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Figure 1: (a) We show how errors in Monocular Depth Estimation are corrected when used in tandem with an Adaptive Sensor such as a Triangulating Light

Curtain (Yellow Points and Red lines are Ground Truth). (b) We predict a per-pixel Depth Probability Volume from Monocular RGB and we observe large

per-pixel uncertainties (σ = 3m) as seen in the Bird’s Eye View / Top-Down Uncertainty Field slice. (c) We actively drive the Light Curtain sensor’s Laser

to exploit and sense multiple regions along a curve that maximize information gained. (d) We feed these measurements back recursively to get a refined

depth estimate, along with a reduction in uncertainty (σ = 1m).

Abstract

Active sensing through the use of Adaptive Depth Sen-

sors is a nascent field, with potential in areas such as Ad-

vanced driver-assistance systems (ADAS). They do however

require dynamically driving a laser / light-source to a spe-

cific location to capture information, with one such class

of sensor being the Triangulation Light Curtains (LC). In

this work, we introduce a novel approach that exploits prior

depth distributions from RGB cameras to drive a Light Cur-

tain’s laser line to regions of uncertainty to get new mea-

surements. These measurements are utilized such that depth

uncertainty is reduced and errors get corrected recursively.

We show real-world experiments that validate our approach

in outdoor and driving settings, and demonstrate qualitative

and quantitative improvements in depth RMSE when RGB

cameras are used in tandem with a Light Curtain.

1. Introduction

Spinning fixed scan LIDARs have been the de-facto sen-

sor of choice in safety critical systems such as Advanced

driver-assistance systems (ADAS), due to their reliability in

depth estimation. However, their reduced spatial-resolution,

multi-path interference and their prohibitive cost has made

en-masse adoption in personal vehicles hard. To counter

these issues, depth estimation from RGB cameras has been

heavily researched. However, issues such as oversaturation,

feature correspondence errors and scale ambiguity has made

relying on these sensors unsafe.

To capture the error and uncertainty in RGB-only depth

estimation, previous work had formulated that task as a

probabilistic regression problem, by predicting per-pixel

depth distributions via a Depth Probability Volume (DPV)

[16] [7] [28]. The DPV provides both a Maximum

Likelihood-Estimate (MLE) of the depth map, as well as

the corresponding per-pixel uncertainty measure. However,

these works do not adaptively or physically correct for this

uncertainty, instead relying purely on multi-view camera

constraints for passive correction.

In this work, we have devised the first known frame-

work that adaptively exploits the depth uncertainty in a per-

pixel DPV from RGB images and refined it via an Adaptive

Depth Sensor called a Triangulating Light Curtain [15]. It

has a steerable Laser Line that can be driven by a Galvom-

irror in tandem with a Rolling Shutter camera to generate a

3D ruled surface to sample the world. We have chosen this

sensor due to its low cost ($1k vs lidar ∼$25k), high spatial

angular resolution (0.02◦ vs lidar 0.4◦), and high frame-rate

( 60fps vs lidar 20fps).

We begin by formulating an iterative Bayesian inference

approach to adaptive depth sensing using only the Light

Curtain (LC). This is done by building and adapting the 3D

DPV representation as a collapsible 2D Uncertainty Field

(UF), formulating a probabilistic depth representation of the

sensor model and building planning and sensing policies
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within the sensor constraints. We then build a deep learning

architecture that can generate a similar DPV from Monocu-

lar or Stereo RGB inputs, and use that as a prior for adaptive

sensing. We then fuse the LC measurements back into our

network to get a refined depth estimate (see Fig. 1).

We conducted experiments of adaptive depth sensing

from the LC alone by starting with a Gaussian prior, and

showed convergence to true depth with enough iterations.

We then trained a network to predict depth distributions

from RGB images, used that as a prior for sensing, and fed

those new LC measurements back to the network. Through

extensive experiments with a simulated LC (with KITTI

dataset [10]) and sensors in the real-world, we show signif-

icant speedup in depth convergence and increased accuracy

(see Fig. 1). As a result, our method has the potential of be-

ing a higher resolution, lower cost alternative to a LIDAR.

