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Figure 1. We present a method for learning complete 3D morphable models of faces from videos and images. We show visualizations

of the learned models on the right. Faces in each direction of indicated arrows is obtained by linearly scaling individual component of

respective models. Identity geometry captures variations in the face shape (second column), lips (top left to bottom right) and jaw (top

right to bottom left), while expressions capture variations due to mouth opening (second row), smile (second column) and eye movement

(top right to bottom left). Albedo/Reflectance spans a variety of skin color (second column), eye color (top right to bottom left) and gender

specific features such as facial hair and make-up (second row).

Abstract

Most 3D face reconstruction methods rely on 3D mor-

phable models, which disentangle the space of facial de-

formations into identity and expression geometry, and skin

reflectance. These models are typically learned from a lim-

ited number of 3D scans and thus do not generalize well

across different identities and expressions. We present the

first approach to learn complete 3D models of face identity

and expression geometry, and reflectance, just from images

and videos. The virtually endless collection of such data,

in combination with our self-supervised learning-based ap-

proach allows for learning face models that generalize be-

yond the span of existing approaches. Our network design

and loss functions ensure a disentangled parameterization

of not only identity and albedo, but also, for the first time,

an expression basis. Our method also allows for in-the-wild

monocular reconstruction at test time. We show that our

learned models better generalize and lead to higher quality

image-based reconstructions than existing approaches. We

show that the learned model can also be personalized to a

video, for a better capture of the geometry and albedo.

1. Introduction

Monocular 3D face reconstruction is defined as recover-

ing the dense 3D facial geometry and skin reflectance of a

face from a monocular image. It has applications in several

domains such as VR/AR, entertainment, medicine, and hu-

man computer interaction [65, 16]. We are concerned with

in-the-wild images which can include faces of many differ-

ent identities with varied expressions and poses, in uncon-

strained environments with widely different illumniation.

This problem has been well-studied, where a lot of success

can be owed to the emergence of 3D Morphable Models [5].

These models define the space of deformations for faces as

separate disentangled models such as facial identity, expres-

sion and reflectance. They are widely used in the literature

to limit the search space for reconstruction [65, 16]. How-

ever, these models are often learned from a limited number

of 3D scans, which constrains their generalizability to sub-

jects and expressions outside the space of the scans.

Recent efforts have proposed to learn face models with

better generalizability from internet images or videos [55,

56, 58, 59, 60]. However, learning from in-the-wild data

is highly challenging, requiring solutions for handling the

strong inherent ambiguities and for ensuring disentangle-

ment between different components of the reconstruction.
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Some approaches deal with a slightly easier problem of re-

fining an initial morphable model pretrained on 3D data on

in-the-wild imagery [56, 59, 61, 60, 58]. Our objective is

to learn face models without using any pretrained models to

start with. The closest approach to ours is Tewari et al. [55],

which learns only the models of facial identity geometry

and reflectance from in-the-wild videos. However, they still

use a pretrained expression model to help disentangle the

identity and expression variations in geometry. We present

the first approach that learns the the complete face model of

identity geometry, albedo and expression just from in-the-

wild videos. We start just from a template face mesh with-

out using any priors about deformations of the face, other

than smoothness. This also makes ours the first approach to

learn face expression models from 2D data.

We achieve this through several technical contributions.

We design a neural network architecture which, in combi-

nation with specially tailored self-supervised loss functions,

enables (1) learning of face identity, expression and skin re-

flectance models, as well as (2) joint 3D reconstruction of

faces from monocular images at state-of-the-art accuracy.

We use a siamese network architecture which can process

multiple frames of video during training, enabling consis-

tent identity reconstructions along with per-frame expres-

sions and scene parameters. We use a differentiable ren-

derer to render synthetic images of the network’s recon-

structions. To compare reconstructions to the input, we use

a new combination of appearance-based and face segmen-

tation losses that permit learning of the face geometry and

appearance, as well as a high-quality expression basis of

detailed mouth and lip motion. Our novel lip segmenta-

tion consistency loss aligns the lip region in 3D with 2D

segmentations. Our loss is robust to noisy outliers, lead-

ing to qualitatively better lip segmentations than the ground

truth used. We also introduce a disentanglement loss which

ensures that the expression component of a reconstructed

mesh is small when the input image contains a neutral face.

We show that the combination of these innovations is cru-

cial to learn a full face model with proper component disen-

tanglement from in-the-wild imagery. Our monocular re-

construction outperforms the state-of-the-art image-based

face reconstruction methods.

