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Abstract

Existing research on action recognition treats activities

as monolithic events occurring in videos. Recently, the ben-

efits of formulating actions as a combination of atomic-

actions have shown promise in improving action under-

standing with the emergence of datasets containing such

annotations, allowing us to learn representations capturing

this information. However, there remains a lack of studies

that extend action composition and leverage multiple view-

points and multiple modalities of data for representation

learning. To promote research in this direction, we intro-

duce Home Action Genome (HOMAGE): a multi-view ac-

tion dataset with multiple modalities and view-points sup-

plemented with hierarchical activity and atomic action la-

bels together with dense scene composition labels. Lever-

aging rich multi-modal and multi-view settings, we propose

Cooperative Compositional Action Understanding (CCAU),

a cooperative learning framework for hierarchical action

recognition that is aware of compositional action elements.

CCAU shows consistent performance improvements across

all modalities. Furthermore, we demonstrate the utility of

co-learning compositions in few-shot action recognition by

achieving 28.6% mAP with just a single sample.

1. Introduction

Action understanding in videos is a critical task with var-

ious use-cases and real-world applications, from robotics

[1, 2] and human-computer interaction [3] to healthcare

[4, 5] and elderly behavior monitoring [6, 7]. Despite the

recent success of deep learning methods for image classifi-

cation, complex and holistic action or event understanding

remains an elusive task.

There are several challenges associated with the task of

action understanding. The inherent variability in executing

complex activities poses one of the most critical difficul-

ties in building action understating models. To understand

these challenges, it is essential to understand what actions

are composed of. As opposed to bounding boxes in the ob-

ject detection task, actions are composed of various parts
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Figure 1: Given an activity instance (e.g., ‘do laundry’) and cor-

responding multiple views, we compute features using modality-

specific deep encoders (f modules). Different modalities may

capture different semantic information regarding the action. Co-

operatively training all modalities together allows us to see im-

proved performance. We utilize training using both video-level

and atomic action labels to allow both the videos and atomic ac-

tions to benefit from the compositional interactions between the

two. As discussed in the results, we see significantly improved

performance when using the above components together.

spanned in space and time. For instance, the action of “laun-

dry” involves multiple entities, e.g., humans, objects, and

their relationships, and is composed of a number of atomic

actions. Such partonomy of actions [8, 9, 10] both in space

and time defines a hierarchical structure. Furthermore, to

capture the variability in executing complex activities, un-

derstanding each part (e.g., body limbs, objects, or atomic

actions) becomes crucial. Since actions happen in the 3D

world, a holistic understanding of the world requires captur-

ing the subtle movements or parts using multiple modalities

(e.g., RGB and audio) and from multiple viewpoints.

Each of these challenges has previously been separately

investigated using different datasets and advanced meth-

ods. For instance, numerous datasets were put together

for generic action recognition and spatio-temporal localiza-

tion in YouTube or broadcasting third-person videos, such

as Kinetics [11], Charades [12], ActivityNet [13], UCF101

[14]. Other datasets such as EPIC Kitchens [15] were used

for ego-centric action recognition. Action Genome [10]

focused on using scene information in action recognition,
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while others [16] focused on hierarchical action modeling

from events to low-level atomic actions. Several studies

target learning from long instructional videos and release

datasets [17, 18, 19, 20] for the same, exploring the parton-

omy of actions in long sequences. Others also focused

on observing and recognizing actions from multiple views,

such as LEMMA [21] and HumanEva [22]. In parallel,

there have been numerous recent advances in contrastive

and cooperative learning [23, 24] applied to multi-modal

and multi-view datasets as a self-supervised pre-training

strategy to improve downstream recognition results. De-

spite all these advances, action understanding and gener-

alizability of such models remains a challenging problem

due to complexities brought by their complicated nature

and numerous object interactions. Multi-modal approaches

[25, 26, 27] have shown superior performance in tackling

such issues. However, there is still a need for a benchmark

that unifies all these challenges and tasks. In this paper, we

release a dataset along with a novel method for hierarchical

action recognition to tackle these problems.

We introduce a new benchmark for action recognition,

Home Action Genome (HOMAGE), that includes multi-

modal synchronized videos from multiple viewpoints along

with hierarchical action and atomic-action labels. Actions

in homes are challenging as we deal with long-term ac-

tions, interactions with objects, and frequent occlusions.

