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Figure 1. Given a monocular image, our method can synthesize One Light At a Time (OLAT) relit images, relight the face using any

environment map (inset), and also transfer the light from another image (top) to the input (bottom). We can model view-dependent effects

and can thus generate results in any head pose.

Abstract

The reflectance field of a face describes the reflectance

properties responsible for complex lighting effects includ-

ing diffuse, specular, inter-reflection and self shadowing.

Most existing methods for estimating the face reflectance

from a monocular image assume faces to be diffuse with

very few approaches adding a specular component. This

still leaves out important perceptual aspects of reflectance

such as higher-order global illumination effects and self-

shadowing. We present a new neural representation for

face reflectance where we can estimate all components of

the reflectance responsible for the final appearance from

a monocular image. Instead of modeling each component

of the reflectance separately using parametric models, our

neural representation allows us to generate a basis set of

faces in a geometric deformation-invariant space, parame-

terized by the input light direction, viewpoint and face ge-

ometry. We learn to reconstruct this reflectance field of a

face just from a monocular image, which can be used to ren-

der the face from any viewpoint in any light condition. Our

method is trained on a light-stage dataset, which captures

300 people illuminated with 150 light conditions from 8

viewpoints. We show that our method outperforms existing

monocular reflectance reconstruction methods due to bet-

ter capturing of physical effects, such as sub-surface scat-

tering, specularities, self-shadows and other higher-order

effects.

1. Introduction

Monocular face reconstruction (i.e. dense reconstruction

of 3D face geometry, reflectance and illumination) has ap-

plications in visual effects, telepresence, portrait relighting,

facial reenactment, and interactions in virtual environments.

It has been an active area of research with tremendous

progress in all aspects of reconstruction, including both ge-

ometry and reflectance [7]. Our focus is on the reconstruc-

tion of the face reflectance, which captures the interaction

between the face and scene illumination, playing a very im-

portant role in perception. In the literature, one category

of methods [10, 37, 40], approximates faces as a Lamber-

tian surface. Many of them use analysis-by-synthesis opti-

mization to estimate the face geometry, spherical harmon-

ics lighting, and diffuse face reflectance; the latter is a stark

simplification of the true face reflectance. This type of rep-
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resentation fails to capture important specularities and sub-

surface effects in face reflectance, which prevents truly pho-

torealistic reconstruction. While some approaches [31, 2]

use ambient occlusion and precomputed radiance transfer

to model shadows in an inverse rendering framework, they

still assume simple reflectance properties of the face, which

limits photorealism. Another category of methods [42, 22]

reconstruct diffuse and a specular face albedos from an im-

age using machine learning methods. While being more

complete, this still leaves out important components of the

reflectance, such as self shadowing and other higher-order

view-dependent effects and sub-surface effects.

We present the first monocular face reconstruction algo-

rithm that estimates a full face reflectance field, represent-

ing both view direction- and light direction-dependent re-

flectance properties, from a single face image. We train a

CNN that infers the face reflectance field from a single im-

age, and represents it as a basis set of images showing the

illuminated face in a normalized space. The images, and

thus the reflectance field, are parameterized by the light di-

rection, view direction and face geometry. This is similar

to the representations used by image-based techniques for

acquiring reflectance fields [6, 25, 33, 8]. However, the cru-

cial difference to our work is that they only capture light-

dependent, not view-dependent effects; they can only re-

light the given input camera view. While Debevec et al. [6]

can render the face from a different viewpoint, doing so re-

quires an assumption of the BRDF model of the face, and

ignores effects such as self-shadowing in the reflectance.

Our method goes significantly further by estimating the full

reflectance field, including view-dependent effects. We can

change both the light source and viewpoint in the image.

We do this by jointly estimating the 3D face geometry from

the monocular image, and representing the basis images in

the UV space [4] of the template face mesh. This also

offers other advantages, such as generalization outside of

the training data space. Our method is trained on a light-

stage dataset, which captures 300 people illuminated with

150 point light sources one at a time, and from 8 viewpoints.

While all faces in the dataset are in a neutral expression with

mouth closed, our method still generalizes to real images

with general facial expression, since the training is done in

the normalized expression-invariant UV space.

In summary we make the following contributions:

• A monocular method for estimating neural face re-

flectance fields. We show that the neural reflectance

field, directly learned from real data can model com-

plex real phenomena, unlike commonly used paramet-

ric reflectance models.