In summary we make the following contributions: 1) the

first approach for learning all components - identity, albedo

and expression bases - of a morphable face model, trained

on in-the-wild 2D data, 2) the first approach to learn 3D

expression models of faces in a self-supervised manner, 3) a

lip segmentation consistency loss to enforce accurate mouth

modeling and reconstruction, 4) enforcing disentanglement

of identity and expression geometry by utilizing a dataset of

neutral images.

2. Related Work

2.1. Face Modeling

Faces are typically modeled as a combination of sev-

eral components. 3D parametric identity [5, 3] and blend-

shape [40, 31, 54] models are used to represent the iden-

tity (geometry and reflectance) and facial expressions. This

generalizes active appearance models [13] from 2D to 3D

space. PCA is commonly used to independently learn the

different models from a dataset of 3D scans [5, 3, 34, 7].

Multi-linear face models extend this concept by using

tensor-based representations to better model the correla-

tions between the identity and expression components [14,

6, 17]. Recent efforts have focused on learning models from

large scale 3D data [8, 34, 30, 33]. Physics-based face mod-

els [24, 53] have also been proposed, however their com-

plexity makes their use in real-time rendering or efficient

reconstruction difficult. Animation artists can also manu-

ally create face rigs, with custom-designed control param-

eters. They often use blendshapes, linear combinations of

designed base expressions, to control face expressions [31].

2.2. Face Reconstruction

Image-based reconstruction methods [65] estimate the

face reflectance and geometry from images and videos.

3DMMs [5, 3] are often used as priors for this task. Meth-

ods differ in the type of inputs they use, such as monoc-

ular [44], multi-frame [55] or unstructured photo collec-

tion [45]. Current methods can be classified into 1)

optimization-based and 2) learning-based. Optimization-

based techniques rely on a personalized model [10, 18, 19,

63, 23] or a general parametric prior [1, 9, 32, 52, 48, 48]

to estimate 3D geometry, often combined with texture and

illumination, from a 2D video or image. Learning-based ap-

proaches regress the 3D reconstruction from a single image

by learning an image-to-parameter or image-to-geometry

mapping [38, 43, 57, 56, 49, 62, 26]. Most methods require

ground truth face geometry [62, 28], are trained on synthetic

data [42, 43, 49, 26], or a mixture of both [37, 27, 61].

Tewari et al. [57] proposed a differentiable rendering-

based loss which allows for self-supervised training from

2D images. Other approaches have proposed using a facial

recognition network and perceptual losses for higher quality

reconstructions [21, 15]. Using multiple images of a person

during traing has shown to be effective for high-quality re-

construction in challenging conditions [46, 51]. While these

techniques are fast and produce good results, reconstruc-

tions are limited to the pre-dedfined 3DMM space.

2.3. Joint Modeling and Reconstruction

Recent learning-based methods for monocular face re-

construction [56, 60, 59, 7, 50, 55] allow for capturing vari-

ations outside of the 3DMM space, by learning models from
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Figure 2. Our approach jointly learns identity, expression and albedo models along with the input-dependent parameters for these models.

The network is trained in a siamese manner using differentiable renderer to compute self-supervised loss.

in-the-wild 2D data. Most approaches either initialize the

learned model with an existing 3DMM [60, 58, 36], or

learn a corrective space which acts in addition to a fixed

3DMM [56, 11]. Learning morphable models from scratch

is a relatively less studied problem. Tewari et al. [55]

learned the identity (shape and reflecance) model from com-

munity videos in a self-supervised manner. The learning

starts from a neutral reflectance and coarse deformation

graph, which are refined during training. It however relies

on a learned expression model. Our method is the first to

learn all dimensions–reflectance, identity geometry, and ex-

pression from in-the-wild data.

3. Method

We present the first method to learn a deformable face

model that jointly learns all three of the following dimen-

sions - identity geometry, expression and reflectance - from

unlabelled community videos, without using a pre-defined

3DMM to start with. The starting point for our deformation

models is a mesh which defines the topology of reconstruc-

tions, as well as the initial geometry and reflectance values

for our networks. We design a multi-frame siamese network

which processes the videos at training time. The training is

self-supervised, without any 3D supervision. We use a dif-

ferentiable renderer to define our loss functions in the image

space. Our network design, in addition to the loss functions

enable disentangled learning of the face model subspaces.

