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Figure 1: We present Articulated Neural Rendering (ANR), a rendering framework capable of producing highly realistic

avatars. Similar to Deferred Neural Rendering (DNR) [38], ANR uses neural networks to convert a latent texture on a coarse

mesh (left) into an RGB image (right). Unlike DNR, which is ineffective when the mesh geometry is inaccurate or deforms

during motion, ANR explicitly accounts for such geometric misalignment and pose-dependent deformation.

Abstract

The combination of traditional rendering with neural

networks in Deferred Neural Rendering (DNR) [38] pro-

vides a compelling balance between computational com-

plexity and realism of the resulting images. Using skinned

meshes for rendering articulating objects is a natural ex-

tension for the DNR framework and would open it up to a

plethora of applications. However, in this case the neural

shading step must account for deformations that are pos-

sibly not captured in the mesh, as well as alignment in-

accuracies and dynamics—which can confound the DNR

pipeline. We present Articulated Neural Rendering (ANR), a

novel framework based on DNR which explicitly addresses

its limitations for virtual human avatars. We show the su-

periority of ANR not only with respect to DNR but also

with methods specialized for avatar creation and anima-

tion. In two user studies, we observe a clear preference

for our avatar model and we demonstrate state-of-the-art

performance on quantitative evaluation metrics. Perceptu-

ally, we observe better temporal stability, level of detail and

plausibility. More results are available at our project page:

https://anr-avatars.github.io.

1. Introduction

Capturing realistic appearance is one of the important

goals of computer vision. Progress in 3D rendering and

neural networks has led to approaches with remarkable fi-

delity [22, 23, 29, 30]. These methods often use expensive

and intricate capture setups which prevent easy digitization

and transfer of the resulting models [7, 8, 11]. The recent

deferred neural rendering paradigm offers an exciting op-

portunity to work with inaccurate geometry and relatively

simple neural shaders while capturing complex scenes with

view-dependent effects realistically [1, 27, 38]. In a first

step, the geometry is rasterized using a neural latent texture

which is then translated to an RGB image using a convolu-

tional network. Both, the rendering network as well as the

neural texture, are optimized to produce realistic results.

Deferred neural rendering works particularly well for

rigid objects. Its pipeline could be extended to deformable

objects in a natural way: a skinned mesh could be used for

capturing the geometry. The rasterized neural texture from

the posed mesh could then be translated to an RGB image.

While this idea is conceptually simple, the neural network

has to learn more complex deformation-dependent effects.

Furthermore, the mesh used for rendering is usually not a
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Figure 2: Schematic overview of the proposed framework. Given a coarse, animated 3D body mesh, ANR produces a detailed

avatar. Using rasterized IUV images of the mesh using a weak perspective projection, we render an 8 channel neural texture

into image space. A first stage, R1, transforms the texture into another, refined latent representation, which we combine with

the normal information. The second stage R2 uses this information to create an RGB rendering and a foreground mask. The

rendering can extend beyond the coarse mesh, in this case we visualize only slight refinement for painting the shirt.

perfect representation of the real geometry, leading to align-

ment problems. These problems are currently not taken into

account [1, 27, 38], which limits the application of DNR in

scenarios with deformable objects.

We present Articulated Neural Rendering (ANR) to ac-

count for these problems. ANR systematically rebuilds

DNR from the neural shading model architecture to the op-

timization scheme. We use ANR to tackle one of the most

challenging problems for animation: virtual human avatars.

Fig. 1 shows an example of an avatar rendered using ANR.