2. Prior Work

Depth from Active Sensors: Active sensors use a

fixed scan light source / receiver to perceive depth. Long

range outdoor depth from these such as commercially avail-

able Time-Of-Flight cameras [1] or LIDARs [3] [2] provide

dense metric depth with confidence values with wide usage

in research [10] [6] [8]. However, apart from low resolution,

these sensors are difficult to procure and expensive, making

everyday personal vehicle adoption challenging.

Depth from Adaptive Sensors: Adaptive sensors use

a dynamically controllable light source / receiver instead.

These have been making headway in the Long Range Out-

door space. Adaptive Sensing via focal length/baseline

variation through the use of servos/motors [17] [9] [18]

[21], directionally controlled Time-of-Flight Ranging using

a MEMS mirror / laser [22] [23] [27], Gated Depth Imag-

ing [24] [13] [12] and finally, sampling specific depth pro-

files using Triangulation Light Curtains [15] [25] [4] are just

some examples. However, these methods do not seem to ex-

ploit or fuse data from RGB modalities yet. Various work

by Bergman, Nishimura et. al. [5] [19] and Pittaluga et.

al. [20] present sensors and algorithms for adaptive sensing

via 2D angular sampling, providing precise depth at limited

number of pixels. However, our light curtain approach does

depth sampling via adaptive depth gating, giving useful in-

formation at every pixel at a higher resolution. Nishimura’s

sensor uses a SPAD where light is spread out over the entire

FOV limiting it’s range and operation outdoors due to am-

bient light. The light curtain however, maximizes the light

energy on the region of interest via triangulation.

Depth from RGB: Depth from Monocular and Multi-

Camera RGB has been extensively studied. We focus on a

class of Probabilistic Depth estimation approaches that have

reformulated the problem as a prediction of per-pixel depth

distribution [16] [28] [7] [30] [14] [26]. Some of this work

has actually passively exploited and refined [16] [26] the

uncertainty in the depth values via Moving Cameras and

Multi-View-Camera constraints, but have not used the ca-

pabilities of the slew of Adaptive Sensors available.

We hope to fill this gap by investigating if a Probabilistic

Depth representation from RGB sensors can be exploited by

an Adaptive Sensor such as a Light Curtain to potentially

match the precision of LIDARs but in a low cost manner.

3. Sensor Setup

The Light Curtain device (Fig 2) consists of a rolling

shutter Near-Infrared (NIR) camera rotated 90◦ (that im-

ages planes in the world per pixel column), a Line Laser

module and a Galvomirror (that generates planes of light

depending on the angle). The exact sensing location is ob-

tained by intersecting (triangulating) the imaging and laser

planes. Sweeping this laser line creates a 3D ruled surface

called a curtain. We can place a curtain along any surface by

controlling the galvo and rolling shutter speed subject to it’s

physical constraints, making the sensor adaptive in nature.

Note that the image and laser planes have some divergence,

so their intersection results in a volume in space (bounded

by purple points in Fig. 2) with some thickness, where any

objects that intersect it result in higher intensities in the NIR

image. This means that as the sensing location approaches

the true surface, pixel intensities on NIR image increases.

Real-world experiments are conducted using our array of

sensors consisting of an RGB Stereo Camera Pair, the Light

Curtain device, and a 128-beam Lidar for accuracy vali-

dation and RGB depth estimation network training. Sim-

ulated experiments are also conducted with KITTI dataset

[10], through a Light Curtain Simulator that uses the ground

truth depth map along with the ability to vary NIR instrin-

sics, laser extrinsincs, Galvomirror speed and laser diver-

gence/thickness and angle.

4. Depth from Light Curtains only

Before considering RGB + Light Curtain fusion (sec. 6),

we begin by focusing on the problem of adaptively discov-

ering the depth of a scene using only the light curtain.