• Generalization to in-the-wild images after training on

a light stage dataset. This generalization is obtained by

the virtue of explicit use of a canonical space invariant

to head pose, identity and expressions, i.e., UV space,

as well as training with data synthesized by natural en-

vironment maps.

2. Related Work

The literature on face reflectance capture is vast,

with methods varying from requiring multi-view multi-

illumination images as input [25, 6, 13] to methods which

can reconstruct reflectance from a single image. We focus

our discussion on monocular methods.

Analysis-based Synthesis Many methods reconstruct

face reflectance by solving an analysis-by-synthesis opti-

mization problem minimizing the difference between an

estimate and the input image. Since this is an under-

constrained problem, methods often make simplifying

assumptions, such as the skin having Lambertian re-

flectance [37, 12, 40, 39, 28]. This allows them to rep-

resent lighting using coarse spherical harmonic illumina-

tion [27]. Some other methods use a Phong-reflectance

assumption [3, 23], which can also model specularities.

Specularities using spherical harmonics have also been ex-

plored [2, 32]. These representations do not model effects

such as sub-surface scattering and self-shadowing, which

are important for representing realistic face appearance.

Some methods model shadows using precomputed radiance

transfer [31] or ambient occlusions [2]. However, due to a

Lambertian or simple specular assumption, the final output

lacks photorealism. Please refer to a recent survey [7] for

more details on these methods.

Supervised Learning Another class of methods are

based on supervised learning, where the training data is

well-defined, captured from light stages featuring a dome

of controlled lighting. At test time, the methods can recon-

struct rich reflectance from monocular images. The com-

mon representation here is to separate the reflectance into

diffuse and specular albedo [42, 22, 24]. Lattas et al. [22]

estimate the specular albedo and normals using separate

networks, using the diffuse albedo and the shape normals as

input. However, other complex effects such as self-shadows

and view-dependent inter-reflectance cannot be captured. A

computationally expensive step of path tracing is performed

to simulate shadows at test time.

Relighting Relighting methods capture only the light-

dependent component of the reflectance field, without tak-

ing view-dependence into account. This makes the problem

easier, and several methods can capture complex real world

effects. Most approaches are trained on light-stage datasets.

Sun et al. [33] present an encoder-decoder architecture for

manipulating the lighting of an input image. Nestmeyer

et al. [26] train a model to decouple the input image into

physically-based diffuse component, with the non-diffuse

components such as specularity and shadows modeled as a
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residual. Unlike these approaches, Zhou et al. [45] train

on monocular data, where the supervision is synthetically

generated. Thus, they achieve lower quality compared to

methods trained on light stage datasets. Please refer to a re-

cent survey [35] for more details on relighting methods. As

mentioned before, these methods cannot capture the view-

dependent components of the reflectance field.

Our method, on the other hand, allows us to reconstruct

the full reflectance field from a monocular image, thus al-

lowing control over both light and viewpoint. We do not

make any assumption about the reflectance properties of the

face, and can thus capture all effects including sub-surface

scattering, specularities and self-shadows.

3. Method

Our method takes as input an in-the-wild image of a face,

a target point light source direction, and the target view-

point. The output of the network is a mesh of the face lit by

a point light from the desired direction which can be ren-

dered from the target viewpoint. At test time, we can ren-

der the reconstructed face geometry from any viewpoint and

under any environment map by projecting the environment

map on a densely sampled point light basis.

3.1. Dataset

Our data-driven approach learns to predict the face re-

flectance field, which is a function of the face geometry,

light sources and camera pose. We train our model on a

light-stage dataset [41] consisting of HDR images of 350

identities, captured with 8 cameras distributed in front of

the face on a hemisphere (see Fig. 2-b). The light stage

also contains 150 point light sources uniformly placed on

the sphere surrounding the face. 150 images are captured

per person and per camera, with each of the light sources

turned on one light at a time (so-called OLAT images). Ev-

ery subject was captured with neutral expression with eyes

and mouth closed. In order to simulate data that looks

like in-the-wild images under natural illumination, we re-

light the light stage data using HDR environment maps. In

particular we use a combination of around 205 Laval Out-

door [14] and around 2233 Laval Indoor HDR [9] images,

as done in [33]. Our training dataset includes 1000 relit im-

ages each, for 300 identities. For each of the relit images,

we have a randomly selected OLAT from a random cam-

era view as target image. We use images of 10 identities

for validation, and the rest 40 identities for test. Our re-

flectance field representation operates in a normalised UV

space for facial geometry. This enables generalization of

our approach to arbitrary face expressions, despite all train-

ing data showing neutral face expressions. Note that even

though only a partial region in the UV space is visible in

the input image, we can still compute results from different

view points due to multi-view supervision.