Concretely, ANR employs a simple statistical human

body model fitted to a training video to capture the

body shape statistics and 3D pose information for each

frame [39]. This body model only represents the coarse

body geometry without clothing and hair. Consequently, di-

rect use of the DNR pipeline leads to unrealistic and blurry

results. We use keyframes from the video to learn the static

appearance encoded in the neural texture, and use the other

frames to learn the dynamic pose-conditioned rendering of

the appearance. Our keyframes-based training scheme en-

ables the model to converge 5X faster and produces quan-

titatively better avatars than DNR. We simultaneously train

ANR on multiple identities in a single model, leading to de-

coupling of the neural texture and the shading model. Ow-

ing to the consistent surface parameterization of the statisti-

cal body model, our model can leverage such semantic cor-

respondences to modify and mix components from multi-

ple neural textures, enabling virtual try-on by changing re-

gions in the neural texture. While our model works solely

in 2D, we experimentally validate that it can render near

photorealistic and persistent 3D appearance of people with

a very small network (161M parameters). In two user stud-

ies, we demonstrate that we not only outperform the DNR

pipeline, but also several methods dedicated to creating vir-

tual avatars [36, 41]. Perceptually, the presented method is

temporally stable and captures fine appearance details.

Our contributions are threefold. First, we present ANR, a

novel neural rendering framework, to generate high-quality

virtual avatars from coarse 3D shape and arbitrary skeletal

motions. Our key is to account for geometric misalignment

of the coarse body mesh and pose-dependent deformation.

Second, we showcase ANR as the first neural avatar model

that can capture and render multiple identities with only one

set of network parameters in addition to an identity specific

neural texture map. Third, we demonstrate that ANR al-

lows easy appearance editing or mixing of identities. This

is novel in the context of neural rendering for avatars.

2. Related Work

Among many methods to create and render articulated

models, a majority of them follow the classical pipeline of

acquiring an accurate 4D geometry reconstruction with de-

tailed textures painted on this geometry. Using machine

learning, several recent methods have set out to perform

inference mostly in 2D space, only using rough or no 3D

guidance. We will discuss several frameworks from both of

these schools as well as some hybrid methods, which are

closest to our approach.

Inference in 3D Space: The Relightables [11] propose a

system that captures accurate geometry and texture using a

controlled light stage. This allows for relightable rendering

of the captured identity in different environments. Lom-

bardi et al. [22] use a multi camera setup to determine the

average texture and deformations on a base mesh and use

a neural network to generate view specific texture to ren-

der high fidelity images from different viewpoints. Using a

similar system, Brualla et al. [28] train a network to perform

completion and super resolution of the rendered 3D model.

In a single-view regime, Alldiek et al. [2, 3] generate avatars

by learning to regress accurate geometry and texture using

purely synthetic data. Zhi et al. [45] estimate personalized
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avatar with fine geometry and texture by finetuning on the

test video using self-supervised losses. DeepCap [12] cap-

tures accurate geometry from monocular video by predict-

ing a parameterized human configuration and deformation

model. Our approach also uses monocular video to cap-

ture a digital avatar. However, instead of deforming and

refining the avatar geometry, we advocate for avatars with

high-capacity texture that compensates for such geometric

inaccuracies (such as clothing and hairs) for arbitrary body

pose and view-point rendering.

Inference in 2D Space: Meanwhile, specific architectures

are designed for motion re-targeting, novel view synthesis

and identity transfer, which primarily use only pixel and

pose information [4, 6, 26, 37, 44]. Neverova et al. [31] use

DensePose for novel viewpoint synthesis, which is limited

by the DensePose body coverage and accuracy. [32] pro-

pose a semi-parametric approach which uses a combination

of previously captured RGB(D) images and neural render-

ing to infer novel views in an approach similar to image

based rendering. [25, 19] focus on pose conditioned image

generation of people, but with lower resolution. Grigorev

et al. [10] solve the novel view synthesis problem by for-

mulating it as texture inpainting in DensePose UV space.

SwapNet [33] learns to transfer clothing information by dis-

entangling the notion of pose and clothing without being

identity specific. Human appearance transfer [43] learns to

generate novel views and transfer identities by performing

human parsing and 3D shape and pose fitting. We generate

3D textured avatars, enabling all these tasks with no addi-

tional guiding signals or changes in a single framework.