Having multiple views and sensors to handle occlusions

and scene graph information to capture object interaction

allows us to tackle these complexities. In addition, syn-

chronous videos provide implicit alignment that facilitates

multi-modal training. Additionally, access to sensor infor-

mation enables future research in privacy-aware recognition

where we avoid audio-visual modalities. HOMAGE also

provides temporal annotations of high-level activity and

low-level atomic action supplemented with spatio-temporal

scene-graphs. Annotations regarding interaction of objects

within actions and atomic actions within high-level actions

enable research in explainable video understanding, early

action prediction, and long-range action recognition.

For this new benchmark, we introduce a novel method to

perform simultaneous co-training with multiple modalities

(RGB, audio, and annotations of scene composition) and

viewpoints that enable the learning of rich video representa-

tions. Training involves a co-training strategy that leverages

information from all views and modalities to build the rep-

resentation space. During inference, we set up different ex-

periments and observe improved action recognition perfor-

mance even when only a single modality is used, which sug-

gests training on HOMAGE improves performance with no

need for other modalities during inference. In this paper, we

explore audio-visual data (of interest to the vision commu-

nity). Future sensor-fusion work can further exploit other

modalities we release (e.g., for privacy-preserving studies).

HOMAGE aims to unify various aspects and challenges

of action recognition, specifically targeting multi-modal

and compositional perception for home actions. Moreover,

the presence of a large number of modalities in our dataset

encourages research in areas such as privacy-aware recog-

nition and sensor-fusion. To summarize, our contributions

are as follows:

(1) We introduce a new dataset, Home Action Genome

(HOMAGE) with multiple views and modalities densely an-

notated with scene graphs and hierarchical activity labels

(overall activity and atomic actions).

(2) We propose a novel learning framework (CCAU) that

leverages multiple modalities and hierarchical action labels

and improves the performance of the baselines trained on

each individual modality. We demonstrate the benefits of

our approach with an improvement of +6.4% using only

ego-view during inference.

2. Related Work

Action Recognition in Videos. Action recognition has

continuously been an important direction for the computer

vision research community. The success of 2D convo-

lutions in image classification allowed frame-level action

recognition to become a viable approach. Subsequently,

two-stream networks for action recognition [25] have led

to many competitive approaches, which demonstrates us-

ing multiple modalities such as optical flow helps improve

performance considerably. Their work motivated other ap-

proaches that model temporal motion features together with

spatial image features from videos. [28, 29] demonstrated

that replacing 2D convolutions with 3D convolutions leads

to further performance improvements. Recent approaches

such as I3D [30] inflate a 2D convolutional network into 3D

to benefit from the use of pre-trained models. 3D-ResNet

[31] adds residual connections building a very deep 3D net-

work leading to improved performance.

Related Datasets. MSR-Action3D [32] provides depth

map sequences containing 20 actions of interactions with

game consoles. [33, 34, 35, 36] use the Microsoft Kinect

sensor to collect multi-modal action data with RGB and

depth map sequences. NTU RGB+D [35] consists of RGB,

depth map, infrared frames with 3D human joints annota-

tions with 40 human subjects, and 80 distinct camera view-

points. However, for action labels, each video in these

datasets has a single video-level label and thus tough to use

for action localization applications.

Other datasets [13, 33, 37, 21, 10] provide annotations

for temporally localized actions. MMAct [37] is a large-

scale action recognition benchmark multimodal data includ-

ing RGB videos, keypoints, acceleration, gyroscope, and

orientation. It provides an ego-view and 4 third-person

views and temporally localized actions. However, MMAct

does not provide bounding box annotations for spatial local-
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ization and relationships between objects. LEMMA [21] is

a recent multi-view and multi-agent human activity recogni-

tion dataset, providing bounding box annotations on third-

person views and compositional action labels annotated

with predefined action templates and verbs/nouns. How-

ever, they do not provide bounding boxes of objects the

subjects (human) interact with. Action Genome [10] is built

upon the videos from Charades [38], with the additional an-

notation of spatio-temporal scene graph labels. However, it

only provides videos from a single camera view. HOMAGE

aims to provide 1) multiple modalities to promote multi-

modal video representation learning, 2) high-level activity

labels and temporally localized atomic action labels, and 3)

scene graphs that provide spatial localization cues for both

the subject and the object and their relationship.