Our network also jointly learns to predict parameters of the

models, thus enabling 3D reconstruction at test time, even

from monocular images.

3.1. Model Representation

We learn linear face models, similar to many existing

face models [5, 56, 55]. (Stacked) Mesh vertex positions

and reflectances are represented as V and R, |V | = |R| =
3N , where N is the number of vertices. We use the mesh

topology of Tewari et al. [56] with N = 60, 000 vertices.

Geometry Models 3D face deformations due to identity

and expression can be represented using linear geometry

models.

V (Mid,Mexp, α, δ) = V̄ +Midα+Mexpδ . (1)

Here, Mid ∈ R
3N×mi and Mexp ∈ R

3N×me are the learn-

able linear identity and expression models. We use the mean

face from [4] as V̄ . α ∈ R
mi and δ ∈ R

me are the identity

and expression parameters for the corresponding models.

We use a low-dimensional embedded deformation graph

to represent the linear models Mid and Mexp,

Mid = UMgid,Mexp = UMgexp . (2)

Here, Mgid ∈ R
3G×mi and Mgexp ∈ R

3G×me are linear

models defined on a lower dimensional graph with G =
521 nodes. The fixed upsampling matrix U ∈ R

3N×3G

couples the deformation graph to the full face mesh and is

precomputed before training. Learning the shape models in

the graph-space reduces the number of learnable parameters

in the model, and makes it easier to formulate smoothness

constraints over the reconstructions.

Reflectance Model We employ a linear model of diffuse

face reflectance.

R(MR, β) = R̄+MRβ (3)

Here, MR ∈ R
3N×mr is the learnable reflectance model,

and β ∈ R
mr are the estimated parameters. We use the

mean face reflectance from [4] as R̄. Unlike geometry, we

learn a per-vertex reflectance model on the full mesh reso-

lution. This allows us to preserve photorealistic details of

the face in the reconstructions.

3.2. Image Formation

Given a face mesh with positions V and reflectance val-

ues R, we additionally need the extrinsic camera parame-

ters in order to render synthetic images. Rigid face pose is
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represented as φ(v) = Rv + t, where t includes 3 trans-

lation parameters, and rotation R ∈ SO(3) is represented

with 3 Euler angles. We use a perspective camera model,

with projection function π : R
3 −→ R

2. For any point

v ∈ R
3, the corresponding projection p(v) ∈ R

2 is defined

as p(v) = π(φ(v)).
To define the color, we need to model the scene illumi-

nation. We assume a lambertian surface, and use spheri-

cal harmonics (SH) coefficients γ to represent the illumi-

nation [41]. The color c of a point with reflectance r and

position v can be computed as

c = r ·
B2

∑

b=1

γb · Hb(n) (4)

Hb : R3 −→ R are the SH basis functions, γ ∈ R
B2

are the

SH coefficients, n are the normals at point v and B = 3 .

Differentiable Rendering We implement a differen-

tiable rasterizer to render 2D images from 3D face meshes.

For each pixel, we first compute the 3D face points which

project into the pixel. We use a z-buffering algorithm to

select the visible triangles. Pixel color is computed by lin-

early interpolating between vertex colors using barycentric

coordinates. We implement the renderer in a data-parallel

fashion as a custom TensorFlow layer.

This implementation also allows for gradients to back

propagate through the rendering step. The gradients com-

puted at any pixel location can be distributed across the ver-

tices of the relevant triangle according to the barycentric co-

ordinates. While such an implementation cannot differen-

tiate through the visibility check, it works well in practice.

3.3. Network Architecture

Our network consists of siamese towers which take as

input different frames of a video Fi, ∀i ∈ {0..Nf − 1},

where Nf is the number of frames. Each such set of Nf

frames of one person identity is called a multi-frame image.

The output of the siamese towers are the face parameters

which are independent per-frame, i.e. expressions (δi), il-

lumination (γi) and rigid pose (φi). We formulate multi-

frame constraints for the identity component of the model.