3.2. Reflectance Field Representation

Our reflectance field is a function R(G, ωv, ωl), describ-

ing the reflectance of a face with geometry G, under view-

ing direction ωv and illuminated by an input point light

source direction ωl, where ωv and ωl are unit norm vec-

tors. We represent the face geometry using a 3D Mor-

phable Model [3], which includes an identity model Mid ∈
R

3N×mi and an expression model Mexp ∈ R
3N×me , where

N is the number of vertices. The vectors of Mid and Mexp

are scaled with their corresponding standard deviations, as

in [37]. This representation is well-suited for monocular re-

construction [37, 34, 38]. Mesh vertices are represented by

v, |v| = 3N . The final geometry is defined as

v(α, β;Mid,Mexp) = v̄ +Midα+Mexpβ .

We use the mean mesh v̄ from [3]; α ∈ R
mi and β ∈ R

me

are the identity and expression parameters. In monocular re-

construction, it is not possible to separate the effects of head

and camera pose. We remove this ambiguity by assuming a

camera with fixed extrinsics and intrinsics, and only mod-

eling head pose ωh ∈ SO(3) as variable. Although the re-

flectance does not depend on the global translation, we need

it to render the face in the correct position in the image.

For any vertex vi ∈ R
3, we can compute the camera space

coordinates v
c

i
= ωhvi + t, where t ∈ R

3 is the global

translation. The complete geometry can be represented as

v
c ∈ R

3N , with v
c

i
, ∀i ∈ {0, · · ·, N − 1} stacked together.

The reflectance field can then be represented as R(vc, ωl).
We represent the output of this function as a 512×512 RGB

image in a normalized UV parametrized space, defined us-

ing the template mesh used to represent v, see Fig. 2-a. This

allows us to easily generalize to in-the-wild images of vary-

ing identity and expression. In addition, it allows us to use

image-based 2D CNN architectures, e.g., U-Net architec-

ture [29], since the pixel correspondences required for the

skip connections are valid irrespective of target head pose.

3.3. Network Architecture

Our framework consists of two neural networks, the Ge-

ometry Network and the Reflectance Network, as shown in

Fig. 2-a. During training, each sample consists of two im-

ages, source (Is) and target (It). Is is an image lit by a

natural environment map and It is the image of the same

person in the same or different pose, under one of the 150

different OLAT lighting condition.

The Geometry Network takes both source and target face

images as input and reconstructs the 3D face geometry,

represented as pose, identity and expression parameters of

the 3DMM. Given the reconstructed face geometry of the

source image in camera-space coordinates, a differentiable

renderer as explained later, produces a source texture map

Ts ∈ R
512×512 in the UV space. Our goal is to generate
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Figure 2. (a) Our approach learns the full face reflectance field by reconstructing an input image with different head poses and point-source

lightings (see predicted OLAT image; One Light At a Time). At inference, this allows us to synthesize results with any environment map

by linearly combining different OLAT predictions. Our solution is formulated within a normalized UV-space and minimizes for several

loss functions through a differentiable renderer. The geometry network processes both the source and target images. At inference, the

target normal map is computed by rotating the source normal map based on the desired pose. (b) Our solution is trained with a light-stage

dataset which includes 150 lighting conditions (i), with 8 camera-views (ii) and 350 subjects (iii). We use 300 subjects for training, 10 for

validation and the rest for test.

an OLAT image in the UV space, lit from a light source

with direction ωl and with head pose ωh. From the camera

space geometries v
c
s and v

c
t of the source and target im-

ages, we also compute the source and target surface normal

maps N c
s ∈ R

512×512 and N c
t ∈ R

512×512. The Reflectance

Network takes as input Ts, N c
s , ωl and N c

t , as shown in

Fig. 2-a, and outputs the target texture map T̂t in a normal-

ized UV space i.e., every pixel corresponds to a semanti-

cally well-defined structure such as eye corner or nose. The

network produces an OLAT texture as output, which is ren-

dered using the target geometry and pose to compute the

final rendererd image Ît. At test time, we densely gener-

ate OLAT images for each lighting direction, and linearly

combine them to relight a new image according to a target

environment map.