Multi-Modal Learning. Multiple modalities of videos are

rich sources of information for both supervised [25] and

self-supervised learning [26, 27, 39]. [40, 27] introduce a

contrastive learning framework to maximize the mutual in-

formation between modalities in a self-supervised manner.

The method achieves state-of-the-art results on unsuper-

vised learning benchmarks while being modality-agnostic

and scalable to any number of modalities. Two stream net-

works for action recognition [25] have led to many compet-

itive approaches, which demonstrate using even derivable

modalities such as optical flow helps improve performance

considerably. There have been approaches [41, 39, 27, 26]

utilizing diverse modalities, sometimes derivable from one

other, to learn better representations.

3. Home Action Genome (HOMAGE)

Home Action Genome (HOMAGE) is a new benchmark

for action recognition that includes multi-modal synchro-

nized video data from multiple viewpoints (ego-view, third-

person) with both high-level activity and low-level action

definitions. HOMAGE focuses on actions in residential set-

tings due to the challenges involved i.e. complexity and

long duration of actions, object interactions, and frequent

occlusions. HOMAGE provides multiple views and sensors

to tackle these challenges. We describe the design, data

collection, and data annotation process of the HOMAGE

dataset in this section.

Activities and Scenarios. Our goal is to build an activity

recognition dataset that depicts behaviors observed in liv-

ing spaces. To cover daily activities, we employed the ac-

tivity taxonomy in the American Time Use Survey (ATUS)

[44]. The ATUS taxonomy organizes activities according to

two key dimensions: 1) social interactions and 2) the loca-

tions of the activities. The ATUS coding lexicon contains

a large variety of daily human activities organized under 18

top-level categories such as Personal Care, Work-Related,

Education, and Household activities.

Each participant was asked to perform tasks according to

view1(Ego-view) view2 view3 view4 view5

eat dinner

pack 

suitcase

blow-dry 

hair

handwash

dishes

Figure 2: Multiple Views of Home Action Genome (HOMAGE)

Dataset. Each sequence has one ego-view video as well as at least

one or more synchronized third person views.

the instructions assigned. To make sure the behaviors are as

natural as possible, we did not specify detailed procedures

and time limits within the activities, and let the individual

participants perform the activity freely.

Data Collection. We recorded 27 participants in kitchens,

bathrooms, bedrooms, living rooms, and laundry rooms in

two different houses. We used 12 sensor types: cameras

(RGB), infrared (IR), microphone, RGB light, light, accel-

eration, gyro, human presence, magnet, air pressure, humid-

ity, temperature. We refer to the set of data collected from a

given activity with different modalities as one synchronized

action sequence. Sensors were attached to several locations

in the room for third-person views and to the participants’

heads for ego-view. On average, there are more than 3 views

per action sequence. We synchronized the sensor recordings

of all views giving us synced videos which allowed for ease

of use without requiring any additional post-processing.

Ground-truth Annotation. Home Action Genome is a

dataset with (1) video-level activity labels, (2) temporally

localized atomic activity labels, and (3) spatio-temporal

scene-graph labels. Figure 3 visualizes our annotation

pipeline. For the atomic actions, we annotated all atomic ac-

tions performed during the activities. Note that while each

video can only have a single activity label, a given frame can

be assigned with multiple atomic action labels when atomic

actions overlap with each other. For the action graph, we

annotated the person performing the action and the objects

they interact with on videos from third-person views. We

uniformly sampled 3 or 5 to annotate scene graphs across

the range of each atomic action interval (3 for intervals less

than 3 seconds and 5 otherwise). This action-oriented dy-

namic sampling provides more labels where more actions

occur which is very valuable for describing complex primi-

tive actions. [45] also shows this sampling scheme performs

remarkably well.