By design, the network only produces one output per multi-

frame input for the identity shape (α) and reflectance (β)

parameters. This is done through a multi-frame pooling of

features from the siamese towers, followed by a small net-

work. Thus, the network produces per-frame parameters,

pi = (α, β, δi, γi, φi)
In addition to the face parameters, we also learn the

face models for expression (Mexp), identity shape (Mid)

and reflectance (MR). These models are implemented as

weights of the learnable network. More specifically, the

position and reflectance of the face mesh, represented as

Vi(Mid,Mexp, αi, δi) and R(MR, β) are computed by ap-

plying the learnable models to the predicted parameters as

explained in Eqs. 1 and 3. The computed reconstructions

are then rendered using the differentiable renderer to pro-

duce synthetic images Si ∈ R
240X240X3. We enforce or-

thogonality between the geometry and expression models

such that MidMexp = 0. This is done by dynamically con-

structing Mid in a forward pass by projecting itself onto the

orthogonal complement of Mexp [55]. Please see Fig. 2 for

a visualization of the architecture.

3.4. Dataset

We use two datasets to train our approach: VoxCeleb [12]

and EmotioNet [2]. VoxCeleb consists of over 140k videos

covering 6000 different identities crawled from YouTube.

We sample Nf = 4 frames per video clip for training. This

gives us a variety of head pose, expressions and illumination

per identity. All our images are cropped around the face,

and we discard images containing less than 200 pixels. We

resize the crops to 240x240 pixels.

EmotionNet is a large-scale image dataset of in-the-wild

faces, covering a wide variety of expressions, automatically

annotated with Action Units (AU) intensities. We use a sub-

set of 7,000 images of neutral faces by selecting images

with no active AU. We use these neutral images to enforce

model disentanglement between the identity and expression

geometry components (Sec. 3.5.1).

3.5. Loss Functions

We perform self-supervised training, without using any

3D supervision. Let x be the learnable variables in the net-

work, which includes all trainable weights in the neural net-

work, as well as the learnable face models Mid, Mexp and

MR. All the estimated parameters pi can be parametrized

using these learnable variables. Our loss function consists

of:

L(x) = Lland(x) + λseg · Lseg(x)+

λpho · Lpho(x) + λper · Lper(x)+

λsmo · Lsmo(x) + λdis · Ldis(x) , (5)

The last two terms are regularizers and the first four are

data terms. We used fixed λ• values to weigh the losses.

Landmark Consistency For each frame Fi, we auto-

matically annotate 66 sparse 2D keypoints [47] li ∈ R
2, i ∈

{0..65}. We compare these 2D landmarks with sparse ver-

tices of the reconstruction which corresponds to these land-

marks.

Lland(x) =

Nf−1
∑

i=0

65
∑

k=0

||lk − p(vk(x))||
2 . (6)
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Figure 3. For a given image [a], we obtain the segmentation masks

[b], its boundary [c] and distance transform (DT) image [d] of [c].

We employ a segmentation loss which tries to move the vertices

on the projected mesh contour (yellow) to a lower energy position

in DT. In addition, each pixel in the boundary (red) attracts the

nearest vertex on the mesh contour.

Here, vk(x) ∈ R
3 indicates the position of the kth land-

mark vertex, and p(vk(x)) is its 2D projection (Sec. 3.2).

While most face landmarks can be manually annotated on

the template mesh, the face contour is not fixed and thus has

to be calculated dynamically (see supplemental for details).

Segmentation Consistency The estimated keypoints are

ambiguous in the inner lip regions, due to rolling lip con-

tours. In addition, the accuracy of sparse keypoint pre-

diction is inadequate to learn expressive expression mod-

els. We use a dense contour loss for the lip region, guided

by automatic segmentation mask prediction [29]. The lip

segmentation contours are converted into distance trans-

form images Db
a, where a ∈ {upper, lower} and b ∈

{outer, inner} corresponding to the outer and inner con-

tours of both lips. We also compute the contours of both

lips projected by the predicted reconstruction, where each

element of set Cb
a(x) stores a 2D pixel location on the con-

tour. For a given distance transform image and the corre-

sponding contour of the predicted mesh, the loss function

minimizes the distance between the mesh contours and seg-

mentation contours, see Fig. 3.

Lseg(x) =

Nf−1
∑

i=0

∑

∀(a,b)

(

∑

∀(x,y)∈Cb
a(x)

Db
a(x, y)+

∑

{(x,y) |Db
a(x,y)=0}

||(x, y)− closest(Cb
a(x), (x, y))||

2
)

.