4.1. Representation

We wish to estimate the depth map D = {du,v} of the

scene, which specifies the depth value du,v for every cam-

era pixel (u, v) at spatial resolution [H,W]. Since there is

inherent uncertainty in the depth value at every pixel, we

represent a probability distribution over depths for every

pixel. Let us define du,v to be a random variable for depth

predictions at the pixel (u, v). We quantize depth values

into a set D = {d0, . . . , dN−1} of N discrete, uniformly

spaced depth values lying in (dmin, dmax). All the predic-

tions du,v ∈ D belong to this set. The output of our depth
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Figure 2: Left: Our adaptive sensor of choice, the Triangulation Light Curtain (LC) [15], consists of a laser line, Galvomirror and NIR camera. Middle:

The light curtain senses a ruled 3D surface extruding from a given top-down 2D curve we call a curtain. Surfaces within the thickness of the curtain, result

in higher intensity in the NIR image. Right: A planar curtain swept across various depths. As the curtain plane approaches the true surface, the measured

intensity increases, due to the sensing location and curtain thickness. Above that we show our real-world sensor setup.

estimation method for each pixel is a probability distribu-

tion P (du,v), modeled as a categorical distribution over D.

In this work, we use N = 64, resulting in a Depth Proba-

bility Volume (DPV) tensor of size [64, W, H]:

D = {d0, . . . , dN−1}; dq = dmin + (dmax − dmin) · q (1)

N−1
∑

q=0

P (du,v = dq) = 1 (q is the quantization index) (2)

Depth estimate = E[du,v] =
N−1
∑

q=0

P (du,v = dq) · dq (3)

This DPV can be initialized using another sensor such as

an RGB camera, or can be initialized with a Uniform or

Gaussian distribution with a large σ for each pixel.

While an ideal sensor could choose to plan a path to sam-

ple the full 3D volume, our light curtain device only has

control over a top-down 2D profile. Hence, we compress

our DPV into a top-down an “Uncertainty Field” (UF) [28],

by averaging the probabilities of the DPV across a subset

of each column (Fig. 3). This subset considers those pixels

(u, v) whose corresponding 3D heights h(u, v) are between

(hmin, hmax). The UF is defined for the camera column u

and quantized depth location q as:

UF (u, q) =
1

|V(u)|

∑

v∈V(u)

P (du,v = dq)

where V(u) = {v | hmin ≤ h(u, v) ≤ hmax} (4)

We denote the categorical distribution of the uncertainty

field on the u-th camera ray as:

UF (u) = Categorical(dq ∈ D | P (dq) = UF (u, q)).

4.2. Curtain Planning

We can use the extracted Uncertainty Field (UF) to plan

where to place light curtains. We adapt prior work solv-

ing light curtain placement as a constraint optimization /

Dynamic Programming problem [4]. A single light curtain

placement is defined by a set of control points {q(u)}Wu=1,

where u indexes columns of the camera image of width W ,

and 0 ≤ q(u) ≤ N − 1. This denotes that the curtain

intersects the camera rays of the u-th column at the dis-

cretized depth dq(u) ∈ D. We wish to maximize the ob-

jective J({q(u)}Wu=1) =
∑W

u=1 UF (u, q(u)). Let Xu be

the 2D point in the top-down view that corresponds to the

depth q(u) on camera rays of column u. The control points

{q(u)}Wu=1 must be chosen to satisfy the physical con-

straints of the light curtain device: |θ(Xu+1) − θ(Xu)| ≤
∆θmax with θmax being the max angular velocity of Galvo:

arg max
{q(u)}W

u=1

W
∑

u=1

UF (u, q(u))

subj to |θ(Xu+1)− θ(Xu)| ≤ ∆θmax, ∀1 ≤ u < W (5)

4.3. Curtain Placement

The uncertainty field UF contains the current uncer-

tainty about pixel-wise object depths du,v in the scene. Let

us denote by π(dck | UF ) the placement policy of the k-th

light curtain, where dck = {dcku,v | ∀u, v}. Our goal is to

sample light curtain placements dck ∼ π(dck | UF ) from

this policy, and obtain intensities iu,v for every pixel.

To do this, we propose two policies: π0 and π1. In Fig.