Dataset Statistics. We annotated 75 activities and 453

atomic actions in 1,752 synchronized sequences and 5,700

videos in total. We split the dataset into 1,388 train se-

quences and two test splits containing 198 and 166 se-
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Dataset Seq hrs Modalities Views HL HL Classes TL TL Classes TL Ins SG

RGBD-HuDaAct [34] 1.19K 46 2 1 � 12 - - - -

UCF101 [14] 13K 27 1 1 � 101 - - - -

ActivityNet [13] 28K 648 1 1 � 200 - - - -

Kinetics-700 [11] 650K 1.79K 1 1 � 700 - - - -

AVA [42] 430 108 1 1 - - � 80 1.58M -

PKU-MMD [33] 1.08K 50 3 3 - - � 51 20K -

EPIC-Kitchens [15] - 55 1 1 - - � 125 39.6K -

MMAct [37] 36K - 6 5 - - � 37 36.8K -

Action Genome [10] 10K 82 1 1 - - � 157 66.5K �

Breakfast [43] - 77 1 1 � 10 � 48 - -

LEMMA [21] 324 10.1 2 4 � 151
� 863 11.8K -

Ours 1.75K 25.4 12 2∼5 � 75 � 453 24.6K �

Table 1: Comparison between related datasets and HOMAGE. (Seq: number of synchronized sequences, Modalities: sensor modalities

not including annotation data or derived data like optical flow, Views: number of synchronized viewpoints for a given sample, HL: high-

level activity label (often assigned one per video), TL: temporally localized atomic action label, SG: scene graph). HOMAGE provides

rich multi-modal action data, including dense annotations such as scene graphs, along with hierarchical action labels.

Video
(ego-view)

Video
(3rd-view)

Atomic
Action

Activity

Subject

Relationship

Object

take sth from washing machine

holding detergent

holding a basket

unloading washing machine

person

holding

basket

person

opening in front of

washing machine

person

holding

clothes

Scene
Graph

Figure 3: HOMAGE annotation pipeline: For every action, we

uniformly sample 3 or 5 frames across the action and annotate the

bounding boxes of the person performing the action along with the

objects they interact with. We also annotate the pairwise relation-

ships between the subject and the objects.

quences each. Each sequence has a high-level activity cat-

egory. We annotated atomic actions in each of these videos

by providing the start and end frames and the category of

the atomic action. There are 20,039 training, 2,062, and

2,468 atomic action sequences in the three splits mentioned

above respectively. For scene graphs, we annotate one third-

person view video in each synchronized sequence by pro-

viding bounding boxes of the subject and the object along

with the relationship between them. There are 86 object

classes (excluding “person”), and 29 relationship classes

in the dataset. Overall, there are annotations of 497,534

bounding boxes and 583,481 relationships. .

The duration of atomic actions in HOMAGE is often

short in time: there are about 60% of the atomic actions

under 2 seconds and 80% under 5 seconds. For scene

graphs, some of the most common objects are “countertop,”

“clothes,” and “table”; and the most common relationships

include “in front of,” “looking at,” and “holding.” More de-

tails on the statistics are available in the supplement.

Relevance of Modalities. In this paper, we only study

the effect of modalities of interest to the vision commu-

nity; however, HOMAGE provides rich sensor informa-

tion which could be useful for privacy-aware recognition.

Modalities such as angular velocity, acceleration, and ge-

omagnetic sensors can be used to extract motion informa-

tion in ego-view, and environmental sensors, e.g., tempera-

ture and humidity can capture changes in the scene before

and after an activity. Thermal sensors can extract people

or heat sources (e.g., extracting heat sources can be useful

for recognition in places such as kitchens), and human pres-

ence and light sensors can determine the presence of people

without using visual cues. Although not explored in detail

in this paper, future sensor-fusion work can exploit these

other modalities as well.

4. Cooperative Compositional Action Under-

standing (CCAU)

We discuss the benefits of HOMAGE and propose our

approach Cooperative Compositional Action Understand-

ing (CCAU) allowing us to exploit the rich annotations

present in the dataset for improved action understanding.

We discuss how CCAU employs simultaneous cooperative

training with multiple modalities to improve the model’s un-

derstanding of actions and the associated atomic-actions.

We start by discussing a few preliminaries and proceed

1We here refer to the “task classes” in [21]
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to discuss different components of our model. Note that

“modalities” refer to both different camera views, as well

as, modes such as images, audio, and scene graphs.

4.1. Preliminaries

A video V is a sequence of T frames with resolution H×
W and C channels, {i1, i2, . . . , iT }, where it ∈ R

H×W×C .

