ours*(dynamic) performs even

better than Ours(dynamic). One possible explanation is that

the ground-truth pose represents motion information of the

sensors while the estimated pose information is calculated

based on the motion between actual point clouds, which

may be more useful for the compression task.

4.4. Ablation Study and Analysis

In this section, we take our VoxelContext-Net for static

point cloud compression on the ScanNet dataset as an ex-

ample to perform the ablation study.

Effectiveness of Our Proposed Components. To demon-

strate the effectiveness of our proposed two components, we

consider a simplified version of our approach by removing

the coordinate refinement module, which is referred to as

VoxelContext-Net (w/o CRM).

Based on the experimental results (see the purple curve)

in Figure 9, we have the following two observations. First,

when compared with the octree based entropy model in Oct-

Squeeze [15], our approach using the local voxel context

boosts the performance and saves an additional 14.81% bi-

trate in terms of BDBR. It shows it is more effective to use

context information provided by the local voxel represen-

6048

Table 1. BDBR(%) results of our method Ours(static) and two

baseline algorithms Draco [12] and OctSqueeze [15] when com-

pared with G-PCC [29, 13] on two benchmark datasets for static

point cloud compression.
Methods Draco OctSqueeze Ours(static)

ScanNet +133.32 -15.00 -43.66

Semantic KITTI +138.58 -2.13 -31.15

Table 2. BDBR(%) results of our methods and the baseline algo-

rithm OctSqueeze [15] when compared with G-PCC on Semantic

KITTI for dynamic point cloud compression. In Ours(dynamic)

and Ours*(dynamic), we use the ground-truth and the estimated

pose information, respectively.

OctSqueeze Ours(static) Ours(dynamic) Ours*(dynamic)

-5.01 -26.99 -38.10 -41.77

tation rather than that extracted from the parent and child

nodes [15]. Second, when comparing our full model (see

the black curve) and the simplified model (see the purple

curve), it is observed that the coordinate refinement proce-

dure further improves the performance and saves 21.50%

bitrates in terms of BDBR. Therefore, it is beneficial to re-

duce the distortion from the octree construction procedure

by using our proposed coordinate refinement module.

Voxel Size. In our implementation, the size of local voxel

representation for each node is empirically set as 9× 9× 9.

As shown in Table 3, we provide more experimental results

when the size varies. It is noted that the performance can

be boosted by increasing the resolution of the local voxel

representations. For example, when compared with our en-

tropy model with the voxel size as 5× 5× 5, our proposed

approach saves 2.5% bitrates when the voxel size becomes

9× 9× 9 at the depth level 9. Considering that the compu-

tational complexity will also increase by using larger voxel

sizes, we choose 9×9×9 as the default size in our approach

for better trade-off between compression performance and

computational complexity.

Computational Complexity In Table 4, we provide the de-

coding time of different methods at various bitrates on two

datasets. Our method is faster than G-PCC [29, 13]. While

it is slower than OctSqueeze [15], we achieve better com-

pression performance (see Fig. 6 and Table 1). The total

number of parameters in our approach is 2.15M.

Experimental Results for the Downstream Tasks We

evaluate the impact of different point cloud compression

methods for two downstream tasks (i.e., object detec-

tion and semantic segmentation). Specifically, we use

VoteNet [24] as the object detection method and Point-

Net++ [26] as the semantic segmentation method. We train

these models based on the uncompressed point clouds from

the official training dataset of ScanNet. In the evaluation

stage, the reconstructed point clouds at different bitrates are

fed into the detection or the segmentation method. For the

object detection task, we employ mAP@0.25 to measure

the detection accuracy. Following the setting in [15], for

the semantic segmentation task, we adopt the intersection-

Table 3. Results of our deep entropy model when using various

sizes of local voxel representations on the ScanNet dataset.

Size
Bpp

Depth=6 Depth=7 Depth=8 Depth=9

5× 5× 5 0.207 0.950 3.137 6.119

7× 7× 7 0.205 0.937 3.090 6.009

9× 9× 9 0.204 0.930 3.065 5.952

11× 11× 11 0.205 0.935 3.061 5.932

Table 4. Decoding time(ms) on ScanNet/KITTI at five/four differ-

ent bitrates reported in Figure 6 (from low to high).