4, we have placed a single curtain along the highest prob-

ability region per column of rays, but our goal is to maxi-
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Figure 3: Our state space consists of a Depth Probability Volume (DPV)

(left) storing per-pixel uncertainty distributions. It can be collapsed to a

Bird’s Eye Uncertainty Field (UF) (right) by averaging those rays in each

row (blue pixels) of the DPV that correspond to a slice on the road parallel

to the ground plane (right) (cyan pixels). Red pixels on UF represent the

low resolution LIDAR ground truth.
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Figure 4: Given an Uncertainty Field (UF), our planner solves for an opti-

mal galvomirror trajectory subject to it’s constraints (eg. θ̊max). We show

a 3D ruled surface / curtain placed on the highest probability region of UF.
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Figure 5: Sampling the world at the highest probability region is not

enough. To converge to the true depth, we show policies that place ad-

ditional curtains given UF. Let’s look at a ray (in yellow) from the UF

to see how each policy works. Left: π0 given a unimodal gaussian with

small σ. Middle: π0 given a multimodal gaussian with larger σ. Right:

π1 given a multimodal gaussian with larger σ. Observe that π1 results in

curtains being placed on the second mode.

mize the information gained. For this, we generate corre-

sponding entropy fields H(u, q)i to be input to the planner

computed from UF (u, q). We use two approaches to gen-

erate H(u, q): π0 finds the mean in each ray’s distribution

UF (u) and selects a σπ0
that determines the neighbouring

span selected. π1 samples a point on the ray given UF (u).
As seen in Fig. 5, strategy π0 is able to generate fields

that adaptively place additional curtains around a consistent

span around the mean with some σπ0
, but is unable to do so

in cases of multimodal distributions. π1 on the other hand

is able to place a curtain around the second modality, albeit

with a lower probability. We will show the effects of both

strategies in our experiments.

4.4. Observation Model

A curtain placement corresponds to specifying the depth

for each camera ray indexed by u from the top-down view.

After placing the light curtain, intensities iu,v are imaged

by the light curtain’s camera at every pixel (u, v). The

measured intensity at each pixel is a function of the cur-

tain placement depth dcu,v on that camera ray, the unknown

ground truth depth du,v of that pixel, the thickness of the

light curtain σ(u, v, dcu,v) for a particular pixel and curtain

placement, and the maximum intensity possible if a cur-

tain is placed perfectly on the surface pu,v (varies from 0

to 1). From real world data Fig. 6, we find the intensity
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Figure 6: We sweep a planar light curtain across a scene at 0.1m intervals,

and observe that the changes in intensity over various pixels follow an

exponential falloff model. Blue / Orange: Car door has a higher response

than the tire. Green: Object further away has a lower response with a

larger sigma due to curtain thickness. Red: Retroreflective objects cause

the signal to saturate

decays exponentially as the distance between the curtain

placement dcu.v and ground truth depth du,v increases, with

the scaling factor pu,v parameterizing the surface proper-

ties. We also simulate sensor noise as a Gaussian distribu-

tion with standard deviation σnse. The overall sensor model

P (iu,v | du,v, d
c
u,v) can be described as:

P (iu,v | du,v, d
c
u,v) ≡

N
(

iu,v | exp
(

−

(

dcu,v − du,v

σ(u, v, dcu,v)

)2
)

.pu,v, σ
2
nse

)

(6)

Note that when dcu,v = du,v and pu,v = 1, the mean

intensity is 1 (the value), and it reduces exponentially as the

light curtain is placed farther from the true surface. pu,v can

be extracted from the ambient NIR image.

4.5. Recursive Bayesian Update

How do we incorporate the newly acquired information

about the scene from the light curtain to update our current

beliefs of object depths? Since we have a probabilistic sen-

sor model, we use the Bayes’ rule to infer the posterior dis-

tribution of the ground truth depths given the observations.