Assume T = N ∗K, where N is the number of blocks and

K denotes the number of frames per block. We partition a

video clip V into N disjoint blocks V = {x1,x2, . . . ,xN},

where xj ∈ R
K×H×W×C and a deep encoder f(·) trans-

forms each input block xj into its latent representation

zj = f(xj). An aggregation function, g(·) takes a sequence

{z1, z2, . . . , zj} as input and generates a context representa-

tion cj = g(z1, z2, . . . , zj). In our setup, zj ∈ R
H�

×W �
×D

and cj ∈ R
D. D represents the embedding size and H �, W �

represent down-sampled resolutions as different regions in

zj represent features for different spatial locations. We de-

fine c = F (V ), where F (·) = g(f(·)). In our experiments,

H � = 4,W � = 4, D = 256. The computed representations

are then utilized in order to perform per-block classifica-

tion to generate the necessary predictions, e.g., activity label

or atomic-action label. For multiple modalities, we define

cm = Fm(Vm), where Vm, cm and Fm represent the video

input, context feature and composite encoder for modality

m, respectively.

RGB Videos with Multiple Viewpoints. An interesting

aspect of HOMAGE is the presence of multiple viewpoints,

specifically, a single ego-centric viewpoint and numerous

third-person views. For simplicity, we treat these multiple

viewpoints as two separate modalities, i.e., ego-view and

third-person view. Each of these modalities has a dedicated

encoder to generate clip-level features.

Audio. Along with having multiple camera viewpoints, we

also have associated audio clips for each viewpoint. For

simplicity, we only use the audio associated with the ego-

centric view. For each audio clip, we generate the asso-

ciated log-mel spectrogram [46] and treat it as an image

input. Following numerous other works [47, 40], we uti-

lize a VGG19 backbone to generate a representation for the

passed-in spectrogram.

Scene Graph. A scene graph in a given frame G contains

a set of objects O = {o1, o2, ...} and a set of relationships

R = {r1, r2, ...}. Each object oj contains an object ID,

bounding box coordinates of the object, and object cate-

gory. Each relationship rj contains the object IDs for both

the subject and the object of the relationship, as well as the

category of the relationship.

4.2. Multi-Modal Cooperative Learning

As discussed earlier, we define cm = Fm(Vm), where

Vm, cm and Fm represent the input, context feature, and

composite encoder for modality m, respectively. We simul-

taneously train encoders for each modality while ensuring

that the views improve with cooperation. Such a training

regime allows us to observe improved performance during

inference even when using a single modality.

Intuitively, we expect different modalities to impart com-

plementary information to other modalities during train-

ing. This can be similar to existing approaches such

as student-teacher frameworks or knowledge distillation

[48, 37]. However, as we demonstrate in the experiments

section, CCAU manages to learn better representations. We

argue this is because the unidirectional formulation of stu-

dent/teacher does not suit such setups as different modali-

ties serve as a collective cohort of students as opposed to

one of them being significantly dominant compared to oth-

ers. CCAU utilizes contrastive multi-modal losses to pro-

mote cooperation between the learners.
Noise Contrastive Estimation (NCE) [49, 50, 51] con-

structs a binary classification task where a classifier is fed
with real and noisy samples with the training objective to
distinguish them. We utilize a simple task of performing
alignment between different modes m,m�. The task be-
comes choosing the correct in-sync instance amongst mul-
tiple noisy instances. Similar to [27], we use an NCE loss
over our feature embeddings c described in Eq. (1). cmi rep-

resents the feature embedding for the mth modality’s ith

temporal block. This effectively becomes a cross-entropy
loss distinguishing one positive pair from all the negative
pairs present in a video. In a batch setting with multiple
video clips, it is possible to have more inter-clip negative
pairs. The objective function for a single pair of modalities
will hence be:

L
m,m�

align = −

�

i

�

log
exp(cmi · cm

�

i )
�

j
exp(cmi · cm

�

j )

�

. (1)

To extend this to multiple views, we utilize the same objec-

tive for all pairs and simultaneously optimize:

Lalign =
�

m,m�

Lm,m�

align .

Self-supervised attention [52] has been shown to be use-

ful to auto-learn associations between different modalities.

We model attention by predicting importance weights over

the grid. We predict H � × W � values αi,j representing

weights of each feature corresponding to spatial location

(i, j). Given feature c of shape D × H � × W �, we extract

cagg from it as given in Eq. (2). Where τ refers to the tem-

perature. Further details are provided in the appendix.

cagg =
�

i,j

pi,j · ci,j , pi,j =
exp(αi,j / τ)�
a,b exp(αa,b / τ)

(2)

4.3. Compositional Action Recognition

In addition to the multi-modal nature of HOMAGE, an-

other one of its differentiating factors is having fine-grained
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atomic-action labels along with video-level action labels.