Methods Ours OctSqueeze G-PCC

ScanNet 49/52/64/80/109 6/6/7/7/7 306/309/316/324/348

KITTI 52/58/78/90 6/7/7/8 578/649/734/768

� � � �

��

����

����

����

����

�
	�

�
��
��

�	�����������������

��������
����������������

������� �

� � � �
	��

���

���

���

���

�

�

�
������������

��������
�����
����������

���������

Figure 10. The results for the two downstream tasks (i.e., object

detection (left) and semantic segmentation (right)) on ScanNet.

over-union (IOU) score for performance evaluation, which

is computed based on the ground truth labels for each voxel.

The experimental results are shown in Fig 10. Specif-

ically, we provide the compression ratios (i.e., bpps) and

the corresponding detection/segmentation accuracy (i.e.,

mAP/IOU) when using the decoded point clouds from our

VoxelContext-Net and the baseline method OctSqueeze as

the input to the detection/segmentation method. At any

given bpp, it is obvious that the detection/segmentation

results based on the decoded point clouds from our

VoxelContext-Net are higher, especially at low-bitrates.

It demonstrates that the reconstructed point clouds from

our VoxelContext-Net are more useful for the downstream

tasks, like object detection or semantic segmentation.

5. Conclusion

In this work, we have proposed a new learning based

point cloud geometry compression framework by exploit-

ing the local voxel representation for each node in the oc-

tree structured point cloud. Specifically, we propose a new

deep entropy model to losslessly compress the symbols of

octree nodes and a new coordinate refinement module for

reconstructing high-quality point clouds at the decoder side.

Our simple and effective approach is applied to both static

and dynamic point cloud compression and our method has

achieved the state-of-the-art compression performance on

two benchmark datasets.

Acknowledgement This work was supported by the Na-

tional Key Research and Development Project of China

(No. 2018AAA0101900).

6049

References

[1] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli.

End-to-end optimized image compression. In 5th Interna-

tional Conference on Learning Representations, ICLR, 2017.

2

[2] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin

Hwang, and Nick Johnston. Variational image compression

with a scale hyperprior. In 6th International Conference on

Learning Representations, ICLR, 2018. 1, 2

[3] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,

C. Stachniss, and J. Gall. SemanticKITTI: A Dataset for Se-

mantic Scene Understanding of LiDAR Sequences. In Proc.

of the IEEE/CVF International Conf. on Computer Vision

(ICCV), 2019. 2, 5

[4] Fabrice Bellard. Bpg image format. URL https://bellard.

org/bpg, 2015. 1

[5] Sourav Biswas, Jerry Liu, Kelvin Wong, Shenlong Wang,

and Raquel Urtasun. Muscle: Multi sweep compression of

lidar using deep entropy models. Advances in Neural Infor-

mation Processing Systems, 33, 2020. 2

[6] Gisle Bjontegaard. Calculation of average psnr differences

between rd-curves. VCEG-M33, 2001. 6

[7] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5828–5839, 2017. 2, 5

[8] Ricardo L De Queiroz and Philip A Chou. Compression of

3d point clouds using a region-adaptive hierarchical trans-

form. IEEE Transactions on Image Processing, 25(8):3947–

3956, 2016. 2

[9] Ricardo L de Queiroz and Philip A Chou. Transform cod-

ing for point clouds using a gaussian process model. IEEE

Transactions on Image Processing, 26(7):3507–3517, 2017.

2

[10] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3d object reconstruction from a single

image. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 605–613, 2017. 6

[11] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Au-

tonomous Driving? The KITTI Vision Benchmark Suite.

In Proc. of the IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), pages 3354–3361, 2012. 2, 5

[12] Google. Draco 3d graphics compression. https://

github.com/google/draco, 2017. 2, 5, 8

[13] MPEG Group. Mpeg g-pcc tmc13. https://github.

com/MPEGGroup/mpeg-pcc-tmc13, accessed:2020.

2, 5, 6, 8

[14] Zhihao Hu, Zhenghao Chen, Dong Xu, Guo Lu, Wanli

Ouyang, and Shuhang Gu. Improving deep video compres-

sion by resolution-adaptive flow coding. In European Con-

ference on Computer Vision, pages 193–209. Springer, 2020.

2

[15] Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu,

and Raquel Urtasun. Octsqueeze: Octree-structured en-

tropy model for lidar compression. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020. 1, 2, 3, 5, 7, 8

[16] Tianxin Huang and Yong Liu. 3d point cloud geometry

compression on deep learning. In Proceedings of the 27th

ACM International Conference on Multimedia, pages 890–

898, 2019. 1, 2, 6

[17] Chris L Jackins and Steven L Tanimoto. Oct-trees and their

use in representing three-dimensional objects. Computer

Graphics and Image Processing, 14(3):249–270, 1980. 2

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[19] Guo Lu, Chunlei Cai, Xiaoyun Zhang, Li Chen, Wanli

Ouyang, Dong Xu, and Zhiyong Gao. Content adaptive

and error propagation aware deep video compression. In

European Conference on Computer Vision, pages 456–472.