Let Pprev(u, v, q) denote the probability of the depth at pixel

(u, v) being equal to dq before sensing, and Pnext(u, v, q)
the updated probability after sensing. Then by Bayes’ rule:

Pnext(u, v, q)

= P (du,v = dq | iu,v, d
ck
u,v)

=
P (du,v = dq) · P (iu,v | du,v = dq, d

ck
u,v)

P (iu,v | dcku,v)

=
P (du,v = dq) · P (iu,v | du,v = dq, d

ck
u,v)

∑N−1
q′=0 P (du,v = dq′) · P (iu,v | du,v = dq′ , d

ck
u,v)

=
Pprev(u, v, q) · P (iu,v | du,v = dq, d

ck
u,v)

∑N−1
q′=0 Pprev(u, v, q′) · P (iu,v | du,v = dq′ , d

ck
u,v)

(7)

Note that P (iu,v | du,v = dq, d
ck
u,v) is the sensor model

whose form is given in Equation 6.
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Figure 7: Visualization of the recursive Bayesian update method to refine

depth probabilities after observing light curtain intensities. The curtain is

placed at 10m. The red curves denote the expected intensity (Y-axis) as a

function of ground truth depth (X-axis); this is the sensor model given in

Eqn. 6. After an intensity is observed by the light curtain, we can update

the probability distribution of what the ground truth depth might be using

our sensor model and the Bayes’ rule. The updated probability is shown

by the blue curves, computed using the Bayesian update of Eqn. 7 (here,

the prior distribution Pprev is assumed to be uniform, and d
ck
u,v = 10m).

Left: Low i return leads to an inverted Gaussian distribution at the light

curtain’s placement location, with other regions getting a uniform proba-

bility. Middle: Medium i means that the curtain isn’t placed exactly on

the object and the true depth could be on either side of the light curtain.

Right: High i leads to an increased belief that the true depth is at 10m.

If we place K light curtains at a given time-step, we can

incorporate the information received from all of them into

our Bayesian update simultaneously. Since the sensor noise

is independent of curtain placement, the likelihoods of the

observed intensities can be multiplied across the curtains.

Hence, the overall update becomes:

Pnext(u, v, q)

=
Pprev(u, v, q) ·

∏K

k=1 P (iu,v | du,v = dq, d
ck
u,v)

∑N−1
q′=0 Pprev(u, v, q′) ·

∏K

k=1 P (iu,v | du,v = dq′ , d
ck
u,v)

The behavior of this model as the placement depth dcu,v ,

curtain thickness σ(u, v, dcu,v) and intensity i change is seen

in Fig. 7. We observe that low intensities lead to an invert-

ing gaussian like weight updates, with a low weight at the

light curtain’s placement location while other regions get

uniform weights. This indicates that the method is certain

that an object doesn’t exist at the light curtain’s location,

but is uniformly uncertain about the other un-measured re-

gions. A medium intensity leads due a bimodal gaussian,

indicating that the curtain may not be placed exactly on the

surface and could be on either side of the curtain. Finally,

as the intensity rises, so does weight assigned to the light

curtain’s placement location.

5. Experiments with Light Curtain only

We first demonstrate depth estimation using just the

Light Curtain as described in Sec. 4. In this initial baseline,

we track the Uncertainty Field (UF) depth error by com-

puting the RMSE error metric

√

n
∑

i=1

(E(UF (u,q))−dgt(u)i)
2

n

Figure 8: We demonstrate corroboration between simulated and real light

curtain device by sweeping several planes across this scene. Colored point

cloud is the estimated depth, and lidar ground truth in yellow. Left: LC

simulated from the lidar depth. Right: Using the real device.

Policy 50LC @ 0.25m 25LC @ 0.5m 50LC @ 0.25m 25LC @ 0.5m 12LC @ 1.0m

RMS/m 1.156 1.374 1.284 1.574 1.927

Runtime /s - - 2 1 0.5

Table 1: Policy depicts different numbers of light curtains (LC) placed at

regular intervals. The first two columns are simulations and the rest are

real experiments. Sampling the scene by placing more curtains results in

better depth accuracy (lower RMS) at the cost of higher runtime.
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Figure 9: Curtain placement as a function of the Uncertainty Field (UF)

converges within a lower number of iterations as opposed to a uniform

planar sweep which took 25 iterations

against ground truth. We evaluate our method against sev-

eral outdoor scenarios consisting of vehicles in a scene.