The compositional nature of atomic-actions is useful in de-

termining both the overall activity as well as learning rela-

tionships between atomic-actions and high-level actions.

We leverage the compositionality of atomic-actions and

activities in CCAU by simultaneously utilizing both activ-

ity and atomic action level labels in our learning task. The

intuition being our model will be able to learn the composi-

tion and relationships between atomic-actions and activities

improving its understanding. We utilize the contextual fea-

tures c in order to predict class labels for both video and

atomic-action classes. The video action prediction task is a

standard one-hot classification task, while we formulate the

atomic-action prediction task as multi-target classification.

We represent their corresponding losses as Lvideo = Lv

and Latomic = La. The overall compositional loss is repre-

sented by Lcomposition = Lc.

We explore two variants to define Lc. The first involves

manually chosen hyper-parameters modulating each com-

ponent, i.e., Lc = Lv + λLa. The second automatically

learns the appropriate multi-task weights [53]. The num-

bers reported in the paper represent use the first approach

with λ = 10. For details refer to the appendix.

5. Experiments

We discussed the rich annotations in Home Action

Genome (HOMAGE) that allows us to explore multiple

aspects previously not possible due to the lack of such

datasets. CCAU utilizes cooperative and compositional

learning to learn improved representations for action un-

derstanding. Co-training with other modalities such as au-

dio imparts additional structure and knowledge to individ-

ual modalities, also leading to improved single-view perfor-

mance. We design and discuss multiple quantitative experi-

ments to verify the validity of our claims. We also conduct

qualitative experiments to gain deeper insights into our ap-

proach. In this section, we briefly go over our experiment

framework. Additional details are provided in the appendix.

5.1. Implementation Details

Following our design discussed earlier to allow inference

using individual modalities, we use separate encoders for

each. We use different designs as mentioned in Section 4.1.

Images. In all of our experiments, we treat ego-view as one

modality and all third-person view videos as another. We

resize each input frame to the size of 128x128. We employ

a 3D-ResNet similar to [31] as the encoder f(·). Follow-

ing [54], we only expand the convolutional kernels present

in the last two residual blocks to be 3D ones and use 3D-

ResNet18 for our experiments, denoted as ResNet18. A

weak aggregation function g(·) is used to learn a strong en-

coder f(·). Specifically, we use a one-layer Convolutional

Gated Recurrent Unit (ConvGRU) with kernel size (1, 1) as

Method Audio Ego 3rd Person

Single Modality 28.5 31.3 21.8

Cooperative Ours 33.3 37.7 24.7

Static KD 28.5 32.3 21.8

Cooperative KD 32.1 32.1 23.5

Table 2: Video classification accuracy. Cooperative Ours out-

performs the baselines. Cooperative KD performs better than its

counterparts, further validating benefits of cooperative learning.

g(·). The weights are shared amongst all spatial positions in

the feature map. This design allows the aggregation func-

tion to propagate features in the temporal axis.

We use a dropout [55] with p = 0.1 to compute the

hidden state at each time step. A shallow two-layer per-

ceptron is used as the predictive function φ(·). Recall

z�j = Pool(zj) where z�j ∈ RD. We utilize stacked max

pool layers as Pool(·). To construct blocks to pass to the

network, we uniformly choose one out of every 3 frames.

Then, they are grouped into 8 blocks containing 5 frames

each. Since the videos are usually 30fps, each block roughly

covers 0.5 seconds and 8 blocks sums to about 4 seconds

worth of action. Given the 256D final representations, we

pass this through fully connected layers to compute the final

classification where we use a dropout of p = 0.5.

Audio. To process audio clips, we convert audio to MP3

format, compute log-mel spectrograms [46], and pass it

through a VGG19-like convolutional architecture. We sam-

ple fixed intervals of the spectrogram image to represent the

action clip. Similar to the image encoder, we have fully

connected layers to perform classification.

5.2. Quantitative Results

In this section, we analyze various aspects of our pro-

posed model. To objectively evaluate model performance,

classification accuracy is utilized as a proxy for learned rep-

resentation quality. Evaluation is performed on two differ-

ent splits of HOMAGE. Although models have access to

other modalities during training, this is not the case during

inference. Therefore, evaluation only involves inference us-

ing individual modalities. However, we see an improvement

despite this constraint due to co-training. We also study the

improvement imparted through compositional learning with

both high-level action and atomic-action labels.