The Geometry Network is based on AlexNet [20, 37],

while the Reflectance Network is based on a U-Net architec-

ture [30]. The U-Net consists of 8 down and up convolution

layers with skip connections and kernels of spatial dimen-

sions 3× 3. This is followed by 5 convolutional layers with

a stride 1, which takes the output features, as well as the tar-

get normal map as input (see Fig. 2-a). Note that the target

lighting is fed to the U-Net bottleneck.

Our differentiable renderer renders a 2D image from a

3D face mesh and is similar to Laine et al. [21]. We estimate

the visible triangles using a z-buffering algorithm. Texture

mapping is used to compute the color values. Interpola-

tion (both on the mesh and the texture map) is done using

barycentric coordinates. The differentiable renderer offers

means for backpropagating the gradients through our nor-

malized representation and thus allows our loss functions to

be defined in image space (Sec. 3.4) Our differentiable ren-

derer is implemented as a data-parallel custom TensorFlow

layer.

3.4. Loss Functions

We enforce several loss functions to enable the learning

of the face reflectance field. Our method concurrently learns

to estimate the geometry and head pose as well:

L(Is, It, ωl, θn) = λlLl(Is, It, θn) + λrLr(Is, It, θn)+

λpLp(Is, It, ωl, θn) + λfLf(Is, It, ωl, θn) .

(1)

Here, θn are the trainable network parameters for both ge-

ometry and reflectance networks, Ll is a landmark align-

ment term, Lr is a geometry regularization term, Lp is a

photometric alignment term and Lf is a deep feature align-

ment term.
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Landmark loss This loss provides a strong geometric

cue for the 3D geometry reconstruction task:

Ll(Is, It, θn) = ‖L(vc

s
(Is, θn))− Ls‖

2

2
+

‖L(vc

t
(It, θn))− Lt‖

2

2
. (2)

We use 66 automatically detected landmarks [5] from the

source and target images, Ls and Lt as the ground truth.

The landmarks from the reconstructions, L(vc
s
) and L(vc

t
)

are computed by projecting the annotated landmarks on the

mesh to the image plane using the fixed camera parameters.

Contour landmarks cannot be fixed since they slide on the

mesh, so we compute these landmarks as the closest mesh

vertices from the estimated 2D landmarks [36].

Geometry Regularization We use common regulariz-

ers [11] used in monocular geometry reconstruction:

Lr(Is, It, θn) =
∑

i={s,t}
λα‖αi(Ii, θn)‖

2

2
+

λβ‖βi(Ii, θn)‖
2

2
. (3)

This loss ensures that the final geometry is plausible.

Photometric loss This loss ensures that the final relit im-

ages are close to the ground truth:

Lp(Is, It, ωl, θn) = ‖Mt(P)⊙ (Ît(P)− It)‖1 , (4)

where ⊙ is an element-wise multiplication operator. As ex-

plained earlier, the final rendered image Ît is parametrized

using the source texture map Ts, the normal maps N c
s

and N c
t , and the light direction ωl. Thus, P =

(Ts(Is, θn), N
c
s (Is, θn), N

c
t (It, θn), ωl) We only evaluate

the loss in a masked interior face region Mt(ωh(It)), com-

puted using the renderer. The supervision for our UV space

reflectance field is thus indirect through the final rendered

image using differentiable rasterization.

Feature loss The ℓ1 loss is known to oversmooth de-

tails [15]. To preserve the high-frequency details in the out-

put, we introduce a deep feature loss [16] with two terms:

Lf(Is, It, ωl, θn) = LI(Is, It, ωl, θn) + LL(Is, It, ωl, θn) .

(5)

To extract features and compute LI, we use the layers

F={conv1 2,conv2 2,conv3 3} of a VGG network

Vf pretrained on ImageNet [16] to constrain the output tex-

ture map and image as follows:

LI(Is, It, ωl, θn) =

∑

f∈F

(

∥

∥Vf (Mt(P)⊙ Ît(P))− Vf (Mt(P)⊙ It)
∥

∥

2

2

+
∥

∥Vf (T̂t(P))− Vf (Tt(It, θn))
∥

∥

2

2

)

. (6)

We use another feature loss from features of a VGG

network Sf trained to predict the light direction from im-

ages [25]. Specularities depend on light direction, thus the

Si-MSE (std. dev.)