Planar Sweep Curtain Placement: We are able to sim-

ulate the light curtain response using depth from LIDAR. A

simple fixed policy not adapted to the UF helps validate our

sensor model and provides corroboration between the sim-

ulated and real light curtains. We perform a uniform sweep

across the scene above (at 0.25 to 1.0m intervals) (Fig. 8),

incorporating intensity measurements at each pixel for each

curtain using our process described earlier. Our simulated

device is able to reasonably match the real device, and we

also show how sweeping more curtains increases accuracy

at the cost of increased runtime (Table. 1).

Policy based Curtain Placement: Sweeping a planar

LC can be time consuming ( 25 iterations), so we want our

curtains to be a function of our UF. We evaluated two dif-

ferent scenarios (c1, c2) for each placement policy (π0, π1),

and we observed that planning and placing curtains as a

function of UF results in much faster convergence (Fig. 9).
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Figure 10: Looking at the top-down Uncertainty Field (UF), we see per

pixel distributions in Cyan and the GT in Red. We start with a gaussian

prior with a large σ, take measurements and apply the bayesian update,

trying both policies π0 and π1. Note how measurements taken close to the

true surface split into a bimodal distribution (Yellow Box)

6. Depth from Light Curtain + RGB Fusion

While starting from a uniform or Gaussian prior with a

large uncertainty is a valid option, it is slow to converge.

Furthermore, a light curtain’s only means of depth esti-

mation is extracted primarily along the ruled placement of

the curtain, at least based on our above placement policies.

We would ideally like to use information from a Monocu-

lar RGB camera or Stereo Pair to initialize our prior, with

a similar DPV representation. For this, a Deep Learning

based architecture is ideal, and we also reason that such an

architecture could potentially learn to fuse/incorporate in-

formation from both modalities better.

6.1. Structure of Network

The first step is to build a network (Fig. 11) that can

generate DPV’s from RGB images. We extend the Neural-

RGBD [16] architecture to incorporate light curtain mea-

surements. Anywhere from 1 to N images, usually two

(I0, I1), are fed into shared encoders, and the features

are then warped into different fronto-parallel planes of the

reference image I0 using pre-computed camera extrinsics

RI1
Io
, tI1Io . Further convolutions are run to generate a low res-

olution DPV dpvl0t [H/4, W/4] where the log softmax opera-

tor is applied and regressed on. The transformation between

the cameras acts as a constraint, forcing the feature maps to

respect depth to channel correspondence. The add operator

into a common feature map is similar to adding probabilities

in log-space.

dpvl0t is then fed into the DPV Fusion Network (a set of

3D Convolutions) that incorporate a downsampled version

of dpvLt−1 along with the the light curtain DPV that we had

applied recursive Bayesian updates on dpvlct−1, and a resid-

ual is computed and added back to dpvl0t to generate dpvl1t
to be regressed upon similarly. With a 30% probability, we

train without dpvlct−1 feedback by inputting a uniform distri-

bution. Finally, dpvl1t is then passed into a decoder with skip

connections to generate a high resolution DPV dpvLt . This

is then used to plan and place light curtains, from which we

generate a new dpvlct to be fed into the next stage.

6.2. Loss Functions

Soft Cross Entropy Loss: We build upon the ideas in [29]
and use a soft cross entropy loss function, with the ground
truth LIDAR depthmap becoming a Gaussian DPV with σgt

instead of a one hot vector. This way, when estimating
E (dpvgt) we get the exact depth value instead of an ap-
proximations limited by the depth quantization D. We also
make the quantization slightly non-linear to have more steps
between objects that are closer to the camera:

lsce =
−
∑

i

∑

d

(

dpv{l0,l1,L} ∗ log
(

dpvgt
)

)

n
(8)

D = {d0, . . . , dN−1}; dq = dmin + (dmax − dmin) · q
pow

(9)

L/R Consistency Loss: We train on both the Left and Right
Images of the stereo pair whose Projection matrices Pl, Pr

are known [11]. We enforce predicted Depth and RGB con-
sistency by warping the Left Depthmap into the Right Cam-
era and vice-versa, and minimize the following metric:

Dl = E

(

dpv
L
l

)