(7)

Here, the first term minimizes the distance from every pixel

in the mesh contour to the image contour. The second term

is a symmetric term minimizing the distance between ev-

ery pixel in the image contour to the closest mesh contour.

closest(Cb
a(x), (x, y)) is a function which gives the posi-

tion of the closest pixel in Cb
a(x) to (x, y). We use our dif-

ferentiable renderer to compute the rolling inner contours

on the mesh. The outer contours are computed as the pro-

jection of some manually annotated vertices on the template

mesh. In practice, we ignore this loss term at pixels where

the distance between the image and mesh contours is greater

than a threshold. This helps in training with noisy segmen-

tation labels.

Photometric Consistency We evaluate the dense pho-

tometric consistency between the reconstructions and the

input. For each pixel, we minimize the color difference be-

tween the input images Fi and the rendered images Si(x).

Lpho(x) =

Nf−1
∑

i=0

||Mi ⊙ (Fi − Si(x))||
2 . (8)

Mi is a mask computed using the renderer, and ⊙ is an

element-wise multiplication operator.

Perceptual Loss We additionally employ a dense per-

ceptual loss to help our networks learn higher quality mod-

els, including high-frequency reflectance details. In partic-

ular, we use a VGG network pretrained on ImageNet [25]

to get the intermediate features for both input frames and

the output synthetic frames. We then minimize the cosine

distance between these features.

Lper(x) =

Nf−1
∑

i=0

4
∑

l=0

1−
< fl(Si(x)), fl(Fi) >

||fl(Si(x))|| · ||fl(Fi)||
, (9)

where fl(·) denotes the output of the lth intermediate layer

for input x and < ·, · > denotes the inner product.

Geometry Smoothness To ensure smoothness of the fi-

nal geometry, we use a smoothness loss at the graph level.

Let Gi(x) ∈ R
Ng×3 with Ng = 521 nodes denote the ge-

ometry reconstruction for frame Fi at the graph level. We

employ an ℓ2 loss to constrain the difference between the

deformation of adjacent nodes.

Lsmo(x) =

Nf−1
∑

i=0

∑

g∈Gi(x)

∑

n∈N (g)

||g − n||2 , (10)

where N (g) is the neighbourhood of node g.

3.5.1 Model Disentanglement

Our goal is to learn deformation models for facial geome-

try, expression and reflectance. Disentangling these defor-

mations in the absence of an initial 3DMM is challenging.

We use a combination of network design choices and loss

functions to enable simultaneous learning of these models.

Siamese Networks: Our siamese network design ensures

that the identity components of our reconstructions are con-

sistent across all frames of the batch. Such a network ar-

chitecture allows us to disentangle illumination from re-

flectance in addition to helping with the disentanglement of

expressions from identity geometry.

Disentanglement Loss: Our method can still lead to some

failure modes. For example, Mid can collapse to a zero

matrix, and all geometric deformations including those due
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Figure 4. Our approach reconstructs all facial components with high fidelity and good disentanglement.

Figure 5. Our approach produces better geometry, including detailed mouth shapes compared to Tewari et al. [56] and FML [55]. Our

albedo is also more detailed and better disentangled from the illumination component. Results are visualized in the order of geometry,

albedo, and full reconstruction for all methods.

to identity can be learned by the expression model without

any penalty from any loss function. To prevent such failure

modes, we design a loss function to disentangle these com-

ponents. As mentioned in Sec. 3.4, a subset of our dataset

includes images of faces with neutral expression. For these

images, we employ a loss function which minimizes the de-

formations due to expressions.

Ldis(x) =

Nf−1
∑

i=0

||δi(x)||
2 . (11)

Since we do not have videos for these images, we simply

duplicate the same image as input to the siamese towers.

Finally, our training strategy further helps with disentangle-

ment. Please refer to the supplemental for details.

3.6. Personalized Model

While the expression model we have described is

generic, describing the deformations for any identity, we

can also personalize the model by finetuning it on a video

at test time. We can also update the identity geometry and

reflectance models for higher quality reconstructions. The

loss function for finetuning is the same as the training loss.

The rest of the network is kept fixed, such that the parameter

estimation is not affected. We show that this leads to high

quality reconstructions, without changing the semantics of

the models.