5.2.1 Comparisons with Baselines

In this section, we investigate the effectiveness of cooper-

ative multi-modal learning for action understanding. We

study the impact of cooperative learning and compare the

performance to knowledge distillation approaches.

Impact of Cooperation. Our co-operative training ap-

proach hinges on the assumption that multi-modal informa-

tion helps in improving overall representation quality. To
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verify our hypothesis, we study the performance of CCAU

compared along with a few other comparable approaches.

(1) Single Modality Training (SM) - Training of modalities

independently (2) Cooperative Ours Training (CT) - Co-

Training of all modalities and individual inference. Table 2

summarizes our results demonstrating a consistent improve-

ment in performance across modalities.

Comparison with Knowledge Distillation. Given the po-

tential applicability of student-teacher approaches in this

setting, we also study their performance compared to our

approach. We study two variants. (1) Static Knowledge

Distillation (SKD) - We transfer knowledge from other

trained modalities into the ego-view encoder. (2) Cooper-

ative Knowledge Distillation (CKD) - To isolate the effect

of cooperation leading to improved performance, we also

propose a cooperative version of knowledge distillation that

allows all modalities to simultaneously improve (details in

the appendix). Table 2 summarizes our results demonstrat-

ing the performance difference between these approaches.

We notice a performance improvement when utilizing co-

operative KD compared to the static variant. CT outper-

forms CKD even though both allow cooperation, due to the

incorrect student-teacher hierarchy even with a symmetric

knowledge distillation setup. CT allows cooperation in a

softer manner without an implicit assumption of hierarchy.

5.2.2 Impact of Additional Modalities

We saw the benefits of Cooperative Training in the previous

section and established the performance improvements ac-

companying training with multiple modalities. In this sec-

tion, we look at the implications modalities have on per-

formance by studying the impact of training with multiple

modalities. We consider 1) Training each modality sepa-

rately; 2) Joint training of multi-camera views, i.e., Ego

and 3rd Person RGB video clips, and 3) Joint training of

multi-camera views with ego-centric audio clips.

Activity Classification. Table 3 summarizes the results of

our approach trained with different modalities. Compared

with training with single views individually, co-training

with the two video views and video + audio consistently

improves the performance together with more modalities.

Atomic Action Classification. We also investigate the im-

pact of cooperative training on multi-target classification for

atomic actions. Table 4 summarizes our results. The Mean

Average Precision scores for each modality are reported.

5.2.3 Cooperative Compositional Learning

We analyze the role of both our proposed soft attention

module and CCAU’s compositional learning framework.

Impact of Co-training with Attention. Table 5 summa-

rizes the results of the cross-modality co-training experi-

ment with and without attention module. With attention, the

Method Audio Ego 3rd

Single Modality 28.5 31.3 21.8

Coop - Ego + 3rd - 35.1 23.5

Coop - Ego + 3rd + Aud 33.3 37.7 24.7

Table 3: Co-training encoders with different modalities on ac-

tivity classification. We see a distinct performance improvement

across modalities as we co-train with increasing number of modes,

possibly due to the presence of rich complementary information.

Method Audio Ego 3rd Person

Single Modality 7.0 20.5 11.7

Cooperative 13.2 28.5 15.3

Table 4: Effect of co-training encoders with different modalities

on atomic action classification. The numbers reported are support

weighted mAP scores.

Method Ego 3rd Person

Cooperative 32.5 19.1

Cooperative with Attention 34.8 20.8

Table 5: Effect of co-training encoders using the proposed atten-

tion module. We see a consistent performance improvement across

both modalities. The 3rd person mode benefits as attention allows

potential localization of the region of interest - despite the lack of

dense associations between the ego and 3rd person view.

model yields better accuracy on the video modalities com-

pared with its counterpart. The model can implicitly learn

localization and correspondence between views to form rep-

resentations with view-invariant information.

Impact of Compositional Learning. Our compositional

learning framework hinges on the assumption that simulta-

neously learning both activity labels and atomic action la-

bels leads to improved performance. To verify this hypoth-

esis, we compare different variants such as (1) train with

activity labels, (2) train with atomic-action labels, (3) train

with both activity and atomic actions without cooperation

and (4) CCAU - cooperatively train with both video and

atomic actions. In Table 6, we see a consistent improve-

ment across both activity and atomic-action performance.