Hybrid Approaches: The DNR framework [38] uses a

mostly rigid mesh and a neural texture to translate the ren-

dering result into an image. We detail this approach in

Sec. 3.1 and reformulate it to account for handling fully

articulated objects. Textured neural avatars [36] present a

framework to learn neural avatars in an end-to-end man-

ner from multiview data. Unlike this work, we leverage the

reconstructed geometry instead of noisy DensePose corre-

spondences to generate the UV coordinates for every pixel,

enabling us to maintain better texture consistency across

viewpoints. Our work is also related to the Liquid Warping

Gan [21] which performs appearance transfer and motion

retargeting in a single network. However, our framework

provides explicit access to the learned texture allowing for

fine grained edits of appearance. Additionally, our frame-

work uses a lower number of parameters, and thus can be

trained at a higher resolution. Neural rendering and reen-

actment [20] trains a network to translate from 3D pose

to image. However, their framework involves capturing a

rigged template mesh for every individual and requiring ad-

ditional depth and body part information. Recently, implicit

representations with impressive geometry reconstruction of

clothed humans reconstruction from a single image are be-

coming popular [15, 35]. We distinguish ourselves from

these methods by generating clothing and body deforma-

tions in the rendering stage while using a simple parametric

body model to fit the body pose and shape.

3. Approach

Articulated Neural Rendering (ANR) can generate highly

detailed representations of articulated objects. Unlike tradi-

tional rendering pipelines which use a high resolution mesh

and detailed RGB texture for this purpose, we use a low res-

olution mesh but a high-dimensional neural texture to ren-

der its detailed RGB appearance from novel views using a

neural network. Fig. 2 shows an outline of the proposed

framework. In the following, we first present an overview

of DNR [38] before presenting our novel ANR framework

and its training scheme.

3.1. Preliminary: Deferred Neural Rendering

DNR [38] translates high dimensional neural latent tex-

tures on traditional meshes into RGB images with a neural

translator network. Concretely, let T be a high-dimensional

neural texture (a tensor of shape W ×H ×C) and let R be

the neural rendering model converting a neural image I
uv

to RGB color. DNR optimizes

T ∗,R∗ = argmin
T ,R

∑
||I−R(T , Iuv)|| (1)

on all training images I of the same object. The neural im-

age I
uv is the result of rasterizing the mesh to image space

with the appropriate camera parameters and configuration

and texturing it with the neural texture T . The model is

fully defined with the optimized texture T ∗ and the opti-

mized neural rendering model R∗. DNR uses a U-Net ar-

chitecture [34] for implementing R and a standard gradient

descent based optimization with the ADAM optimizer [18].

3.2. Articulated Neural Rendering

While DNR is conceptually powerful, it requires accu-

rate 3D geometry to learn view dependent appearance in-

formation. Such an assumption is difficult to make in prac-

tice, especially for articulated, clothed human appearance,

whose shape is often represented by a coarse statistical body

shape model [24] (see Fig. 3). We address this problem in

the rendering pipeline, while retaining the ability to work

with a coarse, animated mesh to (1) maintain the high ren-

dering speed and (2) be able to optimize the final appear-

ance generation in the neural network. Consequently, we

re-visit the neural rendering component, R.

Our first observation is that R not only has to paint the

texture inside regions of the neural image I
uv but also be-

yond its boundaries due to the use of the coarse mesh. The

network should also be aware of the extent to which it needs
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Figure 3: Images generated by ANR on a challenging animation scenario with clothing deformations. We successfully

synthesize images of such deformations and regions outside of the body mesh. As highlighted in the figure, region coverage as

well as shading are pose dependent. The example frames are unseen poses for this identity and rendering model. Additionally,

the model is able to temporally interpolate between this pose and others and adjust the simulated clothing accordingly. We

refer to the supplementary video for a demonstration of temporal stability.

to paint outside the boundaries of the rasterized mesh. We

address both problems by adding a second prediction: an

extra single-channel soft mask M ∈ [0, 1]. The predicted

mask is used to blend the generated avatar with the ground-

truth background image for training. To prevent the model

from predicting a degenerated zero mask (which would

minimize the loss to zero), we provide supervision for the

mask from an automatic image matting method [9]. Note

that while training on the pre-segmented image is another

option, this approach is sensitive to erroneous segmentation

which prevents the generated images to grow beyond their

input coarse body boundaries. Comparing the blended im-

age with the ground truth image allows gradients to flow to

the mask which in turn makes it potentially better than the

supervised input mask.