Same Pose 0.00070 (σ=0.00059)

Different Pose 0.00084 (σ=0.00088)
Table 1. Reflectance reconstruction errors of our method, under

the same and different head poses.

features learned for predicting the latter encode the neces-

sary information:

LL(Is, It, ωl, θn) =
∑

f∈F

∥

∥Sf (T̂t(P))−Sf (Tt(It, θn))
∥

∥

2

2
.

(7)

Training We minimize our loss function summed over

all samples in the training dataset using mini-batch of size

1 with Adadelta optimizer [43] with a learning rate of 0.05
in order to obtain the network weights θn. We implement

our method in Tensorflow [1]. We set λα = 0.4, λβ =
0.002, λl = 25, λp = 5, λr = 1 and λf = 1. To improve

generalization of geometry reconstruction, we also include

monocular images from FFHQ [18] in our training. FFHQ

is only used for the geometry losses, Ll and Lr, in this case.

Overall 20% of our batches are sampled from FFHQ, and

the rest from the light-stage data. The reflectance network

is only trained on the light stage images.

3.5. Relighting

Our network is trained on the light stage data with

discrete 150 light directions. However, it allows us

to continuously sample light directions at test time, see

Sec. 3.2. Since light transport is additive, the final im-

age under any arbitrary environment map can be written as
∑N−1

l=0
λlÎt(Ts, N

c
s , N

c
t , ωl). With the abuse of notation, N

is the number of light sources, which determines the reso-

lution for the environment map. A larger value of N al-

lows for representing the illumination at a high resolution,

at the cost of computational efficiency, since we need a for-

ward pass of the network to compute each Ît. The weights

λl ∈ R
3 are color values of the environment map at the

pixel corresponding to light direction ωl.

Light Estimation We can also estimate the environment

map from an in-the-wild image. Given our reflectance field,

we can optimize for the final reconstruction as follows:

λ∗ = argmin
{λ}

∥

∥

∥

∑N−1

l=0

λlMt⊙ Ît(ωl)−Mt⊙ It

∥

∥

∥

2

2

, (8)

where It is an in-the-wild image and {λ} = {λi|i ∈
{0, · · · , N−1}}. We minimize this term using least-

squares. In order to get more detailed reconstruction, we

further optimize the light using the feature loss as λ∗ =
argmin{λ} ‖Vf (T̂t(ωl)) − Vf (Tt(It))‖

2

2
, where Tt is the

texture map computed from the input image It. We use

Adadelta solver [43] to minimize this term and use the so-

lution of Eq. 8 as the initialization.
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Figure 3. Input image (left) and renderings under different point source lights and with different head poses. Our results resemble ground

truth with accurate shadows. Input is taken from the light stage dataset where ground truth is available.

Figure 4. Input image (left) and its OLATs with same pose (2nd and 3rd) and different pose (4th and 5th). Similarly, we have the input

image relighted using random environment map (bottow right inset) with same pose (6th and 7th) and different pose(8th and 9th). The

scene illumination is identical in each column, allowing us to observe the view dependent effects. For example, see the change of the

dominant specularity spots on the nose in the 4th column.

4. Results

We perform experiments on in-the-wild images from

CelebA-HQ [17] as well as on our controlled light stage

data with ground truth available. Since all images in our

training data include an eye-closed expression, we cannot

learn the reflectance of open eyes; thus, we remove this re-

gion from results. For quantitative evaluations, we use the

scale-invariant mean square error (Si-MSE) [45] and face

dissimilarity metric (Face dis.). Face dissimilarity is ob-

tained by measuring euclidean distance between features of

ground truth and predicted images using a facial recognition

tool [19].