5.2.4 Few-Shot Compositional Action Learning

We have discussed the benefits of our cooperative and com-

positional approach. Intuitively, predicting activities should

be easier if we have an idea of the atomic-actions compos-

ing the higher-order action. We now showcase the ability

and potential of CCAU to generalize to rare actions.

Setup. In our few-shot action recognition experiments, we

split the 75 action classes into a base set of 60 classes and

a novel set of 15 classes. We use CCAU as our feature ex-

tractor. Note that we do not finetune the backbone. Next,

we train each model with only k examples from each novel

class, where k = 1, 5, 10, 20. Finally, we evaluate the trained
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Method
Acc mAP

Audio Ego 3rd Person Audio Ego 3rd Person

Cooperative - Activity 28.3 31.1 17.0 - - -

Cooperative - Atomic Actions - - - 5.9 18.5 9.5

Compositional 23.5 32.1 16.2 16.4 26.3 12.2

Cooperative Compositional 29.3 34.9 19.2 21.7 29.3 13.8

Table 6: Effect of co-training encoders with images and audio on activity classification. We see a distinct performance improvement

compared to the Ego, 3rd Person Co-Training case; due to the rich complementary information present in audio encoders. Missing

numbers denote the model was not trained for the associated subtask. Results are averaged over the two test splits.

Method - Ego
Atomic Action - mAP

1 shot 5 shot 10 shot 20 shot

Single Modality 22.4 35.3 38.6 40.6

CCAU 28.6 36.9 39.4 49.4

Table 7: Compositional learning with few shot learning. With

compositional action understanding, CCAU demonstrates much

better generalizability than other baseline, showing the potential

of co-learning with compositional labels in improving action un-

derstanding. Results are averaged over the two testing splits.

models on all examples of novel classes in the validation set.

Results. We report few-shot experiment performance in Ta-

ble 7. CCAU improves the single modality baseline on all

1, 5, 10, 20-shot experiments. Furthermore, CCAU shows a

+6.2% 1-shot and +8.8% 20-shot mAP improvement.

5.3. Qualitative Results

One of the motivating factors behind CCAU was

the benefits of co-training different encoders together to

gain higher-order perspectives provided through different

modalities. We observe the learned structure across modal-

ities results in the emergence of higher-order semantics

without additional supervision, e.g., sensible class relation-

ships and good feature representations. Jointly training with

modalities gives rise to better representations and byprod-

ucts such as localization of visual regions of interest.

t-SNE Visualization. We explore t-SNE visualizations of

our learned representations. For clarity, only a few action

classes are displayed. We loosely order the action classes

according to their relationships; classes having similar col-

ors are semantically similar. Fig. 4 summarizes our results.

Multi-Modal Localization. A by-product of learning at-

tention using contrastive losses is the ability to localize po-

tential points of interest in images (details in the appendix).

6. Conclusion

We introduced Home Action Genome (HOMAGE), a hu-

man action recognition benchmark with multiple modali-

ties and viewpoints with hierarchical activity and atomic

action labels. We also proposed CCAU, a cooperative

and compositional learning method to leverage information

across multiple modalities along with action compositions

Figure 4: t-SNE visualization of Ego-View features from CCAU

trained with ego, 3rd and audio modalities. The color mapping

represents the relationships between the action classes, e.g., Red:

Clothes; Green: Grooming; Blue: Kitchen. CCAU is able to learn

meaningful clusters by utilizing compositional information.

in HOMAGE for better representation learning. Due to the

nature of cooperative learning, CCAU allows inference on

individual modalities where no privileged information and

other modalities are available. We demonstrated the bene-

fits of learning atomic-actions compositions leading to sig-

nificantly improved results in a few-shot learning setting.

With rich multi-modal data and compositional anno-

tations, HOMAGE facilitates research in subfields such

as multi–modal action recognition and localization, ex-

plainable action understanding, and reasoning with spatio-

temporal scene graphs. We hope HOMAGE promotes re-

search in multi-modal cooperative learning and action un-

derstanding using compositions for richer feature represen-

tations in human action recognition as well as raises interest

in generalizable video understanding.
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