While this addresses the immediate problem of generat-

ing content outside of the true geometry silhouette, it leaves

geometric details and pose-dependent rendering untouched.

We notice that naively increasing the capacity of the U-Net

does not improve generation quality (see Tab. 2). Further-

more, we observe that the model cannot consistently ren-

der local geometry—a problem that increasingly emerges

in the articulated setting when geometry is animated. We

address problems with the geometry details and the pose-

dependent effects at the same time by splitting the neural

rendering network in two stages: R1 and R2. Both compo-

nents are shallow U-Nets and produce renderings at original

image resolution. We can inject the normal information into

the rendering process by concatenating the rendered normal

image and output of R1 to the input of R2. We enforce an

additional RGB loss on the first three output channels of R1

to aid in convergence. The ANR model is defined as

M̂, Î, Ĵ = R2(R1(T , Iuv), Inorm), (2)

where Ĵ are the first three channels from the result of R1

and Inorm is the rasterized normal image. This model has

the necessary capacity and the necessary outputs for han-

dling the articulated neural rendering problem.

3.3. Loss Functions and Regularization Scheme

With the higher requirements for stability and level of

detail and deformations in the articulated setting, we find

that using a simple ℓ1 loss is insufficient (see Tab. 2). Fur-

thermore, we observe that it deteriorates performance as the

training progresses: once the model learns to reproduce the

rough appearance, inaccuracies in tracking and alignment of

the mesh have an increasingly negative impact (see Fig. 5).

We use adversarial learning and feature loss computation to

guide the model to generate realistic and accurate appear-

ance without having to rely on accurate registration. Our

loss function is a weighted sum of the photometric loss Lp,

feature loss Lfeat, mask loss Lmask, adversarial loss Ladv ,

and total variation loss Ltvi . Note that while the rasteriza-

tion is non-differentiable, ANR is fully differentiable given

the precomputed rasterized UV lookup to paint Iuv from

the neural texture T .

Pixel Loss: We enforce an ℓ1 loss between the generated

RGB and ground truth images as

Lp(M̂, Î, Ĵ;M, I) = M̂||Ĵ− I||+ M̂||Î− I||, (3)

where Ĵ are the first three channels of the result from R1.

Mask Loss: Similarly, we use a Binary Cross Entropy loss

for the mask

Lmask(M̂;M) = BCE(M̂,M) (4)

For all following loss definitions, we introduce the short-

hand Î
′ for the blended version of the generated output
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with the scene background B given the predicted mask:

Î
′ = M̂Î+ (1− M̂)B.

Feature Loss: To increase sharpness in the rendered out-

puts, we enforce a feature loss [17]:

Lfeat(Î, M̂; I) =
∑

j

wj ||φj(Î
′)− φj(I)||, (5)

where φj are features from the j-th layer of a pretrained fea-

ture extractor and wj is the weight associated with the j-th

feature loss term.

TV Loss: Since the texture is optimized over multiple

frames, slight misalignments can cause the learned texture

to have certain high frequency artifacts, especially for small

regions such as face and hands. To encourage smooth gen-

erated images, we enforce a total-variation loss on both, the

mask and the generated image.

Ltv(Î, M̂) = βITV (Î′) + βmTV (M̂), (6)

where βI and βm are weights associated with Image and

mask TV loss respectively (see supp. mat. for a detailed

definition of this loss).

Adversarial Loss: Adversarial training [14] is well-suited

for enforcing realism of the results and encourage the coarse

body mask to extend to the true geometry silhouette. To en-

courage a high level of detail in the results, we use a multi-

scale discriminator D [42] and express the loss as

Ladv(Î) = D(Î′, 1). (7)

Total loss: The loss used to train R is then given as

Ltotal =
∑

i∈L

λiLi (8)

where L = {p, feat,mask, adv, tv} is the set of all losses.