4. Results

Training Details We implement our approach in Ten-

sorflow and train it over three stages: 1) pose pretraining

2) identity pretraining and 3) combined training. We em-

pirically found this curriculum learning to help with stable

training and disentanglement of the identity and expression

models. Pose Pretraining: We first train only for the rigid

head pose. All other parameters are kept fixed to their ini-

tial value. Identity pretraining: Next, we train for the iden-

tity model. This step is only trained on the EmotionNet

data with neutral expressions. We enforce the expression

parameters to be zero, enforcing all deformations to be in-

duced by the identity model. Combined Training: Last, we

train for the complete model with the loss functions as ex-

plained in (5). Similar to the first stage, we continue to im-

pose the landmark loss term on the mean mesh throughout

model learning. This helps in avoiding the geometric mod-

els learning the head pose. Our training data now consists of

mini-batches sampled from EmotionNet and VoxCeleb with

1:3 ratio. We train for 650k iterations with a batch size of 1.

This results in a training time of 117 hours on a TitanV. We

use 80 basis vectors for identity geometry and albedo, and

64 for expression.

4.1. Qualitative Evaluation

Fig. 1 visualizes the different modes of the learned

model. Our method disentangles the various facial com-

ponents of identity geometry, expressions and albedo. The

identity model correctly captures a variety of face shapes,

mouth and eye structure. The expression model captures a

variety of deformations produced by the mouth and eyes,

while the reflectance captures different skin color, and gen-

der specific features such as facial hair and make-up. Fig. 4

shows all components of our reconstruction for several im-

ages. Our approach can handle different ethnicities, genders

and scene conditions, and produces high-quality reconstruc-

tion, both in geometry and reflectance.

Comparisons: Figs. 5 - 8 compare our approach to sev-

eral state-of-the-art face reconstruction techniques. Tran et

al. [60, 58] learn a combined geometry model for identity

and expressions, while we learn separate models (Fig. 6).

Like other 3DMM based approaches, RingNet [46], which

estimates the parameters of a pre-trained face model [35],

struggles with out-of-space variations especially in the

mouth region (Fig. 8). Reconstrutions of MoFA [57] and
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Figure 6. Both approaches of Tran et al. [60, 58] do not disentangle the identity geometry from expressions. In contrast, our method

estimates and disentagles all the facial components. It also produces more accurate mouth shapes. [O] refers to our method.

Figure 7. MoFA [57] and GANFIT [20] produce less accurate mouth shapes, compared to our method. GANFIT albedo reconstructions

can often include artifacts, especially around the eyes.

Figure 8. Our method better captures mouth shapes and eye geom-

etry, compared to RingNet [46]. It can also additionally estimate

the appearance of the face.

Figure 9. Finetuning (FT) allows us to better capture the person-

alized geometry and reflectance of the person.

GANFIT [20] are also limited by a pretrained 3DMM model

and hence lead to less detailed shapes than ours (Fig. 7).

While GANFIT produces detailed textures, it can often con-

tain artifacts. Tewari et al. [56] refine a pretrained 3DMM

model on an image dataset. We can better disentangle the

reflectance and illumination components (Fig. 5). FML [55]

is constrained by a pretrained expression model and thus

produces lower quality shape reconstructions (Fig. 5 and

10). In addition, our reflectance estimates are more detailed

compared to FML. Even though we start from just a tem-

plate mesh without any deformation priors, we can produce

high-quality results, better than the state of the art.

Our method can produce better lip segmentation than the

approach used for generating the training data [29] in some

cases. This is due to our segmentation loss function, Lseg ,

where we selectively ignore unreliable segmentation esti-

mates. Hence our final model is learned from only accurate

segmentations in the training-set. We also provide ablative

study of perceptual loss which helps in photorealism of the

albedo and the final overlay in supplemental.

4.2. Quantitative Evaluation

Geometric Error: To evaluate the geometric accuracy

of our 3D reconstructions, we compute the per-vertex root

mean square error between the ground-truth geometry and

the geometry estimated using different techniques. The GT

and reconstructed meshes are first aligned such that they

have the same scale, translation and orientation. We use

the BU3DFE dataset [64] for evaluation, where the ground-

truth geometry is obtained using 3D scans. The correspon-

dences between the GT and reconstructed meshes are pre-

computed using non-rigid registration. Tab. 1 reports the

results over 324 images. Our approach outperforms the ap-

proaches of MoFA [57], Tewari et al. [56] and FML [55].

Note that none of the approaches in Tab. 1 learn a complete

face model from images and videos.

Segmentation Error: To specifically evaluate the quality

of lip reconstructions, we use Intersection over Union (IoU)

between our reconstructions and the input images over the

lip regions. Since our approach learns an expression model

from in-the-wild data, it can generalize better to different

lip shapes and outperform FML [55] (see Tab. 2). Further-

more, Tab. 2 shows that removing the segmentation consis-

tency term (Eq. 3.5) leads to lower quality results.