Dr = E

(

dpv
L
r

)

(10)

ldcl =
1

n

∑

i

(

∣

∣D{l,r} − w
(

D{r,l}, P{l,r}

)
∣

∣

D{l,r} + w
(

D{r,l}, P{l,r}

)

)

(11)

lrcl =
1

n

∑

i

(

||I{l,r} − w
(

I{r,l}, D{l,r}, P{l,r}

)

||1
)

(12)

Edge aware Smoothness Loss: We ensure that neighbour-
ing pixels have consistent surface normals, except on the
edges/boundaries of objects with the Sobel operator Sx, Sy

via the term:

ls =
1

n

∑

i

(
∣

∣

∣

∣

∂I

∂x

∣

∣

∣

∣

e
−|SxI| +

∣

∣

∣

∣

∂I

∂y

∣

∣

∣

∣

e
−|SyI|

)

(13)

7. Light Curtain + RGB Fusion Experiments

We train and validate our algorithms on the KITTI

dataset. We then trained the same network by initializing

on those weights, but using our custom dataset to evaluate

our algorithms with the real sensors on the Jeep.

For evaluation, we consider the RMSE metric against the

entire depthmap as opposed to just the Uncertainty Field

(UF) as

√

n
∑

i=1

(E(du,v)−dgt(u,v)i)
2

n
against our ground truth.

DPV Prior from RGB: Our first goal is to ensure that

our network is capable of generating a reasonable DPV with

monocular RGB input, given the above loss functions. We

do some simple experiments that explore these effects.

Table 2 shows successively improving performance as

we increase σgt, with poorer performance when the depth
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Low Res DPV

...

Monocular / 
Stereo RGB

Warp features 
based on R,T

Differentiable Homography

Prev DPV

Low Res DPV

...
DPV 

Fusion 
Network

Shared 
Encoder

Shared 
Encoder

Decoder

High Res DPV
LC DPV

+

+

+ +

+

Optional

Light Curtain 
Placement

Figure 11: Our Light Curtain (LC) Fusion Network can take in RGB images from a single monocular image, multiple temporally consistent monocular

images, or a stereo camera pair to generate a Depth Probability Volume (DPV) prior. We then recursively drive our Triangulation Light Curtain’s laser line

to plan and place curtains on regions that are uncertain and refine them. This is then fed back on the next timestep to get much more refined DPV estimate.

Figure 12: In KITTI + Simulated Light Curtain, we note improved depthmaps when Monocular inputs are fused with Light Curtain inputs. Note the

improvements in regions bounded in the yellow box. Our network is also capable of ingesting Stereo inputs, and also solving the task of Lidar Upsampling

Figure 13: In real world Experiments, we are able to see the monocular scale ambiguity in domain specific scenarios (driving scenario with a van 8m away)

get corrected by the Light Curtain, and we are able to see correction in an arbitrary scene (dumpster 15m away) provided to the system as well

Figure 14: We show the internal state of the bayesian update at Iteration 0 and Iteration 5. Starting with a prior DPV from Monocular Depth estimation, we

show the convergence of the sensor’s laser and curtain profile on an object 10m away

Figure 15: Monocular RGB alone suffers from scale ambiguity but does give an inital uncertain depth estimate on a car 15m away. Iterating on Light Curtain

measurements from a mean-centered gaussian prior alone gives a more accurate depth but with a noisy profile, but starting with the RGB DPV results in a

more accurate and smoother profile.
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Parameters σgt = 0.05 σgt = 0.2 σgt = 0.3
σgt = 0.3

with ldcl, lrcl

σgt = 0.3
with ldcl, lrcl, ls

RMSE/m 3.24 3.16 3.06 2.93 2.90

Table 2: Effects of Soft Cross Entropy (σgt), Left/Right Consistency

(ldcl, lrcl), Smoothness losses (ls) on Monocular Depth Estimation.