3.4. Optimization

Despite the extended set of losses and weight balanc-

ing, we find that for clothing with large surface deforma-

tions, the model starts averaging fine textures in areas of

high deformation. To mitigate this problem, we propose a

split optimization strategy. Specifically, we use a small set

of keyframes {Ki}
n
i=1

, capturing static salient appearances

in the video, to learn the neural texture T and use the other

frames to dynamically blend between the appearances in the

keyframes in the neural renderer R.

We select keyframes by greedily adding a small number

of frames in the video sequence such that their cumulative

silhouette coverage is maximized. This ensures that the en-

tire pose-space is adequately covered to capture texture de-

tails at all locations on the body. Using a smaller number of

frames (less than 10% of training frames) reduces the tex-

ture averaging. During training, we alternate between train-

ing the identity specific neural texture from the keyframes

and the rendering network from the remaining frames. Em-

pirically, we observe that this optimization scheme helps the

translator network converge up to 5X faster and produces

quantitatively better avatars (see Tab. 1). Overall, our opti-

mization alternates between the following two objectives

argmin
R

∑
Ltotal(I,M,R(T , Iuv, Inorm)), (9)

argmin
T ,R

∑

k∈K

Ltotal(Ik,Mk,R(T , Iuvk , Inormk )). (10)

Note that while Eq. 9 is optimized for all the images, Eq. 10

is applied only to the keyframes to mitigate the geometric

misalignment of the coarse body mesh.

Multi-instance Training. We further extend the training

scheme beyond a single capture instance. Since we use the

same statistical mesh regardless of identity, allowing us to

capture identity information only in the neural texture, our

framework can naturally train on multiple identities simul-

taneously in a single network. During optimization, we se-

lect an identity for every step at random and use an identity-

specific neural texture Ti for the respective identity for the

update step. The multi-instance training offers the addi-

tional benefit that the neural rendering component R gen-

eralizes beyond a single identity and can be used to render

new identities by only using a novel neural texture T .

Regularization. To improve generalization, we addition-

ally employ two training regularization schemes. First, we

use the same initialization of T for all identities by uni-

formly sampling in [−1, 1]. Since R has much larger ca-

pacity than T , this strategy prevents the model from using

the distinct noise patterns in each randomly initialized T to

memorize the identity and thus encourages decoupling of T
and R. Second, we perturb the input sampling grid with a

uniform samples from [−0.02, 0.02] and clamp the resulting

grid back to [−1, 1]. This form of data augmentation pre-

vents the network from relying strictly on the spatial extent

of the sampling grid as the ground truth human silhouette

can exist outside the rasterized coarse body model.

4. Experiments

We use the ANR pipeline to build a realistic virtual hu-

man avatar pipeline: we assume a setting where a user per-

forms a recording of themselves with accurate tracking, in

which his/her full appearance is visible, to create an avatar

model. To ease the tracking, we capture 6 videos using a

Kinect V2 where the depth data is only used for tracking.

Each video is about 3∼5 min long. We obtain a coarse mesh

in real-time by solving an inverse kinematic problem to fit

the posed body shape to the 3D point cloud similar to [40],

making use of additional detected body keypoints [5]. Our

dataset is harder than the previously released iPer dataset
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Figure 4: Comparisons for novel pose and view synthesis with Textured Neural Avatar (TNA) [36], vid2vid (V2V) [41]

and Deferred Neural Renderer (DNR) [38]. Our method (ANR) preserves the facial details better compared to competing

methods. Additionally, our method is able to capture view dependent structures like hairline and clothing overhang more

accurately and leads to more realistic and believable shading.

Table 1: Results of novel pose synthesis of avatars learned

using different methods. Our model is trained on all identi-

ties simultaneously.

SSIM ↑ FLIP ↓ LPIPS ↓ rIPFIP ↑ mFID ↓ User Study

V2V 0.9252 0.0363 0.0703 - 140 8%

TNA 0.9366 0.0323 0.1198 -2.6% 150 3%

DNR 0.9398 0.0342 0.0918 7.7% 92 9%

ANR 0.9738 0.0289 0.0508 18.6% 74 81.6%

[37] as our actors are not centered and are free to move any-

where in the frame. As parametric body model, we use a

blendshape-based, SMPL-like [24] human model to provide

the coarse mesh structure. The model is coarse and has only

1831 vertices and 3658 faces; the skeletal rig has 74 joints.