Springer, 2020. 1

[20] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chun-

lei Cai, and Zhiyong Gao. DVC: An end-to-end deep video

compression framework. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition,CVPR,

pages 11006–11015, 2019. 2

[21] Guo Lu, Xiaoyun Zhang, Wanli Ouyang, Li Chen, Zhiyong

Gao, and Dong Xu. An end-to-end learning framework for

video compression. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2020. 2

[22] Rufael Mekuria, Sebastien Laserre, and Christian Tulvan.

Performance assessment of point cloud compression. In

2017 IEEE Visual Communications and Image Processing

(VCIP), pages 1–4. IEEE, 2017. 6

[23] David Minnen, Johannes Ballé, and George D Toderici.

Joint autoregressive and hierarchical priors for learned image

compression. In Advances in Neural Information Processing

Systems, pages 10771–10780, 2018. 2

[24] Charles R Qi, Or Litany, Kaiming He, and Leonidas J

Guibas. Deep hough voting for 3d object detection in point

clouds. In Proceedings of the IEEE International Conference

on Computer Vision, pages 9277–9286, 2019. 8

[25] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 652–660,

2017. 1

[26] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in neural informa-

tion processing systems, pages 5099–5108, 2017. 1, 8

[27] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point

Cloud Library (PCL). In IEEE International Conference on

Robotics and Automation (ICRA), Shanghai, China, May 9-

13 2011. 2

[28] Ruwen Schnabel and Reinhard Klein. Octree-based point-

cloud compression. Spbg, 6:111–120, 2006. 2

[29] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Mad-

hukar Budagavi, Pablo Cesar, Philip A Chou, Robert A Co-

hen, Maja Krivokuća, Sébastien Lasserre, Zhu Li, et al.

Emerging mpeg standards for point cloud compression.

6050

IEEE Journal on Emerging and Selected Topics in Circuits

and Systems, 9(1):133–148, 2018. 2, 5, 6, 8

[30] Claude E Shannon. A mathematical theory of communi-

cation. The Bell system technical journal, 27(3):379–423,

1948. 3

[31] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, Thomas

Wiegand, et al. Overview of the high efficiency video cod-

ing(hevc) standard. TCSVT, 22(12):1649–1668, 2012. 1

[32] David S Taubman and Michael W Marcellin. Jpeg2000:

Standard for interactive imaging. Proceedings of the IEEE,

90(8):1336–1357, 2002. 1

[33] Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Cohen,

and Anthony Vetro. Geometric distortion metrics for point

cloud compression. In 2017 IEEE International Conference

on Image Processing (ICIP), pages 3460–3464. IEEE, 2017.

6

[34] Chenxi Tu, Eijiro Takeuchi, Alexander Carballo, and Kazuya

Takeda. Real-time streaming point cloud compression for 3d

lidar sensor using u-net. IEEE Access, 7:113616–113625,

2019. 2

[35] Gregory K Wallace. The jpeg still picture compression

standard. IEEE transactions on consumer electronics,

38(1):xviii–xxxiv, 1992. 1

[36] Jianqiang Wang, Hao Zhu, Zhan Ma, Tong Chen, Haojie Liu,

and Qiu Shen. Learned point cloud geometry compression.

arXiv preprint arXiv:1909.12037, 2019. 1, 2

[37] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and

Ajay Luthra. Overview of the h. 264/avc video coding stan-

dard. TCSVT, 13(7):560–576, 2003. 1

[38] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl.

Video compression through image interpolation. In ECCV,

September 2018. 2

[39] Wei Yan, Shan Liu, Thomas H Li, Zhu Li, Ge Li, et al.

Deep autoencoder-based lossy geometry compression for

point clouds. arXiv preprint arXiv:1905.03691, 2019. 1,

2

[40] Deyu Yin, Qian Zhang, Jingbin Liu, Xinlian Liang, Yun-

sheng Wang, Jyri Maanpää, Hao Ma, Juha Hyyppä,

and Ruizhi Chen. Cae-lo: Lidar odometry leveraging

fully unsupervised convolutional auto-encoder for interest

point detection and feature description. arXiv preprint

arXiv:2001.01354, 2020. 7

6051