Mono vs Stereo Lidar Upsample with DPV Fusion Network

Mono 2.904

Stereo 1.737

Without DPV Fusion Network 1.118

With DPV Fusion Network 0.702

Table 3: Left: Stereo pair at t instead of Monocular pair at t, t − 1 input

to the network. Right: Fusing the GT LIDAR data with dpvl0t to generate

dpvl1t and dpvLt with Bayesian inference vs DPV Fusion Network.
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Figure 16: Top: Adaptive depth sensing with the Light Curtain: Starting

from a Prior distribution from a Monocular Depth Network as opposed to a

gaussian with a large σ leads to faster convergence towards the true depth.

Bottom: Monocular (Left) and Stereo (Right) Depth Estimation show im-

provements when we enabled feedback of the sensed Light Curtain DPV

at epoch 16 when training on KITTI dataset with light curtain simulator.

is effectively encoded as a one-hot vector (eg. σgt = 0.05),

since the depth was more likely to be forced into one of

the categories in D. Adding in ldcl, lrcl and ls improved

performance further.

Stereo Inputs: Since our method can generalize to any

N camera setup, we compare and contrasted monocular pair

inputs at times t, t − 1, against a stereo pair at time t as in-

put (extrinsics known in both cases). As expected, we note

significantly better performance with stereo input (Table 3).

Effect of a Stronger Prior: Previously, we had run

our adaptive sensing algorithm from a gaussian prior with

a large σ (Fig. 10). In various outdoor experiments, we

show that a prior DPV from our network instead, yields

higher accuracy and faster convergence towards the true

depth (Fig. 15, Fig. 16)(a, b).

DPV Fusion Network: With this corrected DPV, we

want to explore how to effectively handle erroneous mea-

surements (due to low light curtain returns etc.), or fuse it

other DPVs (from previous frame or from another sensor).

With this in mind, we consider the sub task of LIDAR Up-

sampling. The Velodyne LIDAR in the KITTI dataset, can

be converted into a low resolution depthmap, and conse-

quently a low-res DPV we call dpv
gt
t . We could then fuse

both dpvl0t and dpv
gt
t to generate dpvl1t using Bayesian in-

ference. Alternatively, we could feed both of those inputs

into our DPV Fusion Network, which relies on a series of

3D Convolutions. We note improved performance in this

upsampling task using this approach as seen in Table 3.

Light Curtain Fusion Network: Finally, we combine

all of these concepts into one. Here, we train our monocular

and stereo depth estimation without light curtain feedback,

and one where we enable dpvlct to be planned and fed-back

on the next stage via our DPV Fusion Network, as described

in (Fig. 11). Training is done on the KITTI dataset with our

light curtain simulator, with a maximum of 5 update itera-

tions for performance and memory reasons. We observed

qualitative (Fig. 13) and quantitative (Fig. 16(c, d)) perfor-

mance improvement of depth with Monocular input, and

marginal but visible improvement with Stereo. This is due

to the wide baseline of 0.7m in the stereo pair, so we could

see that smaller baseline pairs would benefit more with our

light curtain measurements.

Performance: Our un-optimized implementation of

each planning and curtain placement step takes 40ms.

Depth convergence occurs in 5 iterations (5 fps) when start-

ing from a monocular RGB prior and 10 iterations (2.5 fps)

with a Gaussian prior. In temporally continuous operations,

the prior from t−1 reduces convergence to 2 iterations (12.5

fps) depending on the camera motion. A well-engineered

implementation could achieve 20-40 fps but much faster

motion would require explicitly encoding 3D optical flow.

8. Future Work

We have demonstrated the first known work that has

leveraged uncertainty in RGB-based depth estimation to

drive an Adaptive Sensor such as a Light Curtain, in the

context of ADAS (Fig. 1). Our approach can generalize to

any sensor that uses the principle of driving a laser or light

source to specific pixels that are uncertain, and can bene-

fit from depth uncertainty information at a pixel. Normally

non-incident and high reflectively surfaces with poor inten-

sity returns are handled by the scaling factor term pu,v in

our model, so we hope to build a better sensor model that

utilizes albedo and normal information to predict this bet-

ter. We could also model scene flow to handle temporally

changing scenes (fast moving vehicle).

Project Page: The project page, datasets and code can be

found at https://soulslicer.github.io/rgb-lc-fusion/
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