4.1. Qualitative Results

We perform several experiments to qualitatively eval-

uate our approach. Fig. 3 shows results from the light

stage test data (identity not included in training), with the

corresponding ground truths. We can synthesize differ-

ent OLATs with different head poses, closely resembling

ground-truth. We can capture strong shadows, speculari-

ties and sub-surface scattering effects. Fig. 4 additionally

shows relighting results on natural images with different en-

vironment maps. Here, we add the results of many light

sources. Our approach can synthesize results with photore-

alistic pose-dependent illumination effects, as can be seen in

results of faces in different poses. In Fig. 5 we compare our

reconstructions with the monocular reconstruction methods

of Smith et al. [32], Schneider et al. [31] and Tewari et

al. [37]. These methods also estimate the scene illumina-

tion. Tewari et al. assume faces to be diffuse, Smith et

al. add a specular component, while Schneider et al. use

precomputed radiance transfer to model shadows with a dif-

fuse surface assumption. We train the approach of Tewari et

al. [37] on our training data. Thus, it can be considered as

a baseline result where the reflectance model is contrained

to be diffuse. Smith et al. [32] and Schneider et al. [31] are

analysis-by-synthesis methods. Our approach clearly pro-

duces more photorealistic reconstructions that better cap-

ture specularities, subsurface scattering and shadows. The

comparison with Smith et al. specifically shows the advan-

tages of our representation since their model is also trained

on a light stage dataset. Fig. 6 shows further relighting re-

sults where the target environment map is computed from

another reference image. Results show that our reflectance

is well disentangled from illumination, even under strong

directional colored illumination. Our results outperform the

state-of-the-art both in terms of the quality of reflectance as

well as the quality of scene illumination captured. All com-
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Figure 5. Comparing our face reconstruction to the approaches of Smith et al. [32], Schneider et al. [31] and Tewari et al. [37]. Our

approach better captures specularities, sub-surface scattering, hard-shadows and overall produces more photorealistic results.

Figure 6. Light transfer results between 2 different images. Each row shows the results of relighting the input image with the light estimated

from the other row. Our approach relights an image and edits its head pose, all while maintaining its identity and facial integrity.

peting approaches use a spherical harmonic light assump-

tion, which would be incapable of handling high-frequency

light conditions, which often lead to strong shadows. We

also project the OLAT lights to the spherical harmonic space

and perform a comparison of relighting results. We provide

these results in supplemental document. Methods such as

[42, 22] do not estimate the scene illumination. This makes

it difficult to objectively compare to these approaches, es-

pecially since every method assumes a different coordinate

system making it difficult to visualize the results under the

same lighting. Please refer to the supplemental for qualita-

tive comparisons with Yamaguchi et al. [42]. Finally, even

though we train our method with 150 light sources, we can

synthesize OLAT image for arbitrary continuous light posi-

tions. Please refer to the supplemental video for results.

4.2. Quantitative Evaluations

We evaluate our approach quantitatively through a num-

ber of experiments. Table 1 summarizes our OLAT re-

flectance reconstruction results on the light stage data, on

a subset of the test set (40 identities, 8 poses). The in-

put images were synthesized using 160 natural environment

maps, see Sec. 3.1. A total of 3900 input images are re-

constructed with a target pose same as in the input, and

8100 images with a different target pose. Table 1 shows

that while our approach produces a lower scale invariant

MSE (Si-MSE) for results synthesized with the same pose,

the errors only slightly increase with a different pose. Ta-

ble 2 compares our monocular reconstruction on in-the-wild

images with that of different approaches [32, 37, 31]. We

use 1774 images from CelebA-HQ [44] as a test set and re-

port the Si-MSE [45] and face identity dissimilarity (Face

dis.) [19]. While Si-MSE only looks at pixel-level similari-

ties between images, Face dis. uses a face recognition net-

work to compute distances between facial identity embed-

dings. The publicly available implementation of the method

of Schneider et al. [31] cannot reconstruct images with non-

neutral expressions. Thus, we do not compare with them

on CelebA-HQ. Our approach significantly outperforms ex-

isting approaches as reported by the lower Si-MSE error

and Face dis. metrics. We also evaluate the quality of re-

flectance under a “reflectance transfer” operation. Here, we

take two images of the same person in different poses and

different natural light conditions from the light stage data.

We reconstruct the reflectance of both images, and then

exchange them before evaluating the reconstruction error.

This evaluation tests the quality of reflectance under dif-

ferent poses and light conditions. We also compare to other

methods [32, 31, 37] in the same manner. Table 2 shows that

our approach outperforms these methods over 2022 images

from our test set. As our dataset only contain images with

neutral expressions, we also compare with Schneider et al.