Disentanglement Error: One of our main objectives is to

obtain a disentangled representation for faces. To evaluate

the disentanglement between the reconstructed expression

and identity geometry, we design a metric which measures

the mean expression deformation for images with neutral

faces. We test our approach on 1864 neutral faces mined
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Ours MoFA FML Fine [56] Coarse [56]

Mean 1.75 3.22 1.78 1.83 1.81

SD 0.44 0.77 0.45 0.39 0.47

Table 1. Geometric reconstruction error (in mm) on the BU-3DFE

dataset [64]. Our technique outperforms MoFA [57], coarse and

fine models of Tewari et al. [56] and FML [55].

W/o Lseg With Lseg FML

UL IoU 0.49 0.54 0.51

LL IoU 0.52 0.60 0.58

Table 2. Intersection over Union (IoU) between the ground-truth

and predicted masks for upper lip (UL) and lower lip (LL). Our

segmentation consistency term produces better IoU and leads to

noticeably better performance than FML [55].

W/o Ldis With Ldis FML MoFA

AE 4.0065 0.0116 2.0329 0.4056

Table 3. Our identity disentanglement term results in lesser leak-

age of the identity geometry into the expression component. It

performs better than FML [55] and MoFA [57]. AE refers to the

average expression deformation.

using the same strategy described in Sec. 3.4. Tab. 3 reports

the average length of the expression deformations for dif-

ferent approaches. Our approach achieves significantly bet-

ter expression and identity disentanglement over FML [55]

and MoFA [57]. This result also shows the importance of

our disentanglement loss.

Verification Metric: To further evaluate disentanglement,

we use the LFW dataset [22], which includes face image

pairs of the same, as well as of different identities. We ren-

der the identity component of the reconstructions with the

predicted pose and lighting parameters. Face embeddings

are computed as the mean pooled version of the conv5 3

output of VGG-Face [39]. We first compute the histogram

distribution of cosine similarities between renderings of im-

age pairs with the same identity in embedding space. Sim-

ilarly, distribution of cosine similarities between render-

ing pairs of different identities is computed. The verifi-

cation metric is then computed as the Earth Movers Dis-

tance (EMD) between these two distributions. Our method

achieves an EMD of 0.15, compared to 0.09 for FML. A

larger distance implies better representation of the differ-

ences between identities due to better disentanglement.

4.3. Personalized Model

We show results for personalizing the model by finetun-

ing it on a video. We use one part of the video with 2000
frames for finetuning, and show qualitative improvements

in the left out frames. Fig. 9 shows that the personalized

model can represent the person specific mouth articulations,

and can also improve the quality of reflectance. We also

Figure 10. Our personalized model captures higher quality mouth

geometry compared to FML, where only the identity models can

be personalized. We show the inner contours of the meshes (ours-

top, FML-bottom) in column 4. The ground truth inner contours

and zoomed in image are visualized in column 5.

Figure 11. We can transfer expressions between personalized

models. The expression parameters are transferred from the in-

put to reference here. The personalized models preserve the se-

mantics, which leads to correct transfer of expressions. Note the

person-specific nature of the expressions. [R] refers to the full re-

construction while [G] is the geometry component.

compare with FML [55] by finetuning its identity compo-

nent. Note that the training strategy of FML does not al-

low for learning of the expression model. Thus, we obtain

higher quality reconstructions, see Fig. 10

We show that personalizing the models does not change

the semantics, by demonstrating expression transfer results

in Fig. 11. Here, we take the estimated expression param-

eters of an input image, and the estimated identity parame-

ters of a different reference image to obtain retargeting re-

sults using the personalized model of the reference identity.

The retargeted results preserve the input expressions, which

shows that the semantics of the expression model is pre-

served after personalization.

5. Conclusion

We presented the first approach for learning a full face

model, including learned identity, reflectance and expres-

sion models from in-the-wild images and videos. Our

method also learns to reconstruct faces on the basis of the

learned model from monocular images. We introduced new

training losses to enforce disentanglement between iden-

tity geometry and expressions, and to better capture de-

tailed mouth shapes. Our approach outperforms existing

methods, both in terms of the quality of image-based recon-

struction, as well as disentanglement between the different

model components. We hope that our work will inspire fur-

ther research on building 3D models from 2D data.
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