4.1. Implementation Details

We use a variant of Pix2Pix [16, 42] for both R1 and R2

and train the model on 1024 × 1024 image resolution. The

images are normalized to the range [-1,1]. Each identity is

encoded in a 256×256×8 neural texture. For each recorded

sequence, we use the first 1500 frames to train R and about

150 key frames to train T . The remaining images are used

as test set. We augment the data with random cropping and

random rescaling by a factor f ∼ [0.5, 1.25].

4.2. Evaluation

Baseline and Metric: We include a comparison with two

baselines: Textured Neural Avatar (TNA) [36] and vid2vid

(V2V) [41]. These methods are fundamentally different and

Table 2: Loss and model ablation study for the ANR model.

The model ablations marked with (-so) are run without the

suggested split optimization strategy.

SSIM ↑ LPIPS ↓ FLIP ↓
Loss ablation

Pixel only 0.968 0.086 0.029

Pixel+feat 0.966 0.065 0.033

Pixel+feat+TV 0.963 0.064 0.032

Model ablations

1 stage(-so) 0.962 0.070 0.036

1 stage 0.965 0.063 0.034

2 stage(-so) 0.968 0.058 0.032

Ours 0.974 0.050 0.028

span the space of 2D (V2V) and 3D (TNA) inference ap-

proaches, whereas we aim to find a middle ground. We also

present comparisons to baseline DNR [38], trained with ad-

ditional feature losses for a fairer comparison. Fig. 4 shows

these comparisons. Evidently, ANR preserves the facial de-

tails better compared to competing methods. Additionally,

it is able to capture view dependent structures like hairline

and clothing overhang more accurately and leads to more

realistic and believable shading. We also quantify these ren-

derings using the standard SSIM, LPIPS, FLIP supervised

metrics on held out test set frames, and the mFID unsuper-

vised metric on human-figure-only avatars in novel poses.

Tab. 1 shows these comparisons. Our model outperforms

the competing approaches on these benchmarks by a no-

table margin on all metrics.

Ablation Study: To quantify the effectiveness of the pro-
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Figure 5: Qualitative ablation study for each term in the

loss function and the normal channels on a multi-identity

model. The first four columns do not use normal informa-

tion: (a) Only pixel loss; (b) Pixel and feature losses; (c)

Pixel, feature, and mask losses; (d) Pixel, feature, mask,

and TV losses; (e) All losses + normal; (f) All loses + nor-

mal + split optimization. Notice that the local textures and

facial details are better preserved with split optimization.

Figure 6: A novel avatar unseen during neural renderer

training. Only the neural texture is optimized for this iden-

tity. Animated figure is included in the appendix

posed improvements, we run two ablation studies. Fig. 5

shows the rendered results with different loss terms re-

moved. We notice that without the mask and feature loss

(Pixel only), the model produces unrealistically “fat” or

“thin” avatars. The feature loss (Pixel+feat) improves the

visual quality. Adding the normals improves the level of

detail in the reconstruction and aids in reasoning about

self occlusion and temporal consistency (shown in the sup-

plementary video), split optimization drastically improves

the level of detail. Note the jump in perceptual quality

of the rendered face using the split-optimization scheme.

Lastly, we show that our two-stage neural render with inter-

mediate normal injection outperforms the single-stage ap-

proach with the same capacity, validating our network de-

sign choice. This trend is quantitatively confirmed in Tab. 2.

User Study: While SSIM, LPIPS, or FLIP are the most

widely-used metrics for generative tasks, they are merely

proxy metrics which do not pay attention to salient regions

(e.g., for faces or patterns on shirts) and do not strictly mea-

sure perceptual quality. To demonstrate the efficacy of our

method, we conduct a 4-alternative forced-choice percep-

tual study with 80 participants, where users were given a

choice to pick the best avatar out of the results generated

from TNA, Vid2Vid, DNR, and our ANR. Each person was

presented with 20 stimuli of avatars in novel poses for 5s

(see supplementary material for details). ANR was pre-

ferred 81.6% of the time. Furthermore, to test the photo-

realism of our avatars, we conducted another 2-Alternative

forced choice study with 200 participants, where users were

presented a real image and an image of our avatar in differ-

ent poses, and asked to pick the real image. Our model

was able to fool users 34% of the time (50% being random

chance) in this test. This shows the realistic rendering per-

formance of our model.

Model Efficiency: We calculate the relative improvement

in LPIPS of each approach (x) over vid2vid (v2v) scaled by

factor of improvement in number of parameters (#p)[13]

rIPFIP(x) =
LPIPSv2v − LPIPSx

LPIPSv2v
∗
log(#pv2v/#px)

log(#pv2v)

Particularly, this metric lies in (-∞,1] and reaches a maxi-

mum value for ground truth images. This metrics highlights

that we benefit from our design choices compared to DNR,

and not solely from differences in capacity.

Generalization: Fig 6 shows an avatar for which only the

neural texture has been optimized on a new subject while

keeping the pre-trained neural renderer fixed. We observe

details of the T-shirt are also recovered correctly. This ex-

ample indicates the strong generalization of our neural ren-

derer despite being trained only on a few identities.

5. Applications

We use a single ANR model to digitize and render

avatars for several applications. Please refer to the supple-

mentary video for more examples.

Novel View Synthesis: To render the avatar from novel

views, we only need to rasterize the tracked mesh using the

scene camera parameters to create the UV lookups. The

avatar can be readily generated using the neural renderer R.

See Fig. 7 for an illustration and the supplementary video

for additional results. The viewpoint stability is unlike most

image-based CNN approaches, which often synthesize in-

consistent appearance with varying viewpoints [41].

Animation: The learned neural identity can be retargeted

to any motion from a motion capture database. Fig. 8

shows renderings of the same motion sequence from multi-

ple views. Importantly, our model adds vivid and realistic
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Figure 7: Viewpoint generalization demonstration. The proposed model model is robust to viewpoint variation, even for

unseen poses, and shows high level of detail.

Figure 8: Avatar animation example. Any motion capture

data that can be used to animate the base mesh can be used

to drive the avatar. All avatars shown here are rendered us-

ing a single neural network.

pose-dependent deformation to the rendered avatar, which

is not possible for other methods using skinned, but coarse

meshes [15]. Fig. 3 provides a detailed view of the pose-

dependent deformation appearance generation.

Replacement of Textures / Virtual Try-On: The learned

neural texture is not directly interpretable. However, for two

identities trained on the same neural rendering network, we

can swap parts of the neural volume to generate identities

with swapped faces/clothing items, as shown in Fig. 9. This

is unlike fully 3D based approaches which require detailed

captures for each new avatar [11].

6. Discussion
We introduce ANR, a novel neural rendering framework,

for high-quality virtual avatars with arbitrary skeletal ani-

mations and viewpoints. Our key is to account for geomet-

ric misalignment and pose-dependent surface deformation.

Figure 9: Virtual Try-On example. ANR enables texture

mixing by swapping the regions of the neural texture. This

example validates the disentanglement of appearance and

neural shading network when ANR is trained on multiple

identities. Animated figure is in the appendix.

Our solutions are carefully integrated into an end-to-end

learning framework with a novel neural rendering architec-

ture and adjusted optimization scheme. ANR can render

multiple avatars using a single neural rendering model. By

decoupling of texture and geometry ANR enables mixing

and editing of appearance. For higher quality results, fine-

tuning the model on a specific identity is an option. This

makes the resulting avatars directly applicable in use cases

where the range of motion is known or can be estimated

well, for example for virtual assistants or game characters.

We notice that large and consistent tracking errors often

leads to blurry appearance synthesis. This is where the split-

optimization is not effective. One potential solution toward

resiliency to large pose tracking errors is explicit pose and

shape refinement via inverse rendering. Additionally, ANR

currently bakes the scene lighting to the neural appearance.

Incorporating intrinsic decomposition to decouple lighting

and surface reflectance is a prominent future direction.
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