4.3. Ablative Study

We evaluate the different components of our method us-

ing several ablative studies.
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Ours Smith et al. [32] Schneider et al. [31] Tewari et al. [37]

Reconstruction (Si-MSE) 0.0060 (σ=0.0027) 0.0155 (σ=0.0124) ——×—— 0.0073 (σ=0.0037)

Transfer (Si-MSE) 0.0026 (σ=0.0015) 0.0195 (σ=0.0124) 0.0364 (σ=0.0219) 0.0147 (σ=0.0069)

Reconstruction (Face dis) 0.5820 (σ=0.0749) 0.6642 (σ=0.0709) ——×—— 0.7794 (σ=0.0699)

Transfer (Face dis) 0.4623 (σ=0.0808) 0.6077 (σ=0.0822) 0.6427 (σ=0.0757) 0.6936 (σ=0.0880)

Table 2. Reconstruction and reflectance transfer errors (in Si-MSE and Face dis with std. dev. σ) of our method, compared with the

approaches of Smith et al. [32], Schneider et al. [31] and Tewari et al. [37]. Evaluation is performed on 1774 images from CelebA-HQ [44]

for reconstruction, and on 2022 images from our test set for reflectance transfer.

Figure 7. Removing both source and target surface normals from our reflectance learning leads to blurry results and weaker specularities.

w/o normals (std. dev.) w/ normals (std. dev.)

Same Pose 0.0011 (σ=0.0009) 0.0007 (σ=0.0005

Different Pose 0.0012 (σ=0.0011) 0.0008 (σ=0.0008)

Table 3. Reflectance reconstruction errors of our method, under

the same and different input head poses. Removing the normal

maps (source and target) from our network design clearly degrades

performance.

Only mean face (std. dev.) With all (std. dev.)

Si-MSE 0.011 (σ=0.005) 0.004 (σ=0.002)

Face dis. 0.550 (σ=0.073) 0.550 (σ=0.080)

Table 4. Reflectance reconstruction errors of our method (in Si-

MSE and Face dis with std. dev. σ) with and without face geome-

try learning. Performance degrades when only the mean face mesh

is used (middle column), as opposed to learning the face geometry

(last column).

Surface normals We assess the importance of providing

surface normals as input in the network. For this, we trained

a model without providing the source and target surface nor-

mals as input to the reflectance network. The network in

this case would not have access to the face geometry and

head pose. Table 3 summarizes the results of this experi-

ment. Here, we evaluate OLAT reflectance reconstruction

on the light stage data, on a subset of the test set (40 identi-

ties, 8 poses). The input images were synthesized using 160

different natural environment maps. A total of 3900 input

images are reconstructed with a target pose same as in the

input, and 8100 images with a different target pose. This

is the same test data used in Table 1. We report Si-MSE

for renderings with same and different input pose. Results

show that removing normal maps degrades results notice-

ably, showing that geometry and pose information is im-

portant for the task. This reduction in performance is also

reflected visually in Fig. 7 where removing surface normals

leads to blurry results and weak specularities.

Impact of accurate geometry To assess the importance

of accurate geometry in our solution, we train a network

which only uses the mean template face mesh. The geom-

etry network here only predicts the head pose, without the

identity and expression geometry parameters. We use 130

images from CelebA-HQ [44] as a test set and report the

Si-MSE and Face dis. in Table 4. Not learning the face ge-

ometry and using a fixed mean mesh instead leads to clear

degradation in performance in terms of Si-MSE.

5. Conclusion and Discussion

We presented a method for monocular reconstruction of

reflectance fields. Our results are not limited by any para-

metric reflectance model, and can capture complex real phe-

nomena such as specularities, sub-surface scattering, and

self shadowing. While we show results which allow for the

estimation of reflectance fields from monocular images for

the first time, our method still has some limitations. As

mentioned before, we cannot estimate the reflectance of

open eyes, since the training dataset does not include such

images. However, our method successfully generalizes to

in-the-wild images for the visible regions, even for different

expressions. Our method in general is limited to the face re-

gion, because of geometry reconstruction. With advances in

more complete monocular geometry reconstruction, includ-

ing hair and body, our method should be able to estimate

more complete reflectance fields. Although our approach

can reconstruct all aspects of the reflectance, strong effects

such as specularities and strong shadow boundaries can still

be a bit blurred, see Fig. 3. This could be due to inaccura-

cies in monocular geometry estimation, leading to misalign-

ments between estimate and ground truth during training.

Nevertheless, we believe that our method takes an impor-

tant step towards learning and rendering the full reflectance

field of a